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Abstract: About 8% of the Americans contract influenza during an average season according to the
Centers for Disease Control and Prevention in the United States. It is necessary to strengthen the
early warning for influenza and the prediction of public health. In this study, Spatial autocorrelation
analysis and spatial scanning analysis were used to identify the spatiotemporal patterns of influenza-
like illness (ILI) prevalence in the United States, during the 2011–2020 transmission seasons. A
seasonal autoregressive integrated moving average (SARIMA) model was constructed to predict the
influenza incidence of high-risk states. We found the highest incidence of ILI was mainly concentrated
in the states of Louisiana, District of Columbia and Virginia. Mississippi was a high-risk state with a
higher influenza incidence, and exhibited a high-high cluster with neighboring states. A SARIMA (1,
0, 0) (1, 1, 0)52 model was suitable for forecasting the ILI incidence of Mississippi. The relative errors
between actual values and predicted values indicated that the predicted values matched the actual
values well. Influenza is still an important health problem in the United States. The spread of ILI
varies by season and geographical region. The peak season of influenza was the winter and spring,
and the states with higher influenza rates are concentrated in the southeast. Increased surveillance in
high-risk states could help control the spread of the influenza.

Keywords: influenza-like illness; spatiotemporal analysis; SARIMA model; prediction

1. Introduction

Influenza is caused by the influenza virus which mainly spreads through airborne
droplets and direct contact. It has the characteristics of strong infectivity, rapid trans-
mission and antigen variation. The activity of seasonal influenza begins to increase in
October, most often peaks between December and February and can remain elevated until
May. Influenza virus infections are very common and their incidence can only be esti-
mated [1]. Previous estimates attributed to the World Health Organization indicated that
250,000–500,000 influenza-associated deaths occur annually, corresponding to estimates of
3.8–7.7 deaths per 100,000 individuals calculated using 2005 United Nations Department of
Economic and Social Affairs World Population Prospects [2]. In particular, the 2017–2018
influenza season in the United States was notable for its high severity, with about 45 million
illnesses and 810,000 influenza-associated hospitalizations throughout the United States [2].

As influenza may be characterized by fever, cough, sore throat, runny or stuffy nose,
body aches, headache, chills or fatigue and so on, it is hard to diagnose as influenza,
based on symptoms alone. A number of influenza tests are available to detect influenza
viruses in respiratory specimens. The most common are called “rapid influenza diagnostic
tests (RIDTs)” [3]. However, not all the people were tested for influenza, the number
of reported cases of influenza may significantly underestimate the actual prevalence of
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influenza. A prospective study in two metropolitan areas of Taiwan showed that influenza-
like symptoms were significant predictors for influenza infection. The combination of fever
plus cough had the best sensitivity (86%), but the combination of fever plus cough and
sneeze had the best specificity (77%) [4]. Therefore, influenza-like illness (ILI) can be used
instead of influenza to estimate the trend of influenza [5].

Influenza activity varied widely across the country, making the use of national burden
estimates difficult for state or county public health messaging, planning, and responses [2].
A study of the temporal and spatial distribution of weekly influenza in Pennsylvania
suggested that there was spatial heterogeneity and spatiotemporal aggregation of influenza
distribution [6]. Martin [7] used spatiotemporal statistical prediction models to estimate
daily ILI-related emergency department visits. The Geographic Information System (GIS)
is a useful epidemiological method for identifying high-risk areas in many infectious
diseases [8]. Global and local Moran’s I spatial autocorrelation analyses are common
methods to detect whether there is spatial autocorrelation and where the specific areas are
located, separately. Spatiotemporal scanning statistics is a more comprehensive method that
can analyze space and time distribution and set parameters more flexibly [9]. Identifying
high-risk and endemic areas and the spatial−temporal distribution of infectious diseases is
important for the development of prevention plans and health policies [10].

The prevalence of influenza displays a seasonal pattern [11]. For diseases that show
recurrent seasonal patterns or occur in cyclic patterns, time-series models are the most
widely used statistical models for forecasting [12]. The autoregressive integrated moving
average (ARIMA) is a widely used predictive analysis model for nonstationary time-
series [13]. Compared with ARIMA model, the seasonal autoregressive integrated moving
average (SARIMA) model considers seasonal characteristics and can more accurately
identify the fluctuation of the diseases over time. The SARIMA model has been used to
predict influenza in many studies. Yuzhou [14] used the SARIMA model to control the
effects of seasonality in the forecast of influenza epidemics, and the results showed that the
SARIMA model had better predictive performance. Xin [15] constructed several SARIMA
models to predict the incidence of influenza in different provinces in China, and concluded
that time-series analysis was good tool for the prediction of disease incidence.

This study used spatial autocorrelation analysis and spatiotemporal scanning analysis
to identify the spatiotemporal patterns of ILI epidemics in the United States, during the
2011–2020 transmission seasons. A time-series model was then constructed, based on
the influenza data of high-risk states, to predict the future incidence of influenza, so as
to provide theoretical guidance and scientific basis for the prevention and treatment of
influenza [16].

2. Materials and Methods
2.1. Data Resources

Information on outpatient visits to health care providers for ILI is collected weekly
through the United States Outpatient Influenza-like Illness Surveillance Network. For
this system, the confirmed influenza case was “A patient who tests positive for influenza
virus infection by an approved laboratory test”, and ILI is defined as “fever (temperature
of 100 ◦F (37.8 ◦C) or greater) and a cough and/or a sore throat without a known cause
other than influenza” (https://www.cdc.gov/flu/weekly/overview.htm, accessed on
24 November 2020).

We collected the ILI data from 1st week 2011 to 29th week 2020 from the Centers
for Disease Control and Prevention (CDC). The data included the number of ILI cases in
49 states for different age groups. For hotspot states, time-series models were constructed
by collecting data from 1st week 2011 to 52nd week 2018, and data from 1st week 2019 to
29th week 2020 were taken as test data to assess forecast performance [17].

https://www.cdc.gov/flu/weekly/overview.htm
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2.2. Spatiotemporal Cluster Analysis

Moran’s I is an important index for analyzing the spatial correlation of diseases [18].
Moran’s I ranges from −1 to 1, where 0 indicates a random distribution of influenza.
A value close to 1 indicates that the unit cluster has a similar value. A value close to
−1 indicates that the unit with high values and low values are adjacent in space [19].
Based on its value and significance, Moran’s I can detect four types of cluster, including
the high-high (HH), high-low (HL), low-low (LL) and low-high (LH) clustering patterns,
respectively. The number of permutations was 999, and the significance level was 0.05 [20].

Spatiotemporal cluster analysis is a measurement of temporal and spatial correla-
tion on the foundation of spatial autocorrelation with the further consideration of the
time factor [21]. It can relate the spatial characteristics to the temporal characteristics of
influenza [16]. During the study period, the cluster was detected by retrospective spa-
tiotemporal permutation scanning statistics [22]. A retrospective study is an analysis of a
fixed geographic area and research period. The satellite scanning software scans multiple
start and end dates, and evaluates real-time clusters (continuing to the study period and
date) and historical clusters (which did not exist before the end date of the study period).
Spatiotemporal scan statistics are defined by a specific window with a circular geographic
base and height corresponding to time. The window size was constantly adjusted to detect
possible spatiotemporal clusters [22]. In order to scan for small to large clusters, the largest
radius was set to 50% of the total population at risk, the largest height was set to 50% of
the total study period [23]. The logarithmic likelihood ratio (LLR) was used to compare
observed and expected numbers to identify specific clusters. After detecting the most likely
spatiotemporal clusters, these clusters were tested by the Monte Carlo method [24].

Monte Carlo simulation generates random copies of the data set under appropriate
null hypotheses to determine the statistical significance of these results. The p values for
these tests are calculated by comparing the maximum likelihood levels from the real data set
with the maximum likelihood levels from the random data set, where p = rank/(1 + number
of simulations) [11]. The number of copies should be at least 999 times to ensure sufficient
accuracy. Therefore, we use 999 Monte Carlo replications to estimate the importance
level of these clusters. If the points conforming to the evaluated cluster maintained their
aggregated pattern when compared with 999 randomized simulations of the entire dataset,
then it was considered important [25].

2.3. Time-Series Analysis

Time-series analysis has the advantage of predicting incidence. It is characterized
by the number of patients in the past and responds by predicting the number of patients
in the future. The SARIMA model is based on the sequential lag relationship existing in
time-series data and more suitable for forecasting when the data has obvious seasonal
characteristics [13]. The SARIMA model can be expressed as: SARIMA (p, d, q) (P, D,
Q)s. Letters p, d, q are the order of autoregression, the order of difference and the order
of moving average; Letters P, D, Q are the order of seasonal autoregression, the order of
difference and the order of moving average, and s is the specific value of cycle, the cycle of
American influenza is 52 weeks (s = 52) [13].

The process of establishing the SARIMA model was divided into three steps: First,
a weekly time-series plot of incidence (per 100,000 population) was drawn to check for
stationarity and seasonality. The model was constructed according to the autocorrelation
function (ACF) and partial autocorrelation function (PACF) of the model residuals. Sec-
ondly, ACF and PACF for estimating residuals were tested by Ljung-Box Q test, and the
minimum of the Bayesian information criterion (BIC) was taken as the optimal SARIMA
model. Finally, the model was applied to forecast the weekly ILI incidence for 30th week
2020 to 52nd week 2021.
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2.4. Statistical Analysis

The data was organized by Microsoft Excel 2013. The SARIMA model was constructed
by R 3.6.0 and SPSS 27.0. The value of Moran’s I and local indicators of spatial association
were calculated by GeoDa 1.14.0. The time scan statistic was measured with SaTScanTM9.5.
All the maps were drawn by ArcGIS 10.0.

3. Results
3.1. Epidemiological Analysis

Included in our study were a total of 9,065,910 ILI cases from 1st week 2011 to 29th
week 2020 in the United States. The ILI annual infection rate fluctuated from 5.92 to
15.84 per 100,000 population. ILI occurred throughout the year, most often peaked between
December and February and lasted until May.

In terms of age, the number of ILI cases in the age group 5–24 years old was the most,
and these groups accounted for about 35 percent, while the number of patients in the
age group over 65 years old was the least, accounting for about 7 percent (Figure 1). The
difference between different age groups had a statistical significance (p < 0.001).
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Figure 1. Epidemiological characteristics of influenza and ILI in the United States from 1st week 2011 to 29th week 2020.
(a) Weekly ILI cases of different age, (b) age distribution of ILI.

This study collected the population of 49 states and visualized them on the map
(Figure 2), and found no obvious association between population density and influenza inci-
dence.
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3.2. Spatiotemporal Analysis

Overall, the highest cumulative incidence of ILI (per 100,000 population) during the
study period was seen in the states of Louisiana, District of Columbia and Virginia, which
reported 12,200, 9563 and 9554 cases, respectively. The lowest cumulative incidence of ILI
incidence was reported from the states of Ohio, Washington and Iowa (Figure 3).
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3.2.1. Global Spatial Autocorrelation

The global spatial autocorrelation analysis for ILI suggested a clustering distribution
at the state level in the years of 2012 to 2017, the global Moran’s I reached the significance
level of 0.05. In contrast, the global Moran’s I for 2011, 2018 and 2019 display no significant
spatial autocorrelation, though Moran’s I greater than 0 (Table 1).

Table 1. Global spatial autocorrelation analysis.

Year Moran’s I E(I) Mean S Z-Value p-Value

2011 0.099 −0.021 −0.023 0.090 1.358 0.093
2012 0.185 −0.021 −0.019 0.095 2.151 0.028
2013 0.181 −0.021 −0.019 0.094 2.121 0.031
2014 0.200 −0.021 −0.021 0.092 2.401 0.022
2015 0.166 −0.021 −0.222 0.091 2.073 0.037
2016 0.177 −0.021 −0.024 0.093 2.150 0.029
2017 0.146 −0.021 −0.025 0.087 1.981 0.039
2018 0.074 −0.021 −0.023 0.092 1.053 0.145
2019 0.074 −0.021 −0.021 0.090 1.053 0.139

Year: “year” represents 1st to 52nd week of each year.

3.2.2. Local Spatial Autocorrelation

Local spatial autocorrelation analysis reveals only the relative states, rather than
absolute correlations. Only those states whose local Moran’s I have reached the significance
level of 0.05 will be present on the map. From 2011 to 2019, the local spatial autocorrelation
showed three HH clusters in total with two HL clusters, four LH and three LL clusters.
HH clusters were observed in the states of Louisiana (5 years), Mississippi (4 years), and
District of Columbia (1 year). Louisiana and Mississippi had HH clusters for long periods.
HL clusters were observed in the states of Illinois (4 years), and Oregon (2 years). LH
clusters were observed in the states of Tennessee (4 years), Maryland (6 years), Arkansas
(5 years), and Texas (3 years). LL clusters appeared in the northeastern part of the United
States only in 2018 and 2019 (Figure 4).
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3.2.3. Spatiotemporal Cluster Analysis

The spatiotemporal cluster analysis detected 23 clusters of ILI in the study period.
The clusters were particularly obvious in spring and winter. For example, the risk ratio
(RR) was highest in 2015, with three levels of clustering. Level 1, with Louisiana at the
center of high incidence area and two surrounding states, the risk of ILI in this area was
11.66 times more likely to develop the disease than other areas (LLR = 69,009, p < 0.001).
Level 2, with Virginia at the center of a high incidence area and three surrounding states,
the risk of ILI in this area was 9.79 times more likely to develop the disease than other
areas (LLR = 73,277, p < 0.001). Level 3, with New Mexico at the center of high incidence
area and three surrounding states, the risk of ILI in this area was 3.38 times more likely
to develop the disease than other areas (LLR = 26,518, p < 0.001). At the same time, the
states with a high cluster in the local spatial autocorrelation analysis were all located in
the high cluster area, the results were consistent. From the cluster time, the high incidence
time mainly occurs between January and March (Table 2).
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Table 2. Spatiotemporal scan of ILI in the United States from 2011 to 2019.

Year Level Center N Cluster Period Coordinates/Radius(km) ObservedCases ExpectedCases RR LLR p-Value

2011 1 Kentucky 15 2011-01-01 to 2011-02-28 (37.5 N, 85.3 W)/738.2 121,829 24,485 6.22 108,601 <0.001
2 Colorado 13 2011-01-01 to 2011-02-28 (39.0 N, 105.5 W)/1005.2 62,527 15,984 3.91 4.32 <0.001

2012 1 Mississippi 3 2012-10-01 to 2012-12-31 (32.8 N, 89.7 W)/289.2 37,831 4698 8.65 46,953 <0.001
2 Virginia 1 2012-09-01 to 2012-12-31 (37.5 N, 78.8 W)/0.0 29,130 4234 7.26 31,944 <0.001
3 Nebraska 17 2012-01-01 to 2012-03-31 (41.5 N, 99.8 W)/1116.02 65,301 32,693 2.15 13,777 <0.001

2013 1 Virginia 3 2013-01-01 to 2013-03-31 (37.5 N, 78.8 W)/222.1 46,638 4750 10.61 66,247 <0.001
2 Texas 15 2013-01-01 to 2013-2-28 (31.5 N, 99.4 W)/1327.5 101,773 27,333 4.32 64,734 <0.001

2014 1 Mississippi 3 2014-10-01 to 2014-12-31 (32.8 N, 89.7 W)/289.2 45,125 5686 8.52 55,411 <0.001
2 Virginia 3 2014-01-01 to 2014-04-30 (37.5 N, 78.8 W)/222.1 43,127 6524 7.06 46,035 <0.001
3 New Mexico 12 2014-01-01 to 2014-02-28 (34.4 N, 106.1 W)/1249.5 54,639 18,361 3.18 24,494 <0.001

2015 1 Louisiana 2 2015-01-01 to 2015-04-30 (31.1 N, 92.0 W)/289.2 45,837 4254 11.66 69,009 <0.001
2 Virginia 3 2015-01-01 to 2015-04-30 (37.5 N, 78.8 W)/222.1 54,666 6134 9.79 73,277 <0.001
3 New Mexico 12 2015-01-01 to 2015-02-28 (34.4 N, 106.1 W)/1249.5 54,311 17,264 3.38 26,518 <0.001

2016 1 Virginia 3 2016-01-01 to 2016-05-31 (37.5 N, 78.8 W)/222.1 63,287 7974 8.81 78,624 <0.001
2 Arizona 3 2016-01-01 to 2016-04-30 (34.3 N, 111.7 W)/559.1 32,319 7155 4.73 24,144 <0.001
3 Mississippi 10 2016-01-01 to 2016-04-30 (32.8 N, 89.7 W)/820.6 104,314 34,608 3.47 50,171 <0.001

2017 1 Florida 13 2017-01-01 to 2016-03-31 (28.6 N, 82.5 W)/1247.2 192,625 51,339 4.63 127,775 <0.001
2 Oregon 1 2017-11-01 to 2017-12-31 (43.9 N, 120.6 W)/0.0 6819 1714 4.01 4329 <0.001
3 Colorado 14 2017-01-01 to 2017-02-28 (39.0 N, 105.5 W)/1024.3 54,139 25,185 2.23 13,031 <0.001

2018 1 Florida 13 2018-01-01 to 2018-02-28 (28.6 N, 82.5 W)/1247.2 259,855 47,137 6.89 253,645 <0.001
2 Wyoming 13 2018-01-01 to 2018-02-28 (43.0 N, 107.6 W)/1052.7 74,812 19,512 4.04 46,665 <0.001

2019 1 Colorado 7 2019-01-01 to 2019-03-31 (39.0 N, 105.5 W)/747.6 82,746 19,164 4.52 58,874 <0.001
2 Florida 13 2019-01-01 to 2019-03-31 (28.6 N, 85.5 W)/1247.2 326,625 94,525 4.16 193,772 <0.001

RR: risk ratio; LLR: logarithmic likelihood ratio.
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3.3. Time-Series Analysis

Based on the result of spatiotemporal analysis, the HH cluster was mainly in Missis-
sippi and Louisiana. In particular, Mississippi has been exhibiting an HH cluster in recent
years. So we predict the incidence of ILI in Mississippi by time-series analysis.

Using raw training data from 1st week 2011 to 52nd week 2018, the trend differ-
ence (d = 0) and seasonal difference (D = 1) were calculated (Figure 5). The augmented
Dickey−Fuller Test indicated the sequence was stationary (t = −3.98, p = 0.01). The ACF
and PACF plots were used to estimate the parameter ranges of p, P and q, Q [26]. After
checking ACF and PACF plots, SARIMA (1, 0, 0) (1, 1, 0)52 was the best fitted model with
lowest AIC and BIC values, and the Ljung−Box Q Test of this model is valid (χ2 = 21.822,
p = 0.149), indicating it was a white noise sequence. All the parameter estimates were
significant (Table 3).
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 2 Arizona 3 2016-01-01 to 2016-04-30 (34.3 N, 111.7 W)/559.1 32,319 7155 4.73 24,144 <0.001 
 3 Mississippi 10 2016-01-01 to 2016-04-30 (32.8 N, 89.7 W)/820.6 104,314 34,608 3.47 50,171 <0.001 

2017 1 Florida 13 2017-01-01 to 2016-03-31 (28.6 N, 82.5 W)/1247.2 192,625 51,339 4.63 127,775 <0.001 
 2 Oregon 1 2017-11-01 to 2017-12-31 (43.9 N, 120.6 W)/0.0 6819 1714 4.01 4329 <0.001 
 3 Colorado 14 2017-01-01 to 2017-02-28 (39.0 N, 105.5 W)/1024.3 54,139 25,185 2.23 13,031 <0.001 

2018 1 Florida 13 2018-01-01 to 2018-02-28 (28.6 N, 82.5 W)/1247.2 259,855 47,137 6.89 253,645 <0.001 
 2 Wyoming 13 2018-01-01 to 2018-02-28 (43.0 N, 107.6 W)/1052.7 74,812 19,512 4.04 46,665 <0.001 

2019 1 Colorado 7 2019-01-01 to 2019-03-31 (39.0 N, 105.5 W)/747.6 82,746 19,164 4.52 58,874 <0.001 
 2 Florida 13 2019-01-01 to 2019-03-31 (28.6 N, 85.5 W)/1247.2 326,625 94,525 4.16 193,772 <0.001 

RR: risk ratio; LLR: logarithmic likelihood ratio. 
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Figure 5. The time diagram, ACF and PACF graphs for estimating the parameter: (a) the time diagram of ILI incidence after
one-order seasonal difference data, (b) the ACF graph of the raw data (d = 0, D = 0), (c) the PACF graph of the raw data
(d = 0, D = 0), (d) the time diagram of ILI incidence a, (e) the ACF graph of one-order seasonal difference data (d = 0 and
D = 1), (f) the PACF graph of one-order seasonal difference data (d = 0 and D = 1).

The model SARIMA (1, 0, 0) (1, 1, 0)52 forecasting effect was tested by comparing
the predicted values with the observed values from 1st week 2019 to 29th week 2020. As
Figure 6 shows, the black and blue lines represent the observed values and predicted
values, respectively, and the dark gray and light gray represent 80% and 95% confidence
intervals, respectively. The predicted trend of ILI incidence was basically consistent with
the actual trend, and both the root mean squared error (RMSE) and mean absolute percent
error (MAPE) were small, indicating that the model prediction results were reliable. Then,
forecasting the ILI incidence from 30th week 2020 to 52nd week 2021 by SARIMA. The
forecast results showed that there was a high ILI incidence in winter and spring, and low
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ILI incidence in summer and autumn. The incidence of ILI will reach its peak in the 6th
week 2021 (Table 4).

Table 3. Comparison of candidate SARIMA models.

Model Estimate t p
Ljung-Box Q Test

AIC BIC RMSE MAPE
Statistics p

SARIMA (1, 0, 0) (1, 1, 0)52 - - - 21.822 0.149 2235.530 2247.220 4.673 14.290
AR1 0.886 36.768 <0.001 - - - - - -

SAR1 −0.607 14.350 <0.001 - - - - - -
SARIMA (1, 0, 1) (1, 1, 0)52 - - - 20.962 0.138 2235.110 2250.700 4.655 14.368

AR1 0.865 28.837 <0.001 - - - - - -
MA1 0.097 1.5410 0.065 - - - - - -
SAR1 −0.612 −14.495 <0.001 - - - - - -

SARIMA (2, 0, 0) (1, 1, 0)52 - - - 20.734 0.146 2201.100 2216.700 14.390 0.970
AR1 0.957 18.254 <0.001 - - - - - -
AR2 −0.080 −1.511 0.067 - - - - - -

SAR1 −0.612 −14.495 <0.001 - - - - - -
SARIMA (2, 0, 1) (1, 1, 0)52 - - - 18.552 0.183 2233.530 2253.012 4.636 14.602

AR1 0.131 0.695 0.245 - - - - - -
AR2 0.653 3.744 <0.001 - - - - - -
MA1 0.835 5.088 <0.001 - - - - - -
SAR1 −0.605 14.157 <0.001 - - - - - -

SARIMA (2, 0, 2) (1, 1, 0)52 - - - 18.405 0.143 2233.480 2256.87 4.599 14.906
AR1 −0.080 −2.161 0.018 - - - - - -
AR2 0.825 26.101 <0.001 - - - - - -
MA1 1.064 16.272 <0.001 - - - - - -
MA2 0.064 0.994 0.163 - - - - - -
SAR1 −0.611 −14.45 <0.001 - - - - - -

AIC: Akaike information criterion; BIC: Bayesian information; RMSE: root mean squared error; MAPE: mean absolute percent error.
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Table 4. Predictive value of ILI incidence (per 100,000).

Year/Week Incidence 95% CI Year/Week Incidence 95% CI

2020/30 5.504 −4.248–15.256 2021/16 11.536 −8.684–31.755
2020/31 5.163 −7.801–18.128 2021/17 10.344 −9.876–30.563
2020/32 4.681 −10.288–19.651 2021/18 8.225 −11.995–28.444
2020/33 6.943 −9.399–23.284 2021/19 7.892 −12.327–28.112
2020/34 8.422 −8.900–25.743 2021/20 7.633 −12.587–27.853
2020/35 9.549 −8.488–27.587 2021/21 6.467 −13.753–26.687
2020/36 11.084 −7.484–29.652 2021/22 7.606 −12.613–27.826
2020/37 9.433 −9.532–28.398 2021/23 5.670 −14.550–25.890
2020/38 9.993 −9.271–29.258 2021/24 5.411 −14.809–25.63
2020/39 11.696 −7.795–31.187 2021/25 5.784 −14.436–26.004
2020/40 11.710 −7.953–31.373 2021/26 5.468 −14.751–25.688
2020/41 11.726 −8.068–31.520 2021/27 4.498 −15.721–24.718
2020/42 12.617 −7.276–32.511 2021/28 4.990 −15.230–25.21
2020/43 15.611 −4.359–35.581 2021/29 4.672 −15.548–24.892
2020/44 15.406 −4.623–35.434 2021/30 4.823 −15.851–25.496
2020/45 20.754 0.681–40.827 2021/31 5.010 −16.006–26.025
2020/46 23.021 2.913–43.128 2021/32 4.910 −16.364–26.184
2020/47 26.565 6.431–46.698 2021/33 6.056 −15.414–27.526
2020/48 30.270 10.116–50.423 2021/34 8.693 −12.926–30.313
2020/49 24.789 4.619–44.958 2021/35 9.995 −11.739–31.728
2020/50 26.030 5.849–46.211 2021/36 11.233 −10.587–33.054
2020/51 31.144 10.954–51.334 2021/37 9.925 −11.962–31.812
2020/52 34.819 14.622–55.016 2021/38 10.378 −11.560–32.316
2021/01 29.301 9.099–49.503 2021/39 11.596 −10.380–33.573
2021/02 23.157 2.951–43.363 2021/40 11.996 −10.010–34.003
2021/03 25.995 5.785–46.204 2021/41 11.853 −10.176–33.883
2021/04 32.197 11.985–52.409 2021/42 12.471 −9.577–34.518
2021/05 40.479 20.266–60.693 2021/43 17.086 −4.975–39.147
2021/06 54.811 34.596–75.026 2021/44 15.498 −6.574–37.569
2021/07 54.064 33.848–74.28 2021/45 23.641 1.562–45.720
2021/08 43.281 23.064–63.498 2021/46 26.943 4.858–49.028
2021/09 37.155 16.938–57.373 2021/47 33.262 11.172–55.352
2021/10 31.506 11.288–51.724 2021/48 36.767 14.674–58.86
2021/11 24.705 4.487–44.924 2021/49 29.557 7.461–51.654
2021/12 20.839 0.620–41.058 2021/50 30.704 8.606–52.802
2021/13 17.175 −3.044–37.394 2021/51 36.928 14.828–59.027
2021/14 14.670 −5.549–34.889 2021/52 40.739 18.638–62.84
2021/15 11.900 −8.319–32.119

4. Discussion

Influenza is a contagious respiratory illness caused by influenza viruses. It can cause
mild to severe illness. Serious outcomes of influenza infection can result in hospitalization
or death. Due to the low detection rates, it is easy to underestimate the severity of influenza.
The weekly ILI tests conducted by the CDC can effectively remind us of influenza trends.
The main purpose of this study was to explore the epidemiological characteristics of ILI
incidence, identify the states and possible clusters with high ILI incidence in the United
States through spatiotemporal analysis, and then construct a SARIMA model to realize the
short-term prediction of ILI incidence.

In the descriptive analysis, we recorded age characteristics, seasonal peaks and re-
gional differences. Those individuals most at risk for severe symptoms and complications
from this virus are the very young, vulnerable older adults, pregnant women, immuno-
compromised individuals of all ages, and those with chronic comorbid conditions [27].
Many studies indicated that influenza viruses caused severe morbidity and mortality in
the elderly [28]. However, in this study, people aged 65 and over accounted for the lowest
proportion of ILI cases. One of the reasons is that the cardinal number of population of
65 years and over is small. During the study period, a gradual increase in ILI incidence was
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observed, particularly during the 2018 and 2019 influenza seasons, with a sharp increase
in the incidence of ILI. There are many reasons to explain the influenza outbreaks. Both
extreme weather and insufficient vaccines are important reasons that affect the incidence
of influenza [29].

Spatiotemporal analysis was used to identify high-risk areas for multiple diseases [20].
Yue [30] and Freitas [31] used spatiotemporal analysis to identify the spatial clustering
characteristics of dengue fever cases. Liu [23] used spatiotemporal scanning analysis
to explore the high-risk areas of hand, foot and mouth disease. In this study, the high
incidence of influenza was mainly concentrated in the states of Louisiana, Virginia and
Mississippi. Spatiotemporal analysis revealed the HH clusters and high-risk states were
mainly located in Mississippi, and the time clusters were mainly concentrated in January
to March. This finding was confirmed by other studies [32,33]. Time-series analysis has the
advantage of predicting the incidence. It is characterized by the number of patients in the
past and responds by predicting the number of patients in the future [13]. The prediction
showed that the 95% confidence interval of the predicted ILI incidence almost contained
the observed value. The RMSE and MAPE were small, which supported that the SARIMA
model was effective in the prediction of ILI. Then, we used this model to forecast the ILI
incidence from 30th week 2020 to 52nd week 2021. The results demonstrated that ILI
incidence will increase in 45th week 2020 and peak in 6th week 2021, and the distribution
is similar to the previous years.

Influenza viruses spread through human contact. Therefore, geography and popu-
lation density are potential factors of influenza transmission [34]. According to Garrett’s
research, the high population density will accelerate the spread of influenza [35]. In this
study, the Northeast and Southwest were the most densely populated areas with the lower
ILI incidence in the United States. Mississippi is a mostly rural state with a low population
density and the highest incidence, different from the results of Garrett’s research [35]. The
reason for the results of this study might be the lower economic level of Mississippi [35,36].
During epidemics, the poorest part of the population usually suffers the most. In addition,
Mississippi is also the state with the highest proportion of black Americans. Many studies
have shown that black individuals have a higher proportion of influenza cases [37–39].

Transmission of influenza varies across seasons and geographical areas in the United
States. The obvious temporal clusters during the winter and spring, which was in accor-
dance with the seasonality of the respiratory disease [40]. Most parts of the United States
are temperate or subtropical climate. The continental climate zone in the central plain is
characterized by the cold winters. Winters in temperate regions are characterized by an
average temperature between 0 ◦C and 20 ◦C, with the minimum temperature dropping
to as low as −40 ◦C in some regions. Generally speaking, influenza peaks in temperate
regions in winter. However, the seasonal pattern in subtropical regions seem to be more
complicated [29]. Influenza transmission is influenced by variations meteorological vari-
ables such as temperature, absolute humidity and precipitation. In the annual influenza
epidemics of the United States, the transmission of influenza increases during periods with
low precipitation and absolute humidity [41]. Absolute humidity is the total water content
in the air. The survival rate of the influenza virus increases at lower absolute humidity
levels. Relative humidity increases with the high precipitation. High relative humidity will
accelerate the accumulation of respiratory droplets, which reduces the spread of influenza
virus. In contrast, low relative humidity is favorable to the spread of influenza virus. The
suitable temperature range activating influenza viral transmission could partially explain
the common winter epidemics in the central regions [42].

5. Limitations

There is need to highlight some limitations that may be associated with our study
outcomes. First, since all influenza activity reporting by public health partners and health-
care providers was voluntary, it was difficult to maintain the quality and consistency of
the source of data. Second, the influenza incidence of 2020 may be underestimated due to
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the masks. Therefore, the 2020 data was used for model testing instead of model building.
Third, the influence factors of influenza activity were not studied in-depth in this study. In
the next step, the risk factors need being explored.

6. Conclusions

In this study, we found the high-risk clusters were concentrated in the southeast, and
the incidence of influenza may reach its peak in the 6th week 2021. In order to limit the
spread of the outbreaks, surveillance activities and health education should be selectively
carried out in higher incidence areas in the epidemic season.
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