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Abstract: Most of the fatalities and injuries of oilfield workers result from inadequate protection and
comfort by their clothing under various work hazards and ambient environments. Both the thermal
protective performance and thermo-physiological comfort performance of textile fabrics used in
clothing significantly contribute to the mitigation of workers’ skin burns and heat-stress-related
deaths. This study aimed to apply the ANN modeling approach to analyze clothing performance
considering the wearers’ sweat moisture and the microclimate air gap that is generated in between
their body and clothing. Firstly, thermal protective and thermo-physiological comfort performance of
fire protective textiles used in oilfield workers’ clothing were characterized. Different fabric properties
(e.g., thickness, weight, fabric count), thermal protective performance, and thermo-physiological
comfort performance were measured. The key fabric property that affects thermal protective and
thermo-physiological performance was identified as thickness by statistical analysis. The ANN
modeling approach could be successfully implemented to analyze the performance of fabrics in order
to predict the performance more conveniently based on the fabric properties. It is expected that the
developed models could inform on-duty oilfield workers about protective and thermo-physiological
comfort performance and provide them with occupational health and safety.

Keywords: oilfield workers’ clothing; protective textiles; sweat moisture; microclimate air gap;
thermal protective performance; thermo-physiological comfort performance

1. Introduction

According to the U.S. Department of Labor statistics, 1566 workers died from injuries
in the oil-and-gas drilling industry and related fields from 2008 through 2017 [1]. Addi-
tionally, a recent explosion in one of Oklahoma’s oil-and-gas rigs resulted in the deaths
of five workers [2]. Particularly, Oklahoma is among the 10 most wildfire-prone states in
the USA (Insurance Information Institute, New York, NY, USA, 2018 statistics). Notably,
the majority of these fatalities and burn injuries resulted from inadequate protection and
comfort provided by oilfield workers’ thermal protective clothing [3,4].

The thermal environment where the on-duty oilfield workers work most often decides
the thermal protective performance of their fire protective textiles [5]. The thermal environ-
ments faced by these workers have been investigated by many researchers to understand
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the performance of fire protective textiles [5–9]. These investigations have found that
oilfield workers in the field are exposed to radiant heat, flames, hot surfaces, steam, and
hot liquids, which can be of various intensities and for different durations. The character-
istics of the fabrics used in fire protective textiles mostly decide the performance of the
workwear under thermal exposure. The performance of the fabrics used to make oilfield
workers’ workwear needs to be studied and understood under different thermal exposures
in order to improve the protection performance. Moreover, it has been found that the
metabolic heat and sweat vapor from the wearers’ body to the ambient environment may
not properly transfer through the fabrics used in the workwear. This eventually will cause
significant heat stress and strain on their bodies. Therefore, thermo-physiological comfort
performance of the fabrics used in workwear also needs to be studied and understood.

Both the thermal protective performance and thermo-physiological comfort perfor-
mance of fabrics used in protective clothing contribute significantly to reducing the number
of oilfield workers’ skin burns and heat stress [3,6,10]. Various standardized test methods
by ASTM (American Society for Testing Materials) or ISO (International Organization for
Standardization) were used under different thermal exposure to measure the protective
and comfort performance of the fabrics [11–15]. However, these standardized laboratory
testing techniques are fabric destructive in nature, time consuming, and/or expensive to
carry out on a regular basis [16,17]. Considering this, previous studies have focused on
developing empirical models to predict the protective and comfort performance of the
fabrics used to make workwear based on their physical properties [18–20]. For develop-
ing the models, the key fabric properties (e.g., thickness, thermal resistance, evaporative
resistance) were identified first, which affect the protective and comfort performance of
the workwear. Secondly, multiple linear regression (MLR) and/or artificial neural network
(ANN) models were developed by employing the identified key fabric properties to conve-
niently predict their performance. For example, a group of researchers [21–25] found that
weight, thickness, and thermal and evaporative resistance are the key fabric properties that
affect the fabric’s thermal protective performance. On the other hand, these researchers
concluded that the thermo-physiological comfort performance is mostly affected by fabric
weight, evaporative resistance, and water spreading properties. In most of these research
papers, it was found that ANN models more accurately predicted the performance than
did MLR models [20,26]. Notably, Udayraj et al. (2017) found that ANN model predictions
agreed better with the experimental observations [27]. After comparing the prediction
performance of both ANN and MLR models, Mandal et al. (2018) also have found that the
ANN model gives more accurate predictions compared to those of the MLR model [25].
This is because the ANN models are more advanced statistical learning models in the
machine learning and cognitive science disciplines. They are inspired by biological neural
networks and are used to estimate or approximate a variable that is dependent on a large
number of input variables. As the protective and comfort performance is dependent on
a large number of fabric properties, ANN models performed better in comparison to the
MLR models in the previous studies.

Although previous studies recommended using ANN models to predict fabrics’ per-
formance, these models were developed based on the experimental thermal protective
performance values of dry fabrics only. As oilfield workers’ sweat profusely while firefight-
ing, this sweat moisture could affect the thermal protective performance of fabrics [28,29].
Additionally, previous studies were carried out while developing the ANN models without
considering the air gap that results in microclimates between the fabrics and the wearers’
(oilfield workers’) bodies. Contextually, many researchers identified that absorbed moisture
plays a crucial and complicated role in the performance of fire protective textiles since the
thermal conductivity and heat capacity of the water is higher than that of the fabric and
air. The significance of the effect on the performance depends on the amount and location
of the moisture in the clothing [28,30–37]. Moreover, the entrapped air gap has great posi-
tive influence on the protective performance of fire-protective textiles but has a negative
effect on comfort performance [38–48]. In this context, Deng et al. (2018) found that air
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gaps within the clothing layer and human skin play an important role in determining the
thermal protective and comfort performance, and this air gap should be considered as a
parameter while developing a performance-predictive model [38]. Therefore, to reproduce
more realistic conditions, moisture and the microclimate air gap have to be considered as
they can substantially influence the thermal protective and thermo-physiological comfort
performance of fabrics [29]. Thus, an extension of the modeling studies on protective and
comfort performance is needed that considers moistened fabrics and the microclimate
air gap.

This research aimed to develop sophisticated computational models in order to fulfil
the above-mentioned knowledge gaps. In this work, the ANN modeling approach was
used for a more realistic prediction of thermal protective and thermo-physiological comfort
performance of fabrics by considering sweat moisture and the microclimate air gap. For
this, we characterized the thermal protective and thermo-physiological comfort perfor-
mance of fabrics in order to identify the key fabric properties affecting performance. By
employing the key fabric properties, an ANN model was developed for predicting perfor-
mance. Notably, the developed model could lead to prediction of the thermal protective
performance of fabrics under flame and radiant heat exposure.

2. Materials and Methods

For this research (Figure 1), different commercially available fabrics used in oilfield
workers’ protective clothing were selected and their physical properties including fabric
count (number of ends and picks (i.e., longitudinal warp and weft threads) within the
fabric) were measured using the standardized ASTM test methods (Table 1). The thermal
protective and thermo-physiological comfort performance of the fabrics with different
levels of moisture and a microclimate air gap size were determined by using ASTM F 2700
and ASTM F 1868 standards, respectively. Here, the protective performance and comfort
performance of the fabrics were measured in terms of heat transfer performance (HTP)
and total heat loss (THL), respectively, and systematically tabulated and presented. The
changes in HTP and THL with different levels of moisture and air gap are also statistically
discussed. The statistical significance tests and 95% confidence interval (CI) tests were
carried out to identify the difference in HTP/THL under different levels of moisture and
air gaps; in this study, if the p-value of mean difference in HTP/THL at two different
conditions of moisture or air gap was less than 0.05, the difference was interpreted as a
significant difference. Based on the sign (+ or −) of the upper and lower levels of HTP/THL
in the 95% CI tests, whether the difference in HTP/THL was significantly higher or lower
was interpreted. Descriptive statistical analysis was carried out to understand the impact
of different selected fabrics on the HTP and THL. The added water and air gaps also were
considered as ordinal parameters during the descriptive statistical analysis. The findings
in the difference of HTP and THL were justified based on the theory of textile science as
well as heat and mass transfer.
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Table 1. Selected fabrics and their properties.

Fabrics Fiber Content Fabric
Structure

Fabric Properties

Fabric Count
a (EPI × PPI;

Total)

Weight b

(Gram Per
Square Meter)

Thickness c

(mm)

Air
Permeability d

(cm3/cm2/s)

Thermal
Resistance e

(◦C × m2/W)

Evaporative
Resistance e

(Pa × m2/W)

Absorbency
Rating f

A

50%
Meta-aramid

50%
Para-aramid

Twill 56 × 58;
114 237 0.37 6.94 0.016 6.3 100

B 100%
Para-aramid Twill 46 × 46;

92 237 0.41 6.2 0.014 7.47 100

C

50%
Meta-aramid

50%
Para-aramid

Twill 85 × 58;
143 272 0.48 13.58 0.007 2.59 0

D

50%
Meta-aramid

50%
Para-aramid

Ripstop 72 × 52;
124 204 0.49 33.42 0.021 4.03 50

E
60%

Meta-aramid
40% Cotton

Twill 75 × 55;
130 237 0.47 47.84 0.021 2.45 0

EPI: Ends/Warps Per Inch; PPI: Picks/Wefts Per Inch. a Measured according to ASTM D3775; b Measured according to ASTM D3776; c

Measured according to ASTM D1777; d Measured according to ASTM D737; e Measured according to ASTM F1868; f Measured according
to AATCC 22.
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2.1. Thermal Protective Performance Test

The thermal protective performance of the fabrics was measured under 2 ± 0.05 cal/cm2

s heat flux with a combination of convective and radiant heat exposure using the ASTM F
2700 standard as shown in Figure 2 [16]. The samples were positioned horizontally and
the unsteady-state heat transfer through the specimen was measured using a copper slug
calorimeter. The transmitted heat sensor was a 4 ± 0.05 cm diameter circular copper slug
calorimeter constructed from electric grade copper. This standard was designed to measure
the heat transfer performance of materials that are exposed to combined convective and
radiant thermal hazards. Maker or fisher burners, two of each, with a diameter of 38 mm
top and 1.2 mm orifice size were used as one of two thermal energy sources. As the
second source, nine 500 W T3 translucent quartz infrared lamps were arranged in a liner
array with 13 ± 0.5 mm spacing between center to center, and 125 ± 10 mm from the
specimen surface. Testing was carried out on two different air gaps (0 and 6 mm) with three
different amounts of moisture (0 (dry), 20, and 50%). Self-designed air gap sizes that are
equivalent to the ASTM standards requirements were chosen in this study. Additionally,
0% moisture was the base line of measuring the protective performance; then, moisture
was increased up to 50%. Previous studies showed that the protective performance is
lowest at 20% added moisture and steadily increases up to 50% [30]. This led us to choose
0, 20, and 50% moisture in this study. The air gaps between the sensor and the fabric
were created by using a 6 mm spacer between the sensor assembly and the back surface
of the specimen. The required amount of distilled water was sprayed on the back side of
the fabric surface to simulate the absorbed sweat. In this study, distilled water was used;
human sweat can be either acidic or alkaline, and different solutions might have different
effects on performance, so distilled water was used to keep the effects consistent. Three
samples of 150 by 150 ± 5 mm were prepared for testing for each testing scenario. In total,
there were six different testing scenarios for each fabric type. The average value of three
samples was taken to determine the heat transfer performance value. Sample exposure
was terminated when the total accumulated thermal energy measured by the calorimeter
met the following empirical performance curve: cal/cm2 = 1.1991 × ti

0.2901, where ti is
the time since the initiation of the thermal exposure. This time value determines the heat
transfer performance (HTP) value for test specimen and is given by J/cm2 or cal/cm2. The
fabric with a higher HTP value usually has higher resistance to flame and should provide
more heat protection to the wearer.
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Heat transfer performance (HTP) value was calculated as cal/cm2 = tIntersect second ×
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2.2. Thermo-Physiological Comfort Performance Test

The thermo-physiological comfort performance of the fabric was measure using the
ASTM F 1868 standard test method (Figure 3). A guarded flat plate was composed of
a test plate, guard section, and bottom plate, each electrically maintained at a constant
temperature in the range of human skin temperature between 33 and 36 ◦C. The size of the
samples was 450 × 450 mm and was large enough to cover the surface of the hot plate test
section and the guard section completely. Testing was carried at 0 and 6 mm air gaps in
both dry and wet conditions. In order to consistently compare the thermo-physiological
comfort performance data set with the protective performance data set, this study chose 0
and 6 mm air gaps for the protective performance test. The air gap between the sensor and
the fabric was created in a similar way to that used in the thermal protection performance
test, by using a 6 mm spacer between the sensor assembly and the back surface of the
specimen. There were four different testing scenarios for each fabric. In total, 12 samples
(3 samples for each testing scenario) were prepared from each fabric type for testing. Values
of three samples from each fabric were measured and averaged. Thermal resistance is the
resistance to the flow of heat from a heated surface to a cooler environment. Total resistance
to dry heat transfer (Rct) for a fabric was calculated using the following formula:

Rct = (Ts − Ta) × A/Hc

where Rct is the total resistance to dry heat transfer provided by the fabric system and air
layer (C.m2/W), A is the area of the plate test section (m2), Ts is the surface temperature of
the plate (◦C), Ta is the air temperature (◦C), and Hc is the power input (W). The value of Rcf,
which is the intrinsic thermal resistance of the fabric alone, is determined by subtracting
thermal resistance the value measured for the air layer Rcpb (bare plate test) from the
average total thermal resistance value measured for the fabric system and air layer, Rct.
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Evaporative resistance is the resistance to the flow of moisture vapor from a saturated
surface to an environment with a lower pressure. Total evaporative heat transfer resistance
was calculated by using the following formula:

Ret = (Ps − Pa) × A/HE

where Ret is the total resistance to evaporative heat transfer provided by the fabric system
and air layer (Pa·m2/W), A is the area of the plate test section (m2), Ps is the water vapor
pressure at the plate surface (Pa), Pa is the water vapor pressure in the air (Pa), and Hc
is the power input (W). Averaging the apparent intrinsic evaporative resistance of all
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specimens (over the equilibrium period and a minimum of six samples) determines the
average apparent intrinsic evaporative resistance RA

e f of the laboratory sample.
Total heat loss (THL) of the sample was measure by using the following formula:

Qt =
10 ◦C

Rc f + 0.04
+

3.57 kPa
RA

e f + 0.0035

where Qt is the total heat loss (W/m2), Rcf is the average intrinsic thermal resistance of
the laboratory sample (K m2/W), and RA

e f is the average apparent intrinsic evaporative

resistance of the sample (Pa·m2/W). The total heat loss (THL) value is given by W/m2 and
is inversely proportional to the thermal and evaporative resistance. Higher THL values
indicate higher heat transfer through the fabric, which is proportional to the comfort per-
formance; however, THL is inversely proportional to the thermal protection performance.

2.3. Characterization Procedure to Identify Key Fabric Properties

To identify the key fabric properties affecting the thermal protective (i.e., HTP) and
thermo-physiological comfort (i.e., THL) performance of dry and moistened fabrics with
and without an air gap (Figure 1), the linear regression between fabric properties and
performance was analyzed using the SPSS software. In this study, two basic fabric prop-
erties, thickness and air permeability, were considered for the linear regression. These
properties can be easily measured and they are mutually independent. As other fabric
properties such as fabric count, weight, thermal resistance, and evaporative resistance
are mutually dependent on thickness and/or air permeability, it has been hypothesized
that the selected two fabric properties can properly represent the linear regression with
performance. Different studies used linear regression analysis to find out the relation
between fabric properties and performance [49,50]. For the statistical analysis, the men-
tioned fabric properties in Table 1 were considered as independent variables (input) and
the amount of moisture and air gap size were the ordinal independent parameters. Two
separate regression analyses were completed where dependent variables were HTP and
THL, respectively. The statistical analyses were carried out at a 95% CI; therefore, p-values
less than 0.05 were considered statistically significant. Among the thickness and air perme-
ability properties, the properties that showed the highest absolute regression coefficient
values were considered the key fabric properties affecting the performance. The impact
of key fabric properties on the performance was justified in association with the scientific
theory on heat and moisture transfer through porous fabrics (e.g., conduction, convection,
evaporation). Altogether, it was interesting to understand how the key fabric properties
affected the protective and comfort performance in more realistic conditions, i.e., sweat
moisture and with microclimate air gaps.

2.4. Procedure for ANN Modeling

Further, an ANN modeling technique was used to predict the protective and comfort
performance of moistened fabrics with microclimate air gaps using the key fabric properties
in MATLAB R2019a. Notably, ANN is an empirical approach that is widely applied to
capture and represent any kind of relationship between the input (e.g., key fabric properties)
and output (e.g., fabric performance) variables. In this study, different ANN models were
constructed for predicting the protective performance of fabrics. An ANN model consists
of at least three layers: input, hidden, and output layers. Each neuron in a layer has
adjustable weights for its inputs and an adjustable bias. For constructing an ANN model,
values for hyper-parameters, e.g., number of hidden layers and number of neurons in a
single hidden layer, and choice of activation functions also need to be specified. This study
employed a multilayer perceptron (MLP) architecture with three-layers, a feed-forward
network with one hidden layer and a hyperbolic tangent sigmoid transfer function as an
activation function in the hidden layer, and the linear function in the output layer. Next, the
trial-and-error method was used to choose the optimum number of neurons in the hidden
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layer. For this, the feed-forward ANN models were trained using the supervised training
form, the Levenberg–Marquardt optimization (trainlm) backpropagation method, with
1–10 neurons, and the best predictive ANN model was selected for deciding the number
of neurons in the hidden layer. One of the potential problems with supervised learning is
overfitting. In case of overfitting a model, it shows a very low value for error on the training
set, but a very high value for test error or generalized error when new data is presented to
the model. Generalization is a term that is used to explain how accurately a trained model
can make predictions when presented with new data, i.e., we want the gap between the
training and test error to be low. To improve the generalization and prevent overfitting
of the ANN models, some regularization was needed. This was achieved indirectly by
employing the most popular regularization technique of early stopping. For this, by default,
MATLAB software randomly divided 70% of the data for the training, 15% of the data for
the validation, and the remaining 15% of the data for testing the prediction performance of
the ANN models. In this study, the performance of the ANN models were analyzed based
on the Pearson correlation coefficient (r) and root mean square error (RMSE) of the models.
In the early stopping method, the validation and training errors usually decrease in the
early phases of training. However, when the model starts to overfit, the validation error
starts increasing for a specified number of iterations, training is stopped at this time, and
the ANN weights and biases at the minimum of the validation error are returned.

3. Results and Discussion

The HTP and THL values of the selected fabrics (obtained by using the methods
described in Sections 2.1 and 2.2) are presented in Table 2.

Table 2. HTP and THL values of the selected fabrics.

Fabric

No Air Gap 6 mm Air Gap

HTP (cal/cm2) at Different Moisture
Levels THL

(W/m2)

HTP (cal/cm2) at Different Moisture
Levels THL

(W/m2)
0% 20% 50% 0% 20% 50%

A 5.97
No Heat

Transfer (i.e.,
Very High HTP)

No Heat
Transfer (i.e.,

Very High HTP)
542.79 13.14

No Heat
Transfer (i.e.,

Very High HTP)

No Heat
Transfer (i.e.,

Very High HTP)
237.8

B 7.01
No Heat

Transfer (i.e.,
Very High HTP)

No Heat
Transfer (i.e.,

Very High HTP)
511.79 15.47

No Heat
Transfer (i.e.,

Very High HTP)

No Heat
Transfer (i.e.,

Very High HTP)
229.5

C 7.48 11.62 10.16 797.09 8.42 13.07 17.39 371.7

D 6.39 6.08 6.9 628.68 13.71 13.88 13.96 269.87

E 7.61 11.50 15.32 764.79 7.87 12.73 18.52 266

Table 2 shows that the HTP values of the fabrics increase with increasing moisture
percentage in the fabrics. This is because the presence of moisture within the fabrics could
enhance the heat capacity of the fabrics [51]. Due to the increase in heat capacity of the
fabrics, a significant amount of thermal energy could be stored within the fabrics [52]. As a
result, much less thermal energy could transfer through the fabrics to the wearers’ skin.
This situation results in higher thermal protective performance of the fabrics. In fact, no
heat transfer occurs in some fabrics such as A and B. Based on Table 1, it is clear that the air
permeability values of fabrics A and B are much lower than those of fabrics C, D, and E.
This means that fabrics A and B have a tighter and less porous structure in comparison to
the that of fabrics C, D, and E. The absorbency rating of the fabrics also suggested similar
results. Fabrics A and B did not absorb any water in the spray test and remained completely
dry. There might be additional polymer finishing in fabrics A and B, which resulted in low
water absorbency and air permeability. Due to this structural difference, moisture could
be trapped on the surface and/or inside the fabrics and enhance the heat capacity of the
fabrics. Due to this, the HTP values of these fabrics were very high. Notably, the HTP value
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of fabric B was higher than that of fabric A, even though both the fabrics comprised similar
fibers and weight. This is because the thickness of fabric B was higher than that of fabric
A; due to this, the HTP of fabric B was higher than that of fabric A. Among the fabrics C,
D, and E, it was evident that changes in the HTP values of fabric D were minimal under
different levels of moisture in both no air gap and 6 mm air gap conditions, whereas these
values were maximized in the case of fabric E. This phenomenon could be explained based
on the fiber content, fabric structure, and count of the fabrics. As fabric D is manufactured
with synthetic aramid fibers, a ripstop structure, and comparatively low fabric count, it
may not absorb much moisture; however, fabric E comprises natural cotton fibers with a
twill structure and could absorb moisture [53]. Due to changes in the absorbed moisture
level within the fabrics depending upon the fiber content, the HTP values could differ in
both no air gap and 6 mm air gap conditions [54].

Furthermore, according to Table 2, THL values of the selected fabrics in no and 6 mm
air gap conditions were all greater than 205 W/m2. As per the NFPA 1971 standard, the
THL value of protective fabrics should not be less than 205 W/m2 to provide sufficient
comfort to the wearers [55]. Based on this statement, it can be inferred that all the selected
fabrics under different air gap conditions could provide sufficient thermal comfort to the
wearers while wearing this fabric-based clothing. It has also been found that the HTP
values of dry fabrics in the no air gap condition is different than the HTP values of dry
fabrics in the 6 mm air gap condition. Based on the statistical analysis, it is evident that this
difference is statistically significant with a p-value of 0.05. However, the 95% confidence
interval (CI) of the difference in mean HTP values of dry fabrics in no air gap and air gap
conditions varied from −9.67 to 0.01. As the CI values varies from + to −, it is not possible
to conclude that this difference in HTP values is significantly higher or lower considering
the current set of fabrics. However, the absolute negative CI value is much higher than
the absolute positive CI value. Therefore, it can be concluded that the HTP values of the
fabrics generally could increase in the presence of an air gap. This is because the air gap
acts as an insulator that can trap significant amounts of dead air in between the fabrics and
wearers’ skin [36]. As a result, the HTP values of the fabric could increase and that could
help to provide better protection to the oilfield workers while exposed to heat [56].

According to Table 2, it is also evident that the THL values of fabrics A and B are
nearly the same and are the lowest in both no air gap and 6 mm air gap conditions. This
is because the air permeability of these fabrics is low, which might be due to the polymer
coating that helps to transfer the metabolic heat and sweat vapor from the human body
to the ambient environment [57]. As a result, the THL values of these fabrics are low.
Nevertheless, fabric C has the maximum THL value. This could be because of the twill
structure and synthetic fiber component in fabric C. Due to the twill structure, synthetic
fibers, and comparatively high fabric count, moisture from the wearers’ skins could move
to the outside of the fabric through wicking, and this situation would lower the thermal
and evaporative resistance of the fabric. Eventually, the THL value of fabric C increases.
Notably, fabric E also has a twill structure; however, it comprises natural cotton fibers. As
a result, fabric E could absorb moisture and thereby increase the thermal and evaporative
resistance of the fabric and THL would be higher. Notably, THL values of the fabrics were
much lower in the presence of a 6 mm air gap in comparison to no air gap. Based on the
statistical analysis, it is evident that this difference was significant with a p-value of <0.05.
According to the 95% confidence interval test, this difference in upper level and lower
levels of THL with a 6 mm air gap was always negative. This means the THL always gets
lower in the presence of an air gap between the wearers’ skin and clothing. Actually, the
trapped air within this gap acts as an insulator and resists the transmission of metabolic
heat and sweat vapor from wearers’ bodies to the ambient environment. As a result, the
thermal resistance and evaporative resistance becomes higher and that ultimately lowers
the THL of the fabrics.
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3.1. Characterization to Identify Key Fabric Properties

Based on the linear regression analysis between the two fabric properties (thickness
and air permeability) and performance (HTP and THL), it was found that the regression
coefficient of thickness was the highest. This means that thickness is the key property that
can affect the HTP/THL of dry and moistened fabric with and without an air gap. This
is because the thickness of the fabric plays an important role in heat and mass transfer
through the fabrics in the processes of convection, conduction, radiation, and/or mass
diffusion [58]. In general, a fabric is a porous media with combined solid fibers and yarn
phases as well as gaseous trapped air phases in between the fibers and yarns. Eventually,
these solid (fiber and yarns) and gaseous (pores) phases could help to transfer the heat
and vapor via convection, conduction, radiation, and/or mass diffusion [59] (Figure 4). In
the presence of thick fabric, less convective flame and radiant heat transfer occurs through
the fabrics’ solid and gaseous air phases in comparison to that of thin fabric; as a result,
more time is required to generate burns on wearers’ skin and that can cause a higher
HTP [58] (Figure 5). Similarly, thick fabric could transfer less metabolic heat and sweat
vapor from human skin to the ambient environment through the solid and gaseous air
phases in the fabric; as a result, the THL would be lower and generate more discomfort
to wearers (Figure 6). As HTP and THL are phenomena associated with heat and mass
transfer through the fabrics, thickness plays an important role for thermal protective and
thermo-physiological comfort performance of fabrics. Therefore, thickness was used for
the ANN modeling for predicting the thermal protective (HTP) and thermo-physiological
comfort (THL) performance. In summary, it is notable that a fabric with high thickness
could enhance the protective performance; however, it could significantly lower the comfort
performance [52]. In this study, the main goal was to identify the key fabric properties
that significantly affect performance, so thickness was chosen irrespective of its positive or
negative effect on the performance.
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3.2. ANN Modeling

To predict the protective and comfort performance of moistened fabrics with a micro-
climate air gap using the key fabric properties identified in Section 3.1, the ANN approach
was employed. The diagrams of these ANN models are presented in Figures 7 and 8, where
w represents the ANN weights and b represents the biases. The coding of these ANN
models is presented in Appendices A and B. The best predictive ANN model for HTP had
one neuron in its hidden layer (Figure 7), while the best predictive ANN model for THL
had three neurons in its hidden layer (Figure 8).
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The results of the ANN models for both thermal protective performance and thermo-
physiological comfort performance are presented in Table 3. The Pearson correlation
coefficient ‘r’ between the predicted HTP values from the ANN model and actual output
HTP values was 0.54. This suggests a moderate-to-strong association between the predicted
and actual HTP values. The Pearson correlation coefficient ‘r’ between the predicted THL
values from the ANN model and actual output THL values was 0.33. This suggests a low-
to-medium strength of association between the predicted and actual THL values. It is also
evident that the RMSE of the ANN model for HTP was significantly (p-value < 0.05) lower
than the RMSE of the ANN model for THL. This means that performance of the ANN model
for HTP is higher than the performance of the ANN model for THL. Based on Pearson
correlation coefficient and RMSE, it can be inferred that the ANN modeling approach could
be successfully used to predict the thermal protective and thermo-physiological comfort
performance of fabrics used in oilfield workers’ protective clothing.
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Table 3. The Pearson correlation coefficient and RMSE of the developed ANN models.

Predicting Performance
Parameters of Models

Thermal Protective
Performance (HTP Value)

Thermo-Physiological Comfort
Performance (THL Value)

Pearson correlation coefficient ‘r’ 0.54 0.33
RMSE 4.37 293.03

4. Conclusions

This study investigated the thermal protective and thermo-physiological comfort
performance of fabrics used in oilfield workers’ protective clothing using an artificial
neural network (ANN) modeling approach. For this, thermal protective and thermo-
physiological comfort performance was characterized and the key fabric property affecting
the performance, thickness, was identified. By employing the key fabric property, this
study applied the ANN modeling approach to predict the thermal protective and thermo-
physiological comfort performance of fabrics. This kind of ANN modeling approach could
be used for conveniently predicting the performance of textile fabrics used in oilfield
workers’ protective clothing.

It is our expectation that user-friendly software-based models developed from this
research will be used by procurement managers, designers, manufacturers, and/or re-
searchers of oil and gas industry workers’ clothing to conveniently predict the performance
of fabrics based on the fabrics’ physical properties. By using a limited number of fabrics,
this study indicated that the ANN modeling approach could be useful for predicting the
performance of fabrics used in oilfield workers’ clothing. In future, this model could be
improved by considering a wide range of fabrics, moistures, and air gap conditions in
order to accurately and realistically predict performance by using a neural network-based
software application. Not only would this accomplishment have an enormous positive
impact on the thermal protective textile sectors, buy it could also help to provide better
occupational safety to oilfield workers from different hazards.
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Appendix A. Coding for the ANN Model for HTP
% entering input data i.e., fabric property thickness
x = [ 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48
0.49 0.47];
% entering output data i.e., protective performance HTP
t = [ 5.97 7.01 7.48 6.39 7.61 20 20 11.62 6.08 11.5 20 20 10.16 6.9 15.32 13.14 15.47 8.42 13.71 7.87 20 20 13.07 13.88 12.73 20 20 17.39
13.96 18.52];
% Choose a Training Function
trainFcn = ‘trainlm’; % Levenberg-Marquardt backpropagation. ‘trainlm’ is usually fastest.
% Create a Fitting Network
hiddenLayerSize = 1;% number of hidden neurons.
nethtp = fitnet (hiddenLayerSize,trainFcn);
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% Setup Division of Data for Training, Validation, Testing
nethtp.divideParam.trainRatio = 70/100;
nethtp.divideParam.valRatio = 15/100;
nethtp.divideParam.testRatio = 15/100;
nethtp.trainParam.epochs=3000;% number of training epochs.
% Train the Network
[nethtp,tr] = train (nethtp,x,t);
% Test the Network
y = nethtp (x);
e = gsubtract (t,y);
performance = perform (nethtp,t,y)
% View the Network
view (nethtp)
% calculating the root mean square error
rmse=sqrt (performance);
% Plots
figure, plotperform (tr)
figure, plottrainstate (tr)
figure, ploterrhist (e)
figure, plotregression (t,y)
% using the regression analysis to judge the network performance
[m,b,r]=postreg (y,t);
% saving the trained network
save nethtp;

Appendix B. Coding for the ANN Model for THL
% entering the input data i.e., thickness
x = [ 0.37 0.41 0.48 0.49 0.47 0.37 0.41 0.48 0.49 0.47];
% entering the output data i.e., THL
t = [542.79 511.79 797.09 628.68 764.79 237.8 229.5 371.7 269.87 266];
% Choose a Training Function
trainFcn = ‘trainlm’; % Levenberg-Marquardt backpropagation. ‘trainlm’ is usually fastest.
% Create a Fitting Network
hiddenLayerSize = 3;% number of hidden neurons.
netthl = fitnet (hiddenLayerSize,trainFcn);
% Setup Division of Data for Training, Validation, Testing
netthl.divideParam.trainRatio = 70/100;
netthl.divideParam.valRatio = 15/100;
netthl.divideParam.testRatio = 15/100;
netthl.trainParam.epochs=3000;% number of training epochs.
% Train the Network
[netthl,tr] = train (netthl,x,t);
% Test the Network
y = netthl (x);
e = gsubtract (t,y);
performance = perform (netthl,t,y)
% View the Network
view (netthl)
% Plots
figure, plotperform (tr)
figure, plottrainstate (tr)
figure, ploterrhist (e)
figure, plotregression (t,y)
% using the regression analysis to judge the network performance
[m,b,r]=postreg (y,t);
% saving the trained network
save netthl;
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