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Abstract: During the last decade, the use of nanomaterials, due to their multiple utilities, has
exponentially increased. Nanomaterials have unique properties such as a larger specific surface
area and surface activity, which may result in health and environmental hazards different from
those demonstrated by the same materials in bulk form. Besides, due to their small size, they can
easily penetrate through the environmental and biological barriers. In terms of exposure potential,
the vast majority of studies are focused on workplace areas, where inhalation is the most common
route of exposure. The main route of entry into the environment is due to indirect emissions of
nanomaterials from industrial settings, as well as uncontrollable releases into the environment during
the use, recycling and disposal of nano-enabled products. Accidental spills during production or later
transport of nanomaterials and release from wear and tear of materials containing nanomaterials
may lead to potential exposure. In this sense, a proper understanding of all significant risks due to
the exposure to nanomaterials that might result in a liability claim has been proved to be necessary.
In this paper, the utility of an application for smartphones developed for the insurance sector has
been validated as a solution for the analysis and evaluation of the emerging risk of the application of
nanotechnology in the market. Different exposure scenarios for nanomaterials have been simulated
with this application. The results obtained have been compared with real scenarios, corroborating
that the use of novel tools can be used by companies that offer risk management in the form of
insurance contracts.

Keywords: nanotechnology; nanomaterial; nanoparticle; ecotoxicity; risk assessment; modeling

1. Introduction

The main principle of insurance is that one party, identified as “the insurer,” shall
guarantee payment for an uncertain future event related to an incident where potential
damages can be expected on different subjects, including human health or the environment.
Special types of insurance policies that insure against specific types of risks faced by a
particular company are required. In this regard, a nanotechnology-based company needs
a policy that covers damage or injury that occurs as a result of an accidental event in the
factory, including accidents involving nanomaterials.

Today, engineered nanomaterials (ENMs) are frequently used. Their applications
range from scratch-resistant or self-cleaning surface coatings to enhanced cosmetics. Ap-
plications in food include objectives to enhance flavor and texture and encapsulate mi-
cronutrients to prolong their stability, augmented by packaging applications to prolong
shelf life and avoid bacterial contamination. Potential applications in other sectors include
environmental remediation to detect and eliminate toxic substances, energy generation
and storage plus multiple other commercial uses of novel materials [1]. Besides the wide
range of new opportunities offered by these novel materials, concerns have been raised
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because of potential adverse health effects that may arise if NMs are taken up by the human
body [2].

While human exposure to NMs may in principle occur during any stage of the ma-
terial’s life cycle, it is most likely in workplaces, where these materials are handled or
produced in large quantities or over long periods of time. Inhalation is considered the
most critical uptake route as these small particles are able to penetrate deep into the lung
and deposit in the gas exchange region. Inhalation exposure to airborne nanomaterials,
therefore, needs to be assessed in view of worker protection. However, to date, unlike what
happens for gaseous compounds, there is still no methodology clearly established by the
scientific community to evaluate the exposure of nanomaterials in the workplace.

The majority of the literature regarding the fate and transformation processes of NMs
in the environment focuses on aquatic systems and soils (e.g., Baalousha et al. [3]; Gut-
leb et al. [4]), since the major part of NMs is known to end up in these two compartments,
whereas only 0.1–1.5% of the produced NMs are estimated to be released into the atmo-
sphere during their life cycle [5]. However, since inhalation has been identified as the main
penetration route of exposure for human beings, monitoring the presence of NMs in air,
especially in workplaces, is crucial.

Many activities involved in engineered nanomaterial (ENM) manufacturing may be
a potential source of ENM emissions. In many cases, the major emissions come from the
process step generating the nanomaterial, but at a subsequent phase, such as recovering
particles from the reactor, milling, drying or further handling may also be a potential
NM source [6]. Other processes such as spray drying or milling are more prone to leaks
as they are often performed in air at atmospheric pressure conditions [7]. Adopting the
corresponding safety measures throughout the NM life cycle can minimize and even avoid
the exposure of workers to nanomaterials. Nevertheless, while systematic efforts are made
to prevent them, accidental releases may generally still occur in the chemical industry.
Major releases are very rare events, but if they occur, they can contribute significantly to
the emission of chemicals to the environment and can be a serious hazard to workers if
proper precautionary measures are not taken (e.g., personal protective equipment). At each
stage of the ENM life cycle, accident scenarios can take place that lead to unintended or
uncontrolled releases of ENMs to different environmental compartments: air, water or soil.

Release rates and amounts are very dependent on the release scenario, the safety
procedure in place, and the location and environment of the release [8]. They can range
from a few kilograms for small releases to several tons in rare cases of major releases.
Under an accidental scenario the release form is directly related to the form of ENMs used
in the industrial process. Nanoparticles typically agglomerate with agglomerate sizes in
the micrometric range.

Several uncontrolled releases involving ENMs have occurred in the past. Some
examples can be found in the ARIA database [9]. These accidents had no reported health or
environmental consequences but resulted in the release of measurable amounts of ENMs
to the immediate surroundings.

Small-scale accidents related to the handle nanomaterials have also been reported in
literature, such as leaks from an inadequately sealed vacuum cleaner (Boowok et al. [10])
or the miss function of bag filters (Jin et al. [11]).

To date, there is still a lack of information regarding the threshold limits for occu-
pational exposure. International organizations such as NIOSH have established recom-
mended exposure limits (RELs) for a limited type of particles such as ultrafine TiO2, CNT
and nanofibers [12,13]. To date, different approaches have been adopted to assess the risk
of NM exposure in the workplace. The ideal option would be to carry out a quantitative
evaluation by carrying out experimental measurements in the work environment itself.
However, this option is not always possible, so qualitative methods are commonly used.
These methods can be used to make a first approximation or diagnosis of the hygienic
situation derived from the presence of chemical agents and of the necessary preventive
measures in each case. Some of the most recognized and used qualitative evaluation meth-
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ods for nanomaterials are the CB Nanotool method developed by Zalk et al. [14], applicable
for small amounts of NMs, in laboratories or small-scale production, Stoffenmanager
Nano (http://nano.stoffenmanager.nl./, accessed on 21 October 2020 [15]) and the ISO/TS
12901-2:2014 method (http://iso.org/ accessed on 17 September 2020 [16]), which are only
applicable for research laboratories and industrial scale to assess the inhalation risk of
particles with water solubility <0.1 g/L, individual particles, aggregates and agglomerates.
Although these methods may be useful, their limitations are crucial.

Moreover, the nanotechnology-related industry requires insurance to efficiently man-
age risks that arise from running the business, considering the current significant knowl-
edge gaps for nanotechnology risk assessment [17–19]. Several tools are already available
for risk assessment, including the Swiss Precautionary Matrix [20,21], NanoRiskCat [22,23],
the US Control Banding Nanotool [24] or NanoSafer [25]. However, these models and tools
require extensive expertise and knowledge of nano-safety and were made for different
purposes and application domains (i.e., inhalation, dermal, sprays, etc.), making them
inappropriate for non-experts. Concerning risk management and insurance, a limited
number of tools are currently available, including CENARIOS [26], LICARA NanoScan [27]
or the IRGC framework [28]. A list of the tools available for risk assessment is shown in
Appendix A.

The aim of this study is to present a simple application for the risk assessment of
ENMs in the insurance sector, developed by integrating hazard-related data retrieved
from the eNanoMapper database [29], and optimized exposure models developed under
the SUDOE project NanoDESK [30–33]. These models aimed to evaluate the levels of
occupational exposure to nanomaterials, their aggregates and/or agglomerates (NOAA)
during the manufacture of polymer nanocomposites, end-of-life processes and/or their
use in consumer articles, and the estimation of unintentional emissions of nanomaterials
into the environment. Specifically, the present work focuses on (1) the characterization
of aerosol particles released under different scenarios, and (2) to assess the potential use
of the tool by comparing estimated data with measured data. An operative version of
the tool can be downloaded from the URL: https://www.cyc-ingenieros.com/nanoserpa/
(accessed on 25 February 2011).

2. Methodology
2.1. Development of the NanoSerpa Application

The application was designed to be used as a library to search and consult the proper-
ties of existing nanomaterials and to easily elaborate accident reports where nanomaterials
are involved. For the latter, certain input parameters are required from the user: (1) type
of nanomaterial; (2) amount of nanomaterials involved in the accident; (3) process that
was taking place (synthesis, manufacturing, etc.); (4) type of accident (fire, explosion,
etc.); (5) optional comments about the accident. Once all fields are completed, a series of
probabilistic models and auxiliary tables will be executed resulting in emission, health
hazard values and risk indices. These models have been created using the open software
Python [34], and their functionalities are briefly explained below. Figure 1 depicts a flow
diagram of the application.

http://nano.stoffenmanager.nl./
http://iso.org/
https://www.cyc-ingenieros.com/nanoserpa/
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• Release and emissions to the environment: A material flow model (MFM) has been
implemented for the estimation of emissions into the environment. This model has
included the most common processes when working with nanomaterials: synthesis,
manufacturing, use, sludge treatment disposal, incineration removal and filtration. In
addition, different types of accidents such as explosions, burning or fire, gas escapes
and spillovers have been introduced.

• Health hazard: This model considers 10 different endpoints when analyzing the health
hazards of nanomaterials. This information is available in the NanoSerpa database,
which contains information from different data sources, highlighting the eNanoMap-
per database [29]. eNanoMapper is the biggest European public database hosting
nanomaterial characterization data and biological and toxicological information.

• Risk index: The risk index is estimated based on the two models mentioned above.
This type of band model is widely used in the field of nanoparticle risk calculation.

2.1.1. Emission/Release Estimation Model

To estimate the exposure potential, the model considers relevant determinants of
exposure based on Scheneider et al. [35]. The relevant determinants considered were energy
and duration of the process/activity, volume of the facility (personal area, room, industrial
facility or surrounding area), dustiness (very high (extremely fine and light powder), high
(fine powder), medium (coarse powder), low and very low (extremely coarse powder)),
solubility, weight fraction (% purity), moisture level, viscosity, and amount used. The
NanoSerpa model was developed based on Michael P. Tsang [36] and Ganser et al. [37]
and adapted to require the minimum user input as possible, as this was one of the biggest
concerns for developing the app.

The concentration of nanomaterial released in µg/m3 in the affected zone by the
accident is calculated using the equation below:

C
( µg

m3

)
=

MNM∗EHP ∗ KNM∗A
V

(1)

where C is the released nanomaterial concentration in µg/m3, MNM is the mass of the nano-
material in µg, V is the facility/room volume in m3, and EHP, KNM and A are pre-calculated
ponderations based on the energy handling potential, physicochemical properties, which
are state dependent (viscosity/solubility for liquids, dustiness/moisture for solids), and
the liberation coefficient for the accident, respectively.

Then, a probabilistic nanomaterial flow analysis model based on the transfer coef-
ficients (TCs) proposed by Gottschalk [38] and Spinazze [39] was implemented into the
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NanoSerpa tool to estimate the different amounts of nanomaterials potentially released due
to the manufacturing or usage of nanoparticle-containing products. This mass-balanced-
model allows treating all parameters as probability distributions. Therefore, the model
output is represented by ENM flow probability distributions. Model input and output
distributions were derived by the Monte Carlo method and implemented in the Python
code. After running the model, the final emissions to air, water and soil sediment are
calculated (as µg/m3) using assumed transfer coefficients shown in Table 1.

Table 1. Transfer coefficients.

Flow TCs (%)

ENPP->Air 5.00
ENPP->Water 6.00
ENPP->Soil 0.01

ENPP->NAMF 88.99
NAMF->Air 10.87

NAMF->Water 7.15
NAMF->Soil 0.58

NAMF->Products 81.40
Products->Air 5.00%

Products->Water 0.00%
Products->Soil 5.00%
Products->WIP 50.00%
Products->STP 5.00%

Products->Export 35.00%
STP->Air 0.00%

STP->Water 3.00%
STP->Soil 0.00%
STP->WIP 97.00%

WIP->Filter 30.00%
WIP->Export 70.00%

Filter->Air 1.00%
Filter->Export 99.00%

Air->Water 3.00%
Air->Soil 97.00%

Note: ENPP: production of engineered nanoparticles; NAMF: nano-article manufacturing, production of articles
containing nanoparticles; WIP: waste incineration plant; STP: sludge treatment plant.

Uncertainties were taken into account for the input ENP production value and for the
TCs, working with distributions. To facilitate the interpretation of results, emission levels
have been established based on the extrapolation of the PM2.5 fraction to the US EPA air
quality index [40]. For an emission value below 13 µg/m3, a very low level is established;
for a value between 13 and 25 µg/m3, a low level is established; for a value between 25
and 45 µg/m3, a medium level is established; for a value between 45 and 56 µg/m3, a high
level is established; and for a value above 56 µg/m3, a very high level is established.

2.1.2. Hazard Estimation Model

The hazard estimation model is able to find in the NanoSerpa database up to 10 differ-
ent endpoints, including 3 physicochemical properties that directly or indirectly affect the
potential hazard of the nanomaterials following a structure–property–hazard (SPH) rela-
tionship [35] (particle size, Z-potential and aspect ratio) and 7 key toxicological endpoints
(EC20, EC50, LC20, LC50, % viable cells, cell cycle and genotoxicity/DNA in tail). This
database has been built and adapted from different data sources, highlighting eNanoMap-
per [29] as the biggest nanomaterial database, hosting hundreds of nanomaterial properties.
The NanoSerpa database is designed to be updated when new data become available.

For the estimation of the hazard, each endpoint is analyzed independently and eval-
uated from very low to very high hazard. The worst-case approach is followed in this
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model, so if more than one endpoint is found in the database, the worst value is taken for
estimating the risk.

2.1.3. Risk Index Characterization

Both results (emission and hazard) are taken into account to estimate the potential
risk index. Table 2 represents how this index is calculated from the results of the hazard
calculation and emission index.

Table 2. Calculating the risk index based on health hazard and emission.

Emission
Hazard Very Low Low Medium High Very High

Very low 0 2.5 2.5 5 5

Low 2.5 2.5 5 5 7.5

Medium 2.5 5 5 7.5 7.5

High 5 5 7.5 7.5 10

Very high 5 7.5 7.5 10 10

2.2. NanoSerpa Case Studies

To validate the use of the NanoSerpa application, four events reported in the literature
have been simulated:

• SiO2 nanoparticle leak from a vacuum cleaner
• Release of TiO2 nanopowder from a bag filter system
• Fall of eight TiO2 bulk bags on the road
• Leak of black carbon during transportation

Besides, two real cases involving ENMs were analyzed at ITENE facilities:

• Spillage of paint containing graphene during spraying
• Accidental spillage of a dry mortar

In these studies, exposure measurements were carried out applying tier 2 and tier
3 approaches to gather information, considering a suit of instruments to monitor the levels
of exposure, including a particle counter (CPC—TSI Model 3007) an optical particle sizer
(OPS—TSI Model 3330), which provides data on particle size distributions, as well as the
NanoScan SMPS Model 3910, which provides measures of the particle size distribution.
Technical personnel, trained in the use of these instruments, recorded all the events that
occurred during the entire duration of workplace monitoring in a specific event log.

The inlets of the devices located in the near field (NF) were approximately at a height
of 1.5 ± 0.1 m and ~0.5 m from the worker. The exposure was assessed by measuring
directly in the personal breathing zone (PBZ) of the operator, defined as a 30 cm hemisphere
around the mouth and the nose (EN, 2012). Flexible 80 cm Tygon® tubes were attached
to the inlets of the instruments (CPC 3007, TSI NanoScan, and OPS 3330) to achieve the
worker’s breathing zone. The far-field (FF) devices (OPS/CPC) were placed from 6 to 12 m.

The direct reading measurement instruments were complemented with filter-based air
samples (37 mm cassettes) collected during the sampling campaign for morphological and
compositional data of airborne and settled particles, respectively. These air samples were
collected from the breathing zone using an APEX (Casella CEL) personal sampling pump
at a flow rate of 3.5 L min−1 and a polycarbonate filter. The samples from the far field
locations were also collected at a 1.5 m height. The filters collected were further analyzed
by scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDXS).

The data retrieved from the real exposure scenarios were statistically analyzed to
determine the arithmetic mean and maximum and minimum number concentrations in
each exposure scenario. Mass concentrations were obtained directly from the OPS.

The background levels were established considering the data on the ENM concentra-
tion retrieved before the operations involving ENM began. Comparison of background
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levels with measured concentrations (taken when the process is in operation) was carried
out to identify any increases in the levels. Any enhanced concentration levels were then
assigned to emission sources or activities using the activity/time log. The morphology and
chemical nature of the ENMs retained in the polycarbonate filter were used to “speciate”
the real-time quantitative measurements in order to distinguish ENM from incidental
nanoparticles in the workplace.

3. Results and Discussion
3.1. Accidental Spillage of Paint Containing Graphene during Low-Density Paint Spraying

Experimental data have been collected at the ITENE pilot plant during the application
of acrylic containing 0.1% m-GO graphene. Acrylic paint was sprayed using a gravity
spray gun powered by a 0.65-L glass, capable of working at a maximum air inlet pressure
of 8 bar (116 psi), when the contents of the boat were spilled when filling the gun. The
operator wore a double nitrile glove, a Tyvek suit and a full mask with an FFP3 filter.

Possible exposure to graphene during paint spraying was measured using a conden-
sation particle counter (CPC—TSI-3007) and an optical particle sizer (OPS—TSI-3330).
Measurements of particles in the environment were conducted, so possible air exposure to
graphene was recorded during the incident.

Table 3 shows the concentration values recorded by the CPC and OPS that day. The re-
sults are weighted to the graphene content of the mixture. The RCR, obtained (Equation (2))
as the quotient between the concentration of the personal or workplace area and a chemical
reference toxicity value, is significantly lower than 1, which implies a very low risk possibil-
ity. In this case, the mean toxicity values employed are predicted non-effect concentration
(PNEC) = 9.37 × 104 particles/cm3 and derived non-effect limit (DNEL) = 0.0446 mg/m3,
calculated with SECO DNEL Tool [41].

RCRaverage =
Mean Exposure
Mean Toxicity

(2)

Table 3. Data measured during paint spill containing graphene.

Equipment Weight
Fraction

Time of
Exposure

(BG/Act/Pers)

Averaged
Graphene

Content—8 h
TWA Workplace

Averaged
Graphene

Content—8 h
TWA Personal

Units

Corrected
RCR

Graphene
(Workplace)

Corrected
RCR

Graphene
(Personal)

CPC 3007 TSI 0.% 10 min 1.53 × 100 2.41 × 100 #/cm3 1.63 × 10−5 2.57 × 10−5

OPS 3330 TSI
0.1% 10 min 1.05 × 10−2 1.65 × 100 #/cm3 1.12 × 10−7 1.76 × 10−5

0.1% 10 min 5.32 × 10−3 1.72 × 100 µg/m3 1.19 × 10−4 3.84 × 10−2

CPC 3007 TSI 0.5% 10 min 7.44 8.03 × 100 #/cm3 7.94 × 10−5 8.57 × 10−5

OPS 3330 TSI
0.5% 10 min 6.37 × 10−2 4.11 × 10−2 #/cm3 6.80 × 10−7 4.39 × 10−7

0.5% 10 min 2.66 × 10−2 3.47 × 10−2 µg/m3 5.96 × 10−4 7.76 × 10−4

RCR: risk characterization ratio.

By applying this information to the NanoSerpa v1.0 app, we obtain the report that has
been summarized in Figure 2. The input data used to run the study is shown in Table 4.
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Figure 2. Excerpt from the report generated with the NanoSerpa v1.0 app for a spillage of paint containing graphene during
spraying. These results apply only to the exposure area where the events studied have occurred.

Table 4. Input data for NanoSerpa v1.0 simulated scenarios.

Input Data for NanoSerpa v1.0 Simulated
Scenarios

Group Graphene

Nanomaterial Graphene m-GO

Quantity 10 mg

EHP High

State Liquid

Dustiness -

Humidity -

Viscosity Low

Solubility Low

Physical-Chemical Properties Thickness: 0.9 nm

Toxicology Size: 430 nm

Type of Information No data

Measurement Direct measurement

In Figure 2, it is observed that the risk of air exposure, which is the main penetration
route for human exposure, is very low (<1). In this case, the dermal risk would be the most
likely. However, when wearing a protective suit Category III, the worker would be well
protected for this unexpected event. The estimated emissions to the air and soil would be
very low (<1) and non-existent in the case of water emissions.

The risk index obtained with NanoSerpa v1.0 is 2.5, which means a low risk, consider-
ing also a very low air emission. The results obtained by the apps agree with the values of
RCR experimentally obtained, which also suggest a low risk.

3.2. Accidental Spillage of a Dry Mortar

The overall average particle number concentration measured with a TSI condensation
particle counter (CPC 3007) during the activity period (3.1 × 104 particles/cm3) was
significantly above the background level (9.6 × 103 particles/cm3). The data from the
activity showed several peaks with concentrations up to 3.5 × 104 particles/cm3, more
than 3 times the concentration found in the background. Such a change between activity
and background coincided with the accidental spillage of the 25 kg plastic-lined paper bag.
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Figure 3 shows the variations in the particle number concentration measured in the
PBZ during the operation, with a sharp increase immediately after the accidental spillage
of the photocatalytic cement paper bags containing TiO2 nanoparticles. The highest peak
values obtained for this activity were 3.5, 3.1 and 2.7 (×104) particles/cm3, which are about
3 and 2.5 times higher than the background levels.
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The analysis of the data measured by the nanoparticle sizer (TSI NanoScan 3910)
showed an average particle size of ~83 ± 2 nm. The maximum peaks observed with the
CPC were also observed with the SMPS, being mainly due to an increase in the number of
particles ranging from 115 to 360 nm, as can be derived from the 3D picture depicted in
Figure 4. This figure shows two main modes corresponding to particles with an average
particle size of ~71 ± 2 nm and ~237 ± 2 nm, respectively.
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Table 5 shows the overall averages of PM10, PM2.5, PM4 and PM1 during accidental
spillage. These PM fractions were found to be significantly above the non-activity levels.
All fractions were up to 10 times larger during the accident than during subsequent periods
of non-activity.

Table 5. Concentrations of PM10, PM4, PM2.5 and PM1 during the activity and non-activity periods.

PM1 PM2.5 PM4 PM10 Total

Non-activity (mg/cm3) 0.133 0.143 0.180 0.350 0.496
Accidental spillage (mg/cm3) 1.210 1.260 1.479 3.041 6.415

Figure 5 shows a boxplot of the PM fractions analyzed during this event. The data
depicted in the figure reinforce the idea that an accidental spillage is able to release particles
into the workplace, including both particles in the nanometer range, as derived from the
CPC and SMPS, as well as large particles, as measured by the SMPS.
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Figure 5. Boxplot of PM levels during the accidental event and non-activity periods.

As can be seen from the experimental data reported, the levels of particles measured
with the CPC and the Nanoscan device are considerably higher than concentrations during
non-activity periods. The RCR, calculated from the quotient of the total concentration
(Table 5) and the threshold limit value (10 mg/m3 for TiO2, [42]), is 0.64, which implies a
low risk possibility.

As in the previous case, by applying this information to the NanoSerpa v1.0 app, we
obtain the report that has been summarized in Figure 6. The input data used to run the
study are shown in Table 6.
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Table 6. Input data used for NanoSerpa v1.0 simulated scenarios.

Input Data for NanoSerpa v1.0 Simulated Scenarios

Group TiO2

Nanomaterial TiO2

Quantity 25 kg

EHP Low

State Solid

Dustiness Medium

Humidity Low

Physical-Chemical Properties Particle size: 65 nm

Toxicology No data

Type of Information Documental

Measurement Direct measurement

The main penetration route for human exposure during the spillage is inhalation and
dermal absorption. In Figure 6, it can be seen that the risk of air exposure is low (1.1 on a
scale of 0–10). The same results have been obtained from the experimental risk evaluation.
In this case, since the dermal risk could also be important, the use of a protective suit
Category III could also be considered for the worker in order to be protected for this
unexpected event.

Moreover, although the air emission risk is low, high peak concentrations were mea-
sured, leading to concentrations even 10 times higher than non-activity periods in the case
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of total particle concentration, summarized in Table 5. This fact is in agreement with the
medium–high risk index (7.5) estimated with the NanoSerpa app.

This new app also proposed, considering the hazard potential, a list of preven-
tive/corrective actions that could be taken. For a scale of 2–5, which is the case with
this spillage and the rest of the accidental scenarios considered in this work, the suggested
actions are as follows:

1. Implementation of engineering controls, including forced ventilation and/or contain-
ment systems.

2. Use of individual protective equipment according to the route of exposure.
3. Any technical assistance that, due to the characteristics of the situation and the

material, the inspector technician considers necessary to apply.

The estimated emissions to soil would be low (1.1) and non-existent in the case of
water emissions. However, since the spillage took place in a closed area with a paved
ground, soil emissions are not relevant.

A comparison of the risk characterization ratio (RCR) calculated using experimental
data obtained in these two real case scenarios with the risk index and air emissions reported
by the NanoSerpa app is shown in Table 7. Information about the risk scale employed in
the NanoSerpa app has previously been shown in Table 2.

Table 7. Comparison of the risk obtained with the NanoSerpa app and the RCR values obtained from experimental
measurements.

Scenario RCREXPERIMENTAL NanoSerpa App RISK

Paint spill containing graphene

Workplace: 1.12 × 10−7–5.96 × 10−4

(<<<1): Very low risk
Personal: 4.39 × 10−7–3.84 × 10−2

(<<<1): Very low risk

Air emissions: 0.9 (very low risk)
Risk index: 2.5 (low risk)

Accidental spillage of a dry mortar
containing TiO2 particles

Workplace: 0.64 (<1) low risk
Personal: Not directly evaluated but a
higher risk could be expected for the

peak concentrations observed
during measurements

Air emissions: 1.1 (low risk)
Risk index: 7.5 (medium–high risk)

As can be seen in Table 7, a comparison between the air emission risk (NanoSerpa)
versus the risk calculated from real measurements carried out in the workplace has been
done. The same comparison can be done for the risk index and personal RCR. The results
obtained are, in both cases, in good agreement.

3.3. Literature-Based Scenarios

For the following cases, the experimental data found are not as detailed as in the
previous case; therefore, a qualitative comparison has been made. The input data required
to run NanoSerpa for each scenario are depicted in Table 8.

3.3.1. SiO2 Nanoparticle Leak from a Vacuum Cleaner

The following case proposed is the SiO2 nanoparticle leak from a vacuum cleaner
(Boowook et al. [10]). In this case, the workers were exposed to the high concentration of
nano-silica emitted into the air when poured into a container or when moving the container.
It was found that the use of a vacuum cleaner with a leak caused by an inadequate seal
was the source of the nano-silica dispersion in the inner air.
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Table 8. Input data used for NanoSerpa v1.0-simulated scenarios.

SiO2 Nanoparticle
Leak from a Vacuum

Cleaner

Release of TiO2 from
a Bag Filter System

Fall of Eight TiO2
Bulk Bags on the Road

Leak of Black Carbon
during Transportation

Group SiO2 TiO2 TiO2 Black carbon

Nanomaterial SiO2 TiO2 TiO2 Black carbon

Quantity 25 kg 1 kg 100 kg 5 tons

EHP High Medium Low Medium

State Solid Solid Solid Solid

Dustiness High Medium Medium Medium

Humidity Low Low Low Low

Viscosity - - -

Solubility - - -

Physical-Chemical
Properties Z-potential: −25.85 mV

Toxicology Specific surface:
200 m2/g

Type of Information Size: 16 nm Size: 65 nm Size: 65 nm Size: 14 nm

Measurement Specific surface:
300 m2/g

The study concluded that there was a risk of the leakage of these particles during
vacuuming. Although the size of the nano-silica particles that were emitted into the air
(during the handling of the nano-silica by a worker) was mostly greater than 100 nm or
several microns (µm) due to the coagulation of the particles, those that filtered from the
vacuum cleaner were similar in size to that of the primary particle (11.5 nm). Nanoparticles
were generated also during the operation of the filter press and ultrasonic cleaning, but
they were oil particles and water particles, respectively (Boowook et al. [12]).

Emissions simulated by the NanoSerpa v1.0 app to water and soil are 1.9 and 0.2,
respectively. In this case, the results of the NanoSerpa v1.0 app show a higher risk to inhaled
health (risk index 7.5 on a scale of 0–10; see Figure 7). Although there is clear exposure to
escaped nanomaterials (air emission 2.9), this exposure is very brief and punctual. The
authors conclude that high-concentration nanoparticles are emitted to the air while pouring
and transferring nano-silica. Therefore, a respirator capable of capturing nanoparticles
must be worn, and activities must be carried out within the HEPA-filtered hood. A regular
check on the vacuum cleaner is necessary to prevent leakage of nanoparticles. Additionally,
wet cleaning is safer in reducing exposure risk (Boowook et al. [10]).

3.3.2. Release of TiO2 Nanopowder from a Bag Filter System

The second real case considered was the release of TiO2 nanopowder from a bag filter
system (Ji et al. [13]). This study detected the presence of nanoaerosols in a laboratory used
to manufacture titanium dioxide. TiO2 nanopowder was produced by flame synthesis and
collected using a bag filter system for subsequent harvesting. However, it was shown that
the particle collection efficiency of the bag filter system was only 20% for a particle diameter
of 100 nm, which is much lower than the performance of a high-efficiency particle air filter
(HEPA). In addition, the laboratory hood system was inadequate to completely renew
the discharged air from the bag filter system. The imbalance in airflow speeds between
bag filter and laboratory hood systems could lead to high exposure to nanopowder in
laboratory environments, putting the long-term integrity of workers at risk (Ji et al. [13]).
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Figure 7. Excerpt from the report generated with the NanoSerpa v1.0 app for a SiO2 nanoparticle
leak from a vacuum cleaner. These results apply only to the exposure area where the events studied
have occurred.

By entering this information in the NanoSerpa v1.0 app, a report like the one shown
in Figure 8 is obtained. It shows some risk of air emissions (1.6 points), as filtration systems
are trusted and they are not fulfilling their role properly. Despite the personal protec-
tion systems present (FFP3 filter mask, gloves, gowns and universal mounted goggles),
engineering systems should be checked to improve on-site ventilation.

Int. J. Environ. Res. Public Health 2021, 18, 6985 14 of 19 
 

 

systems present (FFP3 filter mask, gloves, gowns and universal mounted goggles), engi-
neering systems should be checked to improve on-site ventilation. 

 
Figure 8. Excerpt from the report generated with the NanoSerpa v1.0 app for the release of TiO2 
nanopowder from a bag filter system. These results apply only to the exposure area where the 
events studied have occurred. 

3.3.3. Leak of Black Carbon during Transportation 
A leak from a pneumatic transport pipe (Blanzy, France in 2012) of about 5 tons of 

carbon black was studied. By entering the information retrieved from the AIRA website 
in the NanoSerpa v1.0 app, a report like the one shown in Figure 9 is obtained. 

 
Figure 9. Excerpt from the report generated with the NanoSerpa v1.0 app for a leak of black car-
bon from a pneumatic transport pipe. 

The report shows a medium to high health risk (5 points on a scale of 1–10) since a 
high quantity of black carbon was released to the environment. Emissions obtained for air 
and soil are of 1.2 and non-existent in the case of water. This latter consideration should 
be taken with caution since if there were any rivers or lakes in the proximity, they could 
have been affected by the release of these particles. However, there is not enough infor-
mation about the event to make a more detailed assessment. A medium to high risk index 
(7.5 points) was estimated; this fact is consistent with the observations made during the 

Figure 8. Excerpt from the report generated with the NanoSerpa v1.0 app for the release of TiO2

nanopowder from a bag filter system. These results apply only to the exposure area where the events
studied have occurred.

3.3.3. Leak of Black Carbon during Transportation

A leak from a pneumatic transport pipe (Blanzy, France in 2012) of about 5 tons of
carbon black was studied. By entering the information retrieved from the AIRA website in
the NanoSerpa v1.0 app, a report like the one shown in Figure 9 is obtained.

The report shows a medium to high health risk (5 points on a scale of 1–10) since
a high quantity of black carbon was released to the environment. Emissions obtained
for air and soil are of 1.2 and non-existent in the case of water. This latter consideration
should be taken with caution since if there were any rivers or lakes in the proximity, they
could have been affected by the release of these particles. However, there is not enough
information about the event to make a more detailed assessment. A medium to high
risk index (7.5 points) was estimated; this fact is consistent with the observations made
during the event since housing and landscape were blanketed within a perimeter of several
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kilometers. Regarding the safety of the workers, it should be noted that although the
release of black carbon was large, the event took place in an open space, so the exposure of
workers in this case was not relevant.
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3.3.4. Fall of Eight TiO2 Bulk Bags on the Road

The fall of eight TiO2 bulk bags (total approx. 100 kg) during its transportation on the
road was simulated with the NanoSerpa app. The report obtained is shown in Figure 10.
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Assuming that some of the bags broke during the fall, an important release of particles
should be expected; however, since the event took place in an open space, the levels
of particles released into the air are suspected to be low (air emission 1.1 estimated by
NanoSerpa app). However, the use of personal protection systems, FFP3 filter mask,
gloves, gowns and universal mounted goggles should be considered for workers when
collecting spillage and removing fallen bags. In this scenario, a medium health risk could
be considered (5 points on the NanoSerpa scale). The soil emission estimated was 1.1. This
fact is coherent with the real scenario, since during the event, a few dozen kilograms of
material remained unrecovered.

As has been shown in this section, the NanoSerpa app has proven to be useful to the
insurance sector. By introducing the few inputs needed (type of nanomaterial, quantity
used, etc.), the user can easily obtain a risk index to evaluate the importance of the event in
terms of work exposure. Besides, since this app can be installed in smartphones, a quick
and easy evaluation of the event can be done, giving the insurance sector the opportunity
to streamline procedures and create reports quickly and easily. Moreover, the associated
risks for the emissions to the air, water and soil that the NanoSerpa app gives may also be
useful as a point of departure to make an environmental impact report associated with the
accident or event considered.

4. Conclusions

The utility of the NanoSerpa app for nanomaterial risk assessments was tested by
simulating different accidents for small- and big-scale scenarios. The risk evaluation
obtained seems to be in good agreement with experimental data when they were available.
Comparison of the evaluation obtained with the app for real scenarios reported in literature
also seems to be consistent.

NanoSerpa v1.0 is an intuitive, user-friendly application that allows workers, tech-
nicians and every user to use it without specific training. Besides, inputs needed for this
app are not difficult to find, and usually the required information is available in safety
data sheets.

Moreover, NanoSerpa v1.0 presents a list of preventive actions that can be applied to
minimize or even eliminate the risk of exposure of the worker during a particular accidental
release of nanomaterials, and it has proven to be a useful tool for the realization of expert
reports in the case of accidents related to nanomaterials. In addition, this application can
be used to search and consult the properties of the most commonly used nanomaterials.

The exposure levels in terms of particle number concentrations and size distribution
measured by means of direct reading instruments and samplers revealed the presence of
particles in the nanometer range in the particle breathing zone during accidental events
simulated in a pilot plant, indicating a release of ultrafine particles.

It was observed that the emission levels are directly influenced by the type of handling
activity, and not only by the amount used. Hence, to better understand the activities
leading to workers’ exposure in the construction sector, an in-depth analysis of the energy
involved in the process and the application mode is needed.
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Appendix A

Table A1. Most cited models to assess exposure and manage risk when dealing with nanomaterials and nano-enabled products.
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Nanomaterials Control Banding Tool + − − − − − − − Low

NanoSafer + − − − + − + + Low

Advanced REACH Tool (ART) + − − − + − − + High

Precautionary Matrix for Synthetic
Nanomaterials + + + − − ± ± − Low

Tool for ENM-Application Pair Risk
Ranking (TEARR) + + − − ± − ± − Low

Dermal Advanced REACH Tool
(DART) + + − − + − − − Low/high

SUN Tiered Occupational and
Consumer Exposure Model + + − − ± + − + Low/high

LICARA + + + + ± − + − Low

SUN DSS + + +

Performs socioeconomic analysis
(SEA) to check if the benefits of

using certain nanoproducts
significantly outweigh their risks

+ + + + Low/high

GUIDEnano DSS + + + − + + + − Low/high
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