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Abstract: Weather conditions may have an impact on SARS-CoV-2 virus transmission, as has been 

shown for seasonal influenza. Virus transmission most likely favors low temperature and low 

humidity conditions. This systematic review aimed to collect evidence on the impact of temperature 

and humidity on COVID-19 mortality. This review was registered with PROSPERO (registration 

no. CRD42020196055). We searched the Pubmed, Embase, and Cochrane COVID-19 databases for 

observational epidemiological studies. Two independent reviewers screened the title/abstracts and 

full texts of the studies. Two reviewers also performed data extraction and quality assessment. From 

5051 identified studies, 11 were included in the review. Although the results were inconsistent, most 

studies imply that a decrease in temperature and humidity contributes to an increase in mortality. 

To establish the association with greater certainty, future studies should consider accurate exposure 

measurements and important covariates, such as government lockdowns and population density, 

sufficient lag times, and non-linear associations. 
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1. Introduction 

SARS-CoV-2 was first identified in Wuhan, China, in December 2019 [1], and quickly 

reached pandemic status. To date (May 2021), there have been more than 150 million 

confirmed cases of COVID-19, the infection caused by the SARS-CoV-2 virus, and more 

than 3 million COVID-19-related deaths worldwide [2]. 

Ambient weather conditions, such as temperature and humidity, play a multi-

faceted role affecting virus transmission. The major form of transmission of SARS-CoV-2 

is through droplets and aerosols containing the virus, released during exhalation, talking, 

singing, or coughing [3,4]. While larger and denser particles sink to the ground, 

microdroplets are small enough to remain suspended in the air for a long time (hours to 

days in still air), depending on their size [5]. Temperature and relative humidity influence 
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the amount of time in which aerosols remain suspended. Larger particles exhaled from 

the lungs initially have a high-water content, but reduce in size through evaporation once 

they reach the ambient air. The speed of this shrinkage depends on the ambient 

temperature and humidity, and the final size of the particle (along with its density) will 

determine whether it stays in the air for a period of time or whether it falls to the ground 

[5]. Temperature and humidity may also affect the virus’s viability. For SARS-CoV, it was 

observed in laboratory conditions that the dried virus retained its viability for days in 

temperatures between 22 °C and 25 °C and relative humidity between 40 and 50%. 

However, at higher temperature and higher relative humidity, the viability was lost at a 

quicker rate [6]. Furthermore, low temperature and humidity of the inhaled air may 

impair the host airway mucosal surface antiviral defense [7]. 

The effect of weather variables, such as humidity and temperature, have also been 

reported for seasonal influenza, indicating a preference of the virus for colder 

temperatures and lower humidity [8,9]. When looking at worldwide trends, one study 

indicated that virus transmissibility was highest during the winter (“cold-dry”) for 

regions where humidity and temperature decrease below thresholds of 18–21 °C and 11 

g/kg over the year. In regions where these thresholds are not reached, seasonal influenza 

transmission peaks in months where precipitation occurs the most (“humid-rain”) [9]. 

Studies also found a correlation between outdoor temperature and SARS cases, and came 

to the conclusion that the optimal temperature for transmission was between 16 °C and 

28 °C, with humidity of 52% and a wind speed of 2.8 m/s [10,11]. 

In light of the above observations, it can be surmised that there may also be a 

dependence of SARS-CoV-2 transmission on weather variables. There have been reviews 

published regarding the association between weather variables and SARS-CoV-2 

transmission [12–14]. Yet, these reviews showed contradicting results and they did not 

assess the quality of the included studies, which would put more weight on the 

conclusions of studies having a lower risk of bias. Furthermore, the reviews also focused 

on using COVID-19 infection cases as the outcome. This may be an unreliable outcome 

measure owing to the changing testing conditions and availability of tests, which have 

varied throughout the timeline of the pandemic and between countries. The variation in 

testing will result in inaccurate measures of COVID-19 cases, as reported case numbers 

will increase or decrease as testing is increased or decreased. Instead, using mortality due 

to COVID-19 or a form of excess mortality in the population will provide a more objective 

outcome measure that is not dependent on current testing procedures or availability. 

We thus conducted a systematic review in order to evaluate whether weather 

conditions, namely, temperature, humidity, and wind, were associated with COVID-19 

mortality as a proxy for transmission. The results may provide a better predictability of 

the regional COVID-19 pandemic development. 

2. Materials and Methods 

We searched Pubmed, Embase (Ovid), and the Cochrane COVID-19 Study register 

on 3 July 2020 and again on 4 January 2021 to find all observational epidemiological 

research on the effect of temperature and humidity on COVID-19 disease mortality 

published since January 2020. The search strings comprised keywords for COVID-19 and 

weather combined with Boolean operators, and they were adapted to each database. The 

database search strings are included in the online supplement (Table S1). A protocol of 

the systematic review was registered a priori with the PROSPERO database of systematic 

reviews (PROSPERO ID: CRD42020196055). This systematic review follows PRISMA 

reporting guidelines [15] (checklist in Supplementary Material S1). 

We conducted the search applying no language or geographical restrictions. We 

considered studies that had not been peer reviewed and that were available as pre-prints.  
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2.1. Eligibility Criteria 

The scope of the review was specified according to the Population, Exposure, 

Comparison, Outcome, and Study Design (PECOS) scheme, shown in Table 1. We 

included studies that included both temperature and humidity in their models, and 

excluded studies only investigating univariate correlations and studies that excluded 

either temperature or humidity in their multivariate models. We included studies using 

precipitation if humidity was not investigated. When both humidity and precipitation 

were studied, we included both parameters. We included studies that investigated 

mortality specifically due to COVID-19 or studies looking at excess mortality. 

We considered only observational studies, such as ecological, case series, cross-

sectional, case-control, and cohort studies. Letters to the editor were also examined. 

Table 1. Eligibility criteria according to population, exposure, comparison, outcome of interest, and 

study design. 

 Inclusion Criteria Exclusion Criteria 

Population 
General human populations 

(both sexes, all ages) 
All others 

Exposure(s) Temperature, humidity *, wind All other exposures  

Comparator/control Not applicable Not applicable 

Outcomes 

Mortality due to COVID-19 or 

excess mortality compared to a 

previous time frame 

Other outcomes 

Study design ** 

Ecological studies, case series, 

cross-sectional, case-control, 

and cohort studies 

RCTs, qualitative studies, 

ecological studies, case reports, 

experiments 

* Precipitation may be replaced by humidity; ** congress abstracts, posters, and reviews were 

excluded. 

2.2. Selection Process 

We collected search results in an Endnote library and removed duplicate listings 

prior to beginning the study selection process. Two reviewers independently screened the 

titles and abstracts of the search results, and conflicts were resolved by seeking consensus. 

If the reviewers still could not agree, a third reviewer made the decision. The full texts of 

the remaining studies were then screened by two independent reviewers, and again, 

disagreements were discussed in consensus meetings. We recorded reasons for exclusion 

during the full-text review. 

2.3. Data Collection Process 

One reviewer extracted the data, and a second reviewer checked the extraction for 

accuracy. Whenever there was missing or unclear information, we tried to obtain it 

through personal communication with the authors. We extracted the following for each 

study: study design, region, population size and cases, assessed time period, exposure 

measurement and characteristics, outcome source and validation, variables adjusted for 

in the model, analysis methods, and summary of the quantitative results. Furthermore, 

funding information and conflict of interest statements were noted. The extracted study 

results included any measures of association, with corresponding 95% confidence intervals 

(CI), such as relative risks (RRs), odds ratios (ORs), hazards ratios (HRs), and β values. 

2.4. Risk of Bias Evaluation 

The risk of bias was assessed by two reviewers, applying a risk of bias tool 

established in previous reviews [16–20], but adapted for our research question 

(Supplementary Table S2). The risk of bias tool has eight domains: (1) recruitment 
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procedure, (2) exposure assessment, (3) outcome source and validation, (4) confounding, 

(5) analysis methods, (6) chronology, (7) funding, and (8) conflict of interest, which are 

described below. 

2.4.1. Recruitment Procedure 

This domain assesses the potential for selection bias. Studies were evaluated as hav-

ing a low risk of bias if there were no baseline differences among the study groups, or if 

adjustment techniques were applied to correct for baseline differences. 

2.4.2. Exposure Assessment 

This domain was considered as low risk if there was high confidence in the accuracy 

of the exposure assessment (i.e., data collected from weather stations) and if the exposure 

measurements were geographically close to the outcome measurements—meaning that 

they could represent the temperature to which the cases were exposed. If, for instance, the 

average temperature or humidity readings were taken to represent a whole country, this 

domain was considered high risk, as regional temperature differences were not considered. 

2.4.3. Outcome Source and Validations 

Risk of bias was assumed to be low for this domain, if the outcome (COVID-19 

deaths) was obtained through objective sources, such as from the World Health Organi-

zation (WHO), the John Hopkins University Center for Systems Science and Engineering 

(CSSE) COVID-19 Dashboard, or from government agencies. 

2.4.4. Confounding 

If major confounding factors were assessed and accounted for in the analysis, then 

the risk of bias was assumed to be low for this domain. This varied depending on the 

population included in each respective study. If more than one population within a coun-

try (i.e., different cities or states) was studied, then at least the population density would 

have to be adjusted for in the model, for the study to be listed as low risk of bias. If more 

than one country was studied, then at least the population density and a measure of the 

healthcare system would have to be adjusted for. For instance, we judged the gross do-

mestic product (GDP) as an adequate proxy for the healthcare system in a multi-country 

study. In addition, if the time span of the study was relatively long (i.e., more than a 

month), government interventions had to be accounted for in the model for this domain 

to receive a low risk of bias rating. 

2.4.5. Analysis Methods 

This domain was rated as low risk of bias if it fulfilled several specifications. The 

authors should have used adequate statistical models to reduce bias, such as considering 

the fact that new cases of death are influenced by the amount of older, still infectious cases 

in the population (autocorrelation). Further, similar variables should not have been reit-

erated in the model (i.e., mean, low, and high temperatures in the same model. Finally, if 

more than one population was studied (i.e., different countries), a component in the model 

should have been included to allow for other differences in the population studied (i.e., 

random effects). 

2.4.6. Chronology 

This domain was considered as low risk if the temporal relationship could be estab-

lished (the exposure precedes the outcome). In our study, this meant that a sufficient lag 

effect between exposure and outcome should have been taken into account (depending 

on the population and time period studied, at least 22 days: 6 days mean incubation plus 

16 days from start of symptoms to death [21]).   
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2.4.7. Funding 

If the study was funded by non-profit organizations and it was clearly not affected 

by sponsors, this domain was considered low risk. 

2.4.8. Conflict of Interest 

If the study authors reported not having a conflict of interest, this domain was con-

sidered low risk. 

2.4.9. Overall Risk of Bias 

Domains 1–6 were considered as major domains, while domains 7 and 8 were minor 

domains. A study could have an overall low risk of bias (high quality) if all the major 

domains were low risk. If any of the major domains were rated as high or unclear, then 

the study was classified as having an overall high risk. Note that the risk evaluations for 

domains 7 and 8 have no impact on the overall risk of bias of the study. 

2.5. Data Synthesis 

A narrative analysis of the studies was conducted, based on the characteristics and 

methods of each study. We planned to conduct a random effects meta-analysis if at least 

two studies were comparable in terms of outcomes and exposures, but this was not the case. 

3. Results 

Figure 1 shows the PRISMA flowchart of the process followed for the study identifi-

cation and selection. From 5051 unique identified studies identified (7587 including du-

plicates), we identified 299 studies for the full text screening. After further screening full 

texts, eleven studies [22–32] were identified for our review. Both reviewers had a 97% 

(4923/5051) and 96% (286/299) consensus for the title/abstract and full text screening, re-

spectively. Most of the conflicts between both reviewers were related to the type of anal-

ysis—whether it was univariate or multivariate. The most common reasons for exclusion 

during the full text screening were mortality missing as an outcome, humidity or temper-

ature were missing from the model, or the analysis was only univariate. 
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Figure 1. PRISMA flowchart. 

3.1. Overview of the Studies 

All included studies were ecological studies. There were six studies investigating as-

sociations worldwide, while two were set in China, one in Pakistan, one in Bangladesh, 

and one in England. Most studies covered the first quarter or first half of 2020, encom-

passing primarily the first wave of the pandemic. Most studies investigated the temporal 

spread of mortality as a function of the weather variables, while two studies instead in-

vestigated the spatial spread. Four studies reported relative risks (RRs) and six studies 

reported β-coefficients based on the results of linear regressions, while one study reported 

both. Table 2 displays a summary of the study characteristics and results of the studies 

included in this review. More details of the studies are displayed in Tables S3 and S4. 

3.2. Quality of the Studies 

Detailed information about the quality of each study can be found in Table 3. In gen-

eral, the quality of the studies was low, mainly due to the “exposure”, “confounding”, 

“analysis”, and “chronology” domains. Four studies used what we deemed as inaccurate 

temperature or humidity measurements. For instance, some took average weather condi-

tions to represent a large area (i.e., a country), which may not have characterized the ex-

posure of the cases when infected. Various papers missed what we considered important 

confounders to include in the model: population density (n = 1); a measure of the 

healthcare system (n = 1); and government interventions, such as school closures, when 

the period of the study was prolonged (n = 5). In addition, various studies either did not 

include an autocorrelation component in their model (n = 6) or it was unclear whether this 

was done (n = 2). All studies either did not include a lag between the exposure (weather 
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variables) to the outcome (death), or we considered that the lag was insufficient to estab-

lish a temporal association. The longest lag considered was 18 days, some four days short 

of the minimum lag required. Several studies (n = 4) received a high risk of bias in the 

exposure domain, mostly because the weather measurements were not geographically 

close to the outcome measurements and, therefore, did not represent the exposure status 

of the cases. Both studies evaluating the effect of weather variables on mortality by con-

sidering the spatial spread of cases were problematic in the exposure and outcome do-

mains. Their exposure assessment was inadequate because the climatic data were either 

taken from the previous year (2019) or for one day only. Similarly, one study chose one 

specific day for the outcome assessment, which we evaluated as spurious. The other study 

used an aggregated three-month mortality rate, which was not precise enough. 

Even though no study was found to have a low risk of bias, we considered two stud-

ies to be of comparably higher quality: Guo et al. [27] and Fernandez et al. [32], which both 

used world-wide data. Both of these studies were of high quality in all major domains, 

except for chronology. If both had used longer lags (they both used 14 days) to account 

for the time between exposure and outcome, both would have received a high-quality 

rating. 

3.3. Effect of Temperature on Mortality 

The results on a potential association between temperature and COVID-19 mortality 

are unclear, yet most studies that did find a consistent association reported a tendency for 

decreased mortality with increasing temperature. Here, we consider only studies that 

have provided effect sizes with corresponding 95% confidence intervals, or at least p-val-

ues. There were three studies (30%) that reported inconsistent associations (both negative 

and positive associations depending on the analysis) [22,28,30]; one study (10%) with a 

positive (not-significant) association [30]; five studies (50%) with negative associations 

[24–26,29,31]; and one study (10%) showing small, not significant effects [32]. Ma et al. 

[22], using non-linear models, reported both negative and positive associations between 

temperature and mortality depending on the lag days and lag scheme used. Islam et al. 

[28] reported both positive and negative associations depending on the lag day used when 

using single day lags, but when using multiple day lags, increasing temperature resulted 

in increased mortality. Sun et al. [30] had conflicting results (all statistically not signifi-

cant), depending on the model used. Rehman et al. [26] reported increased mortality with 

increased temperature, but the effects were not significant. Tzampoglou and Dimitrios 

[31] found an negative correlation between temperature and mortality, but it was statisti-

cally not significant. Su et al. [24] also found decreased mortality with increased temper-

ature. When restricting to countries with over ten days since the first reported case or to 

countries with over 100 cumulative cases, Wu et al. [25] found a decrease in daily new 

deaths with increasing temperature (ß = −1.25%; 95% CI: −2.16% to −0.34%). Jiang and Xu 

[29] also found that daily temperature was negatively correlated to mortality (RR = 0.861; 

95% CI: 0.851–0.972). Interestingly, Guo et al. [27] examined non-linear models, which 

showed that the effect of temperature on deaths was dependent on the temperature range 

and the lag used. When looking at the single day lags, no statistically significant associa-

tion was found. When examining the association between COVID-19 mortality and tem-

perature for 14 consecutive days (lag 0–14), mortality at 5 °C was 1.35 times greater than 

the mortality at 11 °C (RR = 1.35; 95% CI: 1.21–1.51). When the temperature was at 22 °C, 

the risk in mortality was halved (RR = 0.51; 95% CI: 0.39–0.67). A similar association was 

found when using a cumulative 7-day lag. Fernandez et al. [32] found only small effects 

that were not statistically significant. 

3.4. Effect of Relative Humidity and Precipitation on Mortality 

While the studies showed heterogeneous results, they presented a possible negative 

correlation between mortality and humidity. In this analysis, we include only studies re-
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porting 95% confidence intervals or p-values. Ma et al. [22], Rehman et al. [26], and Tzam-

poglou and Dimitrios [31] showed either no association or the associations were not sta-

tistically significant with small effect sizes. Islam et al. [28] reported a positive association 

for a 0-day lag, but no association for other lag days when using single day lags, but when 

using multiple day lags, increasing humidity resulted in increased mortality. Fernandez 

et al. [32], who investigated precipitation instead of relative humidity, showed no corre-

lation between precipitation and mortality.
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Table 2. Characteristics of included studies. 

Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

Ma, 2020 

[22] 

Ecological 

study 

Study area: 

Wuhan, China 

 

Climatic zone: 

Humid subtropical 

climate 

20 January–29 

February 2020 

Exposures: 

Daily average temperature, 

diurnal temperature range 

(DTR), and relative humidity 

 

Source of data: 

Shanghai Meteorological Bureau 

and Data Center of Ministry of 

Ecology and Environment of the 

People’s Republic of China 

Outcome; 

COVID-19 deaths 

 

Source of data: 

Official website of 

Health Commission of 

Hubei Province 

Air pollutants, date of the 

week, time trends 

Analysis: 

Generalized additive model (GAM) 

to analyze associations, with a quasi-

Poisson link function. Used 

smoothed spline functions of times 

to accommodate nonlinear and 

nonmonotonic patterns between 

mortality and time.  

 

Lag: 

Examined single day lag and 

multiple-day average lag effects (0–5 

lag) of weather conditions 

 

Results: 

% change of COVID-19 mortality 

(based on Figures 2 and 3 of the text 

in Ma et al. 2020 [22])—no 

quantitative figures could be 

obtained. 

Sobral, 2020 

[23] 

Ecological 

study 

Study area: 

World  

(249 countries) 

1 December 2019–30 

March 2020 

Exposures: 

Average temperature, maximum 

temperature, minimum 

temperature, and precipitation 

 

Source of data: 

National Oceanic and 

Atmospheric Administration 

(NOAA) database 

Outcome: 

Daily death rates  

 

Source of data: 

World Health 

Organization reports 

Population density, dummy 

month (specific month 

effects), country’s time of 

exposure to the epidemic 

(temporal distance, in days, 

between the first case 

registered 

in the territory and the time 

of study) 

Analysis: 

Multivariate linear regression 

 

Lag: 

No lag effect included 

 

Results: 

Model 1 (average temperature only): 

ß = 0.053 (p < 0.01) 

 

Model 2 (average temperature, 

maximum temperature, minimum 
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

temperature, precipitation, exposure 

time): 

Death:  

Average temperature:  

ß = −0.10 

Maximum temperature:  

ß = 0.01 

Minimum temperature:  

ß = 0.01 

Precipitation: ß = 0.34 

 

Model 3 (average temperature, 

maximum temperature, minimum 

temperature, precipitation, exposure 

time, population density, dummy 

month):   

Death:  

Average temperature:   

ß = −0.10 

Maximum temperature:  

ß = 0.02 

Minimum temperature:  

ß = 0.001 

Su, 2020  

[24] 

Ecological 

study 

Study area: 

178 

countries/regions 

(excluding 

countries/region 

without COVID-19 

cases and some 

unmatched 

countries/region 

(i.e., Taiwan)) 

22 January–6 April 

2020 

 

Exposures: 

Mean temperature, relative 

humidity, and precipitation 

 

Source of data: 

Global Surface Summary of the 

183 Day (GSOD) via The 

Integrated Surface Hourly (ISH) 

dataset (includes global data 

obtained from the USAF 

Climatology Center 

Outcome: 

Cumulative mortality 

rate (CMR)  

 

Source of data: 

John Hopkins 

University dashboard 

from Center for Systems 

Science and Engineering 

World Development 

Indicators dataset (World 

Bank), urban development 

(% urban population, 

population growth, 

population density), GDP 

per capita, health, 

infrastructure (railways, 

passengers carried), poverty 

(poverty headcount ratio), 

science and technology 

Analysis: 

Negative binomial regression 

 

Lag: 

No consideration of time (no lag) 

 

Results: 

Cumulative mortality rate 

Mean temperature (°C):  

IRR = 0.975  

(95% CI 0.887–1.071) 
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

(researchers in R&D) , social 

protection and labor (cover 

of social insurance 

programs, unemployment), 

mean wind speed 

Relative humidity (%): 

IRR = 1.025  

(95% CI 0.995–1.056) 

Mean wind speed (.1 knots): 

IRR = 1.155  

(95% CI 0.951–1.403) 

Precipitation (0.01 inches) 

IRR = 0.019  

(95% CI 0.001–0.377) 

Wu, 2020 

[25] 

Ecological 

study 

Study area: 

Worldwide (166 

countries 

excluding China) 

December–27 March 

2020 

Exposures: 

Temperature and relative 

humidity 

 

Source of data: 

National Oceanic and 

Atmospheric Administration 

Center 

Outcome: 

Daily new deaths 

 

Source of data: 

WHO daily situation 

reports 

Wind speed, median age of 

national population, Global 

Health Security Index, 

Human Development 

Index, population density, 

controlling for countries, 

date of the week and date of 

the observation to control 

time trend and cycle 

Analysis: 

Log-linear generalized additive 

model (GAM) 

 

Lag: 

Single lag days  

(lag 0, 1, 2, 3).  

Cumulative effects of average 

exposure over multiple 

days assessed using additional 

analyses  

(lag 01, 02, 03)  

 

Results: 

Changes in daily new deaths (% 

change) associated with each 1-unit 

increase: 

 

Temperature (°C):  

ß = −0.65%  

(95% CI −1.40% to 0.099%) 

Relative humidity (%) 

ß = −0.46%  

(95% CI −0.63% to −0.29%) 
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

Sensitivity analyses: 

Over 10 days since the first reported 

case: 

Temperature (°C):  

ß = −1.22%  

(95% CI −2.00% to −0.45%) 

Relative humidity (%) 

ß = −0.51%  

(95% CI -0.68% to −0.34%) 

 

Over 100 cumulative cases: 

Temperature (°C):  

ß = −1.25%  

(95% CI −2.16% to −0.34%) 

Relative humidity (%) 

ß = −0.53%  

(95% CI −0.73% to −0.33%) 

Rehman, 2020 

[26] 

Ecological 

study 

Study area: 

Provinces of 

Pakistan 

 

Climatic zone: 

Lies in temperate 

zone with wide 

variations 

depending on 

location 

10 March–10 July 

2020 

Exposures: 

Daily mean humidity and wind, 

daily and minimum temperature 

 

Source of data: 

Pakistan Meteorological 

Department 

(http://www.pmd.gov.pk/en/), 

https://www.timeanddate.com/w

eather/pakistan, 

https://www.accuweather.com, 

Outcome: 

COVID-19 deaths 

 

Source of data: 

Government of Pakistan 

http://covid.gov.pk/stats

/pakistan and 

Worldometer 

Coronavirus cases  

https://www.worldomet

ers.info/coronavirus/cou

ntry/pakistan/ 

Sun status 

Analysis: 

Negative binomial log linear mixed 

model 

 

Lag: 

No lag 

 

Results: 

Due to lack of space, results 

summarized in Table S3 

Guo, 2020  

[27] 

Ecological 

study 

415 sites 

comprising 235 

cities from 10 

countries and 180 

countries 

23 January–13 April 

2020 

Hourly meteorological data 

(temperature, relative humidity, 

wind speed) aggregated as daily 

average meteorological data. 

 

COVID-19 mortality 

 

Johns Hopkins 

University Center for 

Date of first reported cases, 

population density, median 

age, Global Health Security 

Index (GHSI), latitude, 

Analysis: 

Negative binomial log linear mixed 

model 

 

Results: 
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

Ground-based monitoring 

network of the World 

Meteorological Organization 

global telecommunications 

system 

Systems Science and 

Engineering (JHU VSSE) 

The Wind Financial 

databases (WFD) for 

detailed information on 

COVID-19 at city/stae 

level in Australia, 

Canada, USA, China, 

Germany, Italy, Japan, 

Korea, Norway, and 

Spain 

longitude, intervention 

policies implemented 

Lag 0–14 days 

Temperature (Reference = 11 °C) 

5 °C: RR 1.35  

(95% CI: 1.21, 1.51) 

22oC: RR = 0.51  

(95%CI: 0.39, 0.67) 

Relative humidity (Reference = 71%) 

59%: RR = 0.98  

(95% CI: 0.92–1.05) 

79%: RR = 0.86  

(95% CI: 0.80–0.92) 

Wind speed  

(Reference = 3 m/s) 

2 m/s: RR = 1.31  

(95% CI: 1.16, 1.48) 

4 m/s: RR = 0.76  

(95% CI: 0.70, 0.82) 

 

Lag 14 days 

Temperature (Reference = 11 °C) 

5 °C: RR 1.02  

(95% CI: 0.99, 1.06) 

22oC: RR = 0.92 

(95%CI: 0.84, 1.01) 

Relative humidity (Reference = 71%) 

59%: RR = 1.00  

(95% CI: 0.98–1.02) 

79%: RR = 1.00  

(95% CI: 0.98–1.02) 

Wind speed  

(Reference = 3 m/s) 

2 m/s: RR = 1.03  

(95% CI: 1.00, 1.05) 

4 m/s: RR = 0.98  
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

(95% CI: 0.96, 0.99) 

Islam, 2020 

[28] 

Ecological 

study 

Study area: 

Bangladesh 

 

Climatic zone: 

Humid monsoon 

sub-tropical 

climate  

8 March–30 April 

2020 

Exposures: 

Night relative humidity (NRH), 

rainfall, 

diurnal temperature (TDN), 

mean temperature (MT), mean 

relative humidity (MRH), and 

absolute humidity (AH) 

 

Source of data: 

Bangladesh Meteorological 

Department (BMD) weather 

stations 

Outcome: 

COVID-19 death cases 

 

Source of data: 

Bangladeshi 

government site 

None besides the weather 

parameters shown in results 

(NRH, TDN, MT, MRH, 

AH)  

Analysis: 

Compound Poisson generalized 

linear model, along with a Monte-

Carlo method and random forest 

model 

 

Lag:  

Single and multiple day lags 

 

Results:  

no effect numbers (Figures 5 and 6 in 

the text in Islam et al. 2020 [28] show 

a depiction) 

Jiang and Xu, 

2021 

[29] 

Ecological 

study 

Study area: 

Wuhan, China 

 

Climatic zone: 

Humid sub-

tropical climate 

25 Jan–7 April 2020 

Exposure: 

Daily temperature, relative 

humidity, and diurnal 

temperature range 

 

Source of data: 

Weather 

Channel (www.weather.com) 

Outcome: 

COVID-19 deaths 

 

Source of data: 

Health Commission 

of Hubei China 

No further confounders in 

the analysis model and no 

government interventions 

were included because the 

whole study period was 

under strict lockdown 

Analysis: 

Poisson generalized linear model 

 

Lag:  

18 days 

 

Results: 

Daily temperature  

ß = −0.149  

RR = 0.861  

(95% CI: 0.851, 0.872) 

Relative humidity  

ß = −0.005  

RR = 0.995 (95% CI: 0.989, 1) 

Diurnal temperature range  

ß = 0.014  

RR = 1.014 (95% CI: 1.003, 1.025) 

Sun 

2020 

[30] 

Ecological 

study  
Study area: March–May 2020 Exposure: 

Outcome: 

Aggregated three-month 

England-wide COVID-

First model:  

sex, ethnicity (percent 

Asians, percent blacks),  

Analysis: 

Variable selection: Lasso technique, 

spatial autoregressive model (MESS-
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

317 local authority 

districts (LADs) in 

England 

 

Climatic zone: 

Temperate climate 

3-month mean monthly relative 

humidity and monthly air 

temperature (from 2019) 

 

Source of data: 

Met Office 

HadUK-Grid, Gridded Climate 

Observations on a 1 km Grid 

over the UK 

19 mortality rate. Spatial 

patterns of COVID-19 

mortality compared 

with non-COVID-19 

mortality 

 

Source of data: 

Office for National 

Statistics 

percent of households in 

poverty, unemployment 

rate, population density, 

hospital density annual 

mean PM2.5 

SAR), Eigenvector spatial filtering 

model (RES-ESF) 

 

Lag: 

No consideration of time (no lag) 

 

Results: 

First model: 

OLS Model: 

Humidity: ß = −8.521 (p<0.001) 

Air temperature: ß = −0.795 

 

MESS-SAR model: 

Humidity: ß = −3.715 (p<0.01)  

Air temperature: ß = 1.512 

 

 

RE-ESF model: 

Humidity: ß = −4.793 (p<0.001) 

Air temperature: ß = 3.852 

Tzampoglou 

and Dimitrios, 

2020 

[31] 

Ecological 

study 

Study area: 

Worldwide 

101 countries 

(countries with 

Human 

Development 

Index (HDI) < 0.7 

excluded from 

analysis) 

March–3 May 2020 

Exposures: 

Monthly average atmospheric 

temperature (°C), monthly 

average relative humidity (%), 

and cumulative precipitation 

(mm) 

 

Source of data: 

Collected from the Copernicus 

Program database, estimated 

from climate reanalysis ERA-

Interim and ERA5 

 

Outcome: 

Total deaths per million 

due to COVID-19  

 

Source of data:  

European Commission 

(EC), 

OurWorldInData.org, 

and COVID-19 

Government Response 

Tracker, Blavatnik 

School of Government  

Cloud cover (CC), 

population density (PD), 

median age (MA), 

stringency index (SI), delay 

in first case (FC) and stay at-

home order measures (SH) 

Analysis: 

Linear model, variable selection: 

Lasso and forward stepwise 

 

Lag: 

No lag (no consideration of time) 

 

Results: 

Only two models shown, other 

models in Table S3 

 

Model A 

Temperature:  

ß = −108.9 (95% CI: −307.2, 89.4) 
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Author, Year 

Reference 

Study 

Design 

Study Area and 

Climatic Zone 

Time Period of 

Study 
Exposures and Source of Data 

Outcome Definition 

and Source of Data 
Confounders/Covariates Analysis, Lags, and Results 

Spatial analysis tool of the 

ArcGIS software was employed 

to derive the spatial average of 

variables across the entire 

territory of each country. After 

spatial averaging, temporal 

average values were computed 

for the March 2020 to May 2020 

period. 

Relative humidity:  

ß = 82.2 (95% CI −125.1, 289.5) 

Precipitation:  

ß = 13.4 (95% CI −258.8, 285.6) 

confounders: CC, PD, MA, SI, FC, 

SH 

 

Model B 

Temperature:  

ß = −88.9 (95% CI −259.2, 81.5) 

Relative humidity:  

ß = 79.1 (95% CI −126.5, 284.8) 

Precipitation:  

ß = −17.9 (95% CI −239.6. 203.8) 

Confounders: PD, MA, SI, FC, SH 

Fernández 2021 

[32] 

Ecological 

study  

Study area: 

Worldwide 

218 countries 

21 January–18 May 

2020 

Exposures: 

Maximum, miniumum, and 

average daily temperature and 

precipitation 

Source of data: 

Downloaded from NASA’s 

Goddard Earth Sciences Data and 

Information Services Center (GES 

DISC).  

 

Integrated Multi-satellite 

Retrievals for Global 

Precipitation Measurement 

(IMERG), MERRA-2 (a Modern-

Era Retrospective analysis for 

Research and Applications 

version 2) 

Outcome: 

Daily confirmed deaths 

and the total amount of 

confirmed deaths 

 

Source of data: 

Population-level 

information 

(per country), reported 

by WHO 

National Biodiversity Index 

(NBI), population density, 

days since last case, days 

since first case reported in 

country, country income 

level, government 

intervention level 

Analysis: 

Generalized linear mixed models 

 

Lag:  

14 days 

 

Results: 

Results of Bayesian spatio-temporal 

regression analysis: 

All countries 

Precipitation:  

ß = 0.000 (95% CI: −0.002, 0.001) 

Maximum temperature:  

ß = −0.003 (95% CI: −0.010, 0.005) 

 

CI: confidence intervals; IRR: incidence rate ratio; RR = relative risk; NA: not available. 
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Table 3. Risk of bias in the included studies. 

Study ID 

Major Domains Minor Domains 

OVERALL Recruitment 

Procedure 
Exposure Assessment 

Outcome Source 

and Validation  
Confounding  Analysis Method Chronology Funding 

Conflict of 

Interest 

Ma et al. 2020  

[22]    

 

 

 

  
 

Sobral et al. 2020  

[23]  

 

 

   

  
 

Su et al. 2020 ** 

[24]  

  

 

  

  
 

Wu et al. 2020 

[25]  

 

 

 

 

 

  
 

Rehman et al. 2020 

[26]    

 

 

 

  
 

Guo et al. 2020 

[27]          

Islam et al. 2020 

[28]          

Jiang and Xu et al. 

2021 

[29] 
         

Sun et al. 2020 ** 

[30]          

Tzampoglou and 

Dimitrios et al. 2020 

[31] 
         

Fernandez et al. 2020 

[32]          

** Spatial correlation : low risk; : unclear risk; : high risk. 
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Although Su et al. [24]’s analyses showed no association between relative humidity 

and death, the risk of mortality decreased with increasing precipitation (IRR = 0.019; 95% 

CI: 0.001–0.377). The remaining studies found that an increase in humidity was associated 

with a decreased risk in mortality. Wu et al. [25] found a −0.46% reduction in daily new 

deaths associated with a 1% increase in relative humidity (ß = −0.46%; 95% CI: −0.63% to 

−0.29%), and this effect remained in their sensitivity analyses. Likewise, Sun et al. [30] 

observed a decreased risk of mortality with increased relative humidity (ß= −4.793; CIs 

not reported), and the association was statistically significant. Jiang and Xu [29]’s estima-

tions indicated a very small effect of increased relative humidity on the risk of COVID-19 

mortality (RR = 0.995; 95% CI: 0.989–1). Guo et al. [27] looked again at non-linear associa-

tions, looking at individual lag days and cumulative day lags. While in general, no asso-

ciations were found in single day lags, associations were found when using cumulative 

day lags. At a cumulative lag of 0–14 days, the authors found no association of humidity 

and COVID-19 mortality below 71% relative humidity (RR = 0.98; 95% CI: 0.92–1.05 at 59% 

relative humidity), but found a statistically significant negative relationship between rel-

ative humidity and mortality above 71% relative humidity (RR = 0.86; 95% CI: 0.80–0.92 

at 79% relative humidity). 

3.5. Effect of Wind on Mortality 

Three of the included studies investigated the effect of wind on mortality. Su et al. ‘s 

[24] findings show an increase in mortality with increased wind speed, but the effect was 

not statistically significant (IRR = 1.155; 95% CI: 0.951–1.403). Rehman et al. [26] found no 

effect of wind speed on mortality for all study regions. Lastly, Guo et al. [27] explored 

non-linear associations between wind and mortality. They found an increased risk of mor-

tality with decreased wind speed below 3 m/s (RR = 1.31; 95% CI: 1.16, 1.48 at 2 m/s) and 

a decreased risk of mortality with increasing wind speeds at wind speeds above 3 m/s (RR 

= 0.76; 95% CI: 0.70, 0.82 at 4 m/s). 

3.6. Quantitative Analysis 

A quantitative analysis (meta-analysis) could not be conducted as planned for the 

effect of temperature and wind because of the heterogeneity of the outcome measures and 

because various studies investigating associations investigated the same population (i.e., 

worldwide) during the same time frames. 

4. Discussion 

4.1. Summary of Results 

 Our results show some evidence of associations between temperature, humidity, and 

wind speed on mortality, but they were ambiguous. When associations were found for 

temperature and mortality, the direction of association indicates a decreased risk in mor-

tality with increasing temperature, supported by 50% of the studies. Half of the studies 

(five in total) found a decrease in mortality risk with increasing humidity, while others 

found no association (four studies) or a positive association (one study). Similarly, there 

were inconsistent findings for the effect of wind on mortality. Considering both higher-

quality studies, Fernandez et al. [32], a worldwide study, found no effect of temperature 

or precipitation on mortality. The other higher-quality study, Guo et al., also a world-wide 

study that investigated non-linear effects [27], found associations between temperature, 

humidity, and wind speeds on mortality, depending on the reference point (11 °C, 71% 

humidity, and wind speed 3 m/s). Overall, if any effect was found, the tendency was for 

a lower humidity and lower temperature to facilitate virus transmission, indirectly meas-

ured by mortality. 

The results of our systematic review are in agreement with three previous reviews 

[12–14], suggesting a negative correlation between ambient temperature and humidity 
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and the number of COVID-19 cases, but these previous reviews also report heterogenous 

findings, with some studies reporting no or even a positive correlation. 

4.2. Strengths and Limitations of Our Review 

 A strength of our systematic review is that the title-abstract and full-text screening, 

the data extraction, and the quality assessment were carried out independently by two 

reviewers. No language restrictions were applied, and studies only published in preprint 

severs were included. Further, the study design was published a priori in PROSPERO. 

Our review only included studies assessing mortality as an outcome. Owing to the varia-

bility of testing in the population over time and between countries, using mortality is a 

more accurate method that is less susceptible to such variations than using COVID-19 

cases. The reporting of cases of mortality due to COVID-19 might indeed vary by time 

and between countries, but we deemed that this bias would be lower than that of reported 

COVID-19 cases. Mortality is also associated with disease severity, and our results may 

thus also indicate an association to disease severity. Data on mortality were taken from 

either official government sources, WHO situation reports, or the John Hopkins Univer-

sity dashboard. These data sources were assumed to be the most reliable, as they are based 

on local death records. We extracted data on wind if available in the included studies, but 

unlike temperature and humidity, wind was not a necessary factor for inclusion. There-

fore, our results on wind were not representative of all studies investigating wind, but are 

representative of all studies investigating temperature, humidity, and wind together. A 

meta-analysis was not possible owing to the heterogeneity of the effect measurements, 

and because various studies used the same study population during the same time frame. 

However, we presented the results in a descriptive approach, using the risk of bias eval-

uation as a supporting point for our conclusions and recommendations. 

4.3. Risk of Bias of Included Studies and Recommendations for Future Work 

The conclusions presented in this systematic review are limited by the high risk of 

bias of the included studies. No studies were evaluated as having an overall low risk of 

bias, mostly owing to the exposure, confounders, analysis method, and chronology do-

mains. Most studies missed important confounders, mainly by not including a measure 

of government interventions in their model. Including factors such as school closures in 

the model will take the decreased contacts in the population into account, which may have 

occurred concurrently with temperature changes over time. In addition, some studies 

missed having a random component in the model to allow for differences in the studied 

populations. This is especially important when studying different countries, as unmeas-

ured factors such as culture and government type will also have an impact on compliance 

(or ability to comply) to infection prevention measures. Other studies did not consider 

autocorrelation, which takes into account that the incident cases on one day are dependent 

on the number of cases in the past—an important feature of infectious disease epidemiol-

ogy. Further, no studies considered the necessary lag times to reflect the weather variables 

at the time of infection. Rather, they tended to use the same time lags as when investigat-

ing the association between weather factors and incident cases. Even though most studies 

only considered linear correlations, it is worth further exploring non-linear associations, 

as done in Guo et al. [27]. The non-linear associations may be useful to help explain pos-

sible contradictory results from linear regressions, or the lack of associations, resulting in 

heterogeneity. It is possible that the relationships depend on the geographical region stud-

ied, with different peaks identified for weather conditions, as for influenza [9]. Studies 

have shown non-linear temperature and humidity effects on influenza even within one 

geographical region [33–35], and the same may apply for SARS-Cov-2. 

 All included studies were ecological study designs. However, it may be possible to 

include epidemiological studies (i.e., cohort and case-control studies) to answer these re-

search questions. With such studies, personal factors, including age and comorbidities, 

may be included to study the direct effect of weather variables on mortality. 
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 It should be pointed out that some research questions, such as this one, still rely sub-

stantially on ecological studies or studies with ecological exposure assessment. Therefore, 

increased efforts are needed to explicitly address risk of bias assessments to ecological 

designs as, currently, no standard tools are available for these types of study designs. 

4.4. Public Policy Implications 

In the Northern Hemisphere, which was heavily affected by the COVID-19 pan-

demic, it is widely expected that a reduction in COVID-19-related disease incidence will 

occur with rising temperatures in the upcoming summer of 2021. Based on our systematic 

review, this expectation should be met with caution. Particularly in view of the “action 

fatigue” observed in many societies, it seems important to consistently continue effective 

public health measures to contain the spread of the virus until vaccination leads to herd 

immunity. 

5. Conclusions 

This review shows that some studies appear to confirm the hypothesis that lower 

temperature and humidity contribute to an increase in cases, although this relationship 

was not found for all studies. Future studies should principally consider accurate expo-

sure measurements, confounders such as government lockdowns and population density, 

long-enough lag times, and non-linear associations in order to derive a solid conclusion. 

Further, because of the lack of unequivocal results regarding the association between tem-

perature and humidity with COVID-19 cases, continued effective public health measures 

should be implemented despite rising temperatures with seasonal changes, particularly 

in the upcoming Northern Hemisphere summer in 2021. Preventive methods include con-

tact restrictions, the use of masks, widespread testing, and vaccination. 
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4601/18/12/6665/s1, Supplementary Material S1: PRISMA 2020 Checklist; Table S1: Search String for 

Medline (via OVID); Table S2: Risk of Bias Tool; Table S3: Characteristics of Included Studies; Table 

S4: Results of Included Studies. 

Author Contributions: Conceptualization, K.R.S., A.L.S., A.N., and A.S.; methodology, K.R.S., D.R., 

A.P., E.K., A.L.S., R.M., and A.S.; formal analysis, K.R.S. and R.M.; writing—original draft prepara-

tion, K.R.S.; writing—review and editing, R.M., A.P., A.L.S., D.R., E.K., A.N., and A.S.; supervision, 

A.S.; project administration, K.R.S. and A.S.; funding acquisition, A.N. and A.S. All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by Institution for Statutory Accident Insurance and Prevention 

in the Health and Welfare Services (BGW). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: We did not collect own data for this systematic review, and our 

analyses are based on already published data. Data presented in this study are available in the main 

text and supplementary material (i.e., extraction tables). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; et al. A Novel Coronavirus from 

Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733, doi:10.1056/NEJMoa2001017. 

2. World Health Organization (WHO). Coronavirus Disease (COVID-19). Available online: https://www.who.int/emergen-

cies/diseases/novel-coronavirus-2019 (accessed on 5 August 2020). 

3. Ji, Y.; Qian, H.; Ye, J.; Zheng, X. The impact of ambient humidity on the evaporation and dispersion of exhaled breathing drop-

lets: A numerical investigation. J. Aerosol Sci. 2018, 115, 164–172, doi:10.1016/j.jaerosci.2017.10.009. 

4. Haslbeck, K.; Schwarz, K.; Hohlfeld, J.; Seume, J.R.; Koch, W. Submicron droplet formation in the human lung. J. Aerosol. Sci. 

2010, 41, 429–438, doi:10.1016/j.jaerosci.2010.02.010. 



Int. J. Environ. Res. Public Health 2021, 18, 6665 21 of 22 
 

 

5. Asbach, C.; Held, A.; Kiendler-Scharr, A.; Scheuch, G.; Schmid, H.-J.; Schmitt, S.; Schumacher, S.; Wehner, B.; Weingartner, E.; 

Weinzierl, B. Position paper of the Gesellschaft für Aerosolforschung on understanding the role of aerosol particles in SARS-

CoV-2 infection. Ges. Für Aerosolfoschung 2020, 17. 

6. Chan, K.H.; Peiris, J.S.M.; Lam, S.Y.; Poon, L.L.M.; Yuen, K.Y.; Seto, W.H. The Effects of Temperature and Relative Humidity 

on the Viability of the SARS Coronavirus. Adv. Virol. 2011, 2011, 734690, doi:10.1155/2011/734690. 

7. Moriyama, M.; Hugentobler, W.J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7, 83–101, 

doi:10.1146/annurev-virology-012420-022445. 

8. Ianevski, A.; Zusinaite, E.; Shtaida, N.; Kallio-Kokko, H.; Valkonen, M.; Kantele, A.; Telling, K.; Lutsar, I.; Letjuka, P.; Metelitsa, 

N.; et al. Low Temperature and Low UV Indexes Correlated with Peaks of Influenza Virus Activity in Northern Europe during 

2010–2018. Viruses 2019, 11, 207, doi:10.3390/v11030207. 

9. Tamerius, J.D.; Shaman, J.; Alonso, W.J.; Bloom-Feshbach, K.; Uejio, C.K.; Comrie, A.; Viboud, C. Environmental Predictors of 

Seasonal Influenza Epidemics across Temperate and Tropical Climates. PLoS Pathog. 2013, 9, e1003194, doi:10.1371/jour-

nal.ppat.1003194. 

10. Yuan, J.; Yun, H.; Lan, W.; Wang, W.; Sullivan, S.; Jia, S.; Bittles, A.H. A climatologic investigation of the SARS-CoV outbreak 

in Beijing, China. Am. J. Infect. Control 2006, 34, 234–236, doi:10.1016/j.ajic.2005.12.006. 

11. Tan, J.; Mu, L.; Huang, J.; Yu, S.; Chen, B.; Yin, J. An initial investigation of the association between the SARS outbreak and 

weather: With the view of the environmental temperature and its variation. J. Epidemiol. Commun. Health 2005, 59, 186–192, 

doi:10.1136/jech.2004.020180. 

12. Byun, W.S.; Heo, S.W.; Jo, G.; Kim, J.W.; Kim, S.; Lee, S.; Park, H.E.; Baek, J.-H. Is coronavirus disease (COVID-19) seasonal? A 

critical analysis of empirical and epidemiological studies at global and local scales. Environ. Res. 2021, 196, 110972, 

doi:10.1016/j.envres.2021.110972. 

13. Paraskevis, D.; Kostaki, E.G.; Alygizakis.; Thomaidis, N.S.; Cartalis, C.; Tsiodras, S.; Dimopoulos, M.A. A review of the impact 

temperatures cannot probably 19: In the absence of public health measures high -of weather and climate variables to COVID

, doi:10.1016/j.scitotenv.2020.144578., 144578768, 2021 Sci. Total Environ.mitigate outbreaks.  

14. McClymont, H.; Hu, W. Weather Variability and COVID-19 Transmission: A Review of Recent Research. Int. J. Environ. Res. 

Public Health 2021, 18, 396, doi:10.3390/ijerph18020396. 

15. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; 

Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71, 

doi:10.1136/bmj.n71. 

16. Ijaz, S.I.; Verbeek, J.; Seidler, A.; Lindbohm, M.-L.; Ojajärvi, A.; Orsini, N.; Costa, G.; Neuvonen, K. Night-shift work and breast 

cancer—A systematic review and meta-analysis. Scand. J. Work. Environ. Health 2013, 39, 431–447, doi:10.5271/sjweh.3371. 

17. Petereit-Haack, G.; Bolm-Audorff, U.; Starke, K.R.; Seidler, A. Occupational Risk for Post-Traumatic Stress Disorder and 

Trauma-Related Depression: A Systematic Review with Meta-Analysis. Int. J. Environ. Res. Public Health 2020, 17, 9369, 

doi:10.3390/ijerph17249369. 

18. Starke, K.R.; Petereit-Haack, G.; Schubert, M.; Kämpf, D.; Schliebner, A.; Hegewald, J.; Seidler, A. The Age-Related Risk of 

Severe Outcomes Due to COVID-19 Infection: A Rapid Review, Meta-Analysis, and Meta-Regression. Int. J. Environ. Res. Public 

Health 2020, 17, 5974, doi:10.3390/ijerph17165974. 

19. Starke, K.R.; Kofahl, M.; Freiberg, A.; Schubert, M.; Groß, M.L.; Schmauder, S.; Hegewald, J.; Kämpf, D.; Stranzinger, J.; 

Nienhaus, A.; et al. Are Daycare Workers at a Higher Risk of Parvovirus B19 Infection? A Systematic Review and Meta-Analysis. 

Int. J. Environ. Res. Public Health 2019, 16, 1392, doi:10.3390/ijerph16081392. 

20. Starke, K.R.; Kofahl, M.; Freiberg, A.; Schubert, M.; Groß, M.L.; Schmauder, S.; Hegewald, J.; Kämpf, D.; Stranzinger, J.; 

Nienhaus, A.; et al. The risk of cytomegalovirus infection in daycare workers: A systematic review and meta-analysis. Int. Arch. 

Occup. Environ. Health 2019, 93, 11–28, doi:10.1007/s00420-019-01464-x. 

21. 21. Khalili, M.; Karamouzian, M.; Nasiri, N.; Javadi, S.; Mirzazadeh, A.; Sharifi, H. Epidemiological Characteristics of COVID-

19; a Systemic Review and Meta-Analysis. medRxiv 2020, doi:10.1101/2020.04.01.20050138. 

22. Ma, Y.; Zhao, Y.; Liu, J.; He, X.; Wang, B.; Fu, S.; Yan, J.; Niu, J.; Zhou, J.; Luo, B. Effects of temperature variation and humidity 

on the death of COVID-19 in Wuhan, China. Sci. Total Environ. 2020, 724, 138226, doi:10.1016/j.scitotenv.2020.138226. 

23. Sobral, M.F.F.; Duarte, G.B.; Sobral, A.I.G.D.P.; Marinho, M.L.M.; Melo, A. Association between climate variables and global 

transmission of SARS-CoV-2. Sci. Total Environ. 2020, 729, 138997, doi:10.1016/j.scitotenv.2020.138997. 

24. 24. Su, D., C.Y.H.K.Z.T.T.M.Z.Y.Z.X. Influence of socio-ecological factors on COVID-19 risk: A cross-sectional study based on 

178 countries/regions worldwide. medRxiv 2020, doi:10.1101/2020.04.23.20077545. 

25. Wu, Y.; Jing, W.; Liu, J.; Ma, Q.; Yuan, J.; Wang, Y.; Du, M.; Liu, M. Effects of temperature and humidity on the daily new cases 

and new deaths of COVID-19 in 166 countries. Sci. Total Environ. 2020, 729, 139051, doi:10.1016/j.scitotenv.2020.139051. 

26. Rehman, Y.; Rehman, N. Association of climatic factors with COVID-19 in Pakistan. AIMS Public Health 2020, 7, 854–868, 

doi:10.3934/publichealth.2020066. 

27. Guo, C.; Bo, Y.; Lin, C.; Li, H.B.; Zeng, Y.; Zhang, Y.; Hossain, S.; Chan, J.W.; Yeung, D.W.; Kwok, K.-O.; et al. Meteorological 

factors and COVID-19 incidence in 190 countries: An observational study. Sci. Total Environ. 2021, 757, 143783, doi:10.1016/j.sci-

totenv.2020.143783. 



Int. J. Environ. Res. Public Health 2021, 18, 6665 22 of 22 
 

28. Islam, A.R.; Hasanuzzaman, M.; Shammi, M.; Salam, R.; Bodrud-Doza, M.; Rahman, M.M.; Mannan, M.A.; Huq, S. Are meteor-

ological factors enhancing COVID-19 transmission in Bangladesh? Novel findings from a compound Poisson generalized linear 

modeling approach. Environ. Sci. Pollut. Res. Int. 2020, 28, 11245–11258, doi:10.1007/s11356-020-11273-2. 

29. Jiang, Y.; Xu, J. The association between COVID-19 deaths and short-term ambient air pollution/meteorological condition ex-

posure: A retrospective study from Wuhan, China. Air Qual. Atmosphere Health 2021, 14, 1–5, doi:10.1007/s11869-020-00906-7. 

30. Sun, Y.; Hu, X.; Xie, J. Spatial inequalities of COVID-19 mortality rate in relation to socioeconomic and environmental factors 

across England. Sci. Total Environ. 2021, 758, 143595, doi:10.1016/j.scitotenv.2020.143595. 

31. Tzampoglou, P.; Loukidis, D. Investigation of the Importance of Climatic Factors in COVID-19 Worldwide Intensity. Int. J. 

Environ. Res. Public Health 2020, 17, 7730, doi:10.3390/ijerph17217730. 

32. Fernández, D.; Giné-Vázquez, I.; Liu, I.; Yucel, R.; Ruscone, M.N.; Morena, M.; García, V.G.; Haro, J.M.; Pan, W.; Tyrovolas, S. 

Are environmental pollution and biodiversity levels associated to the spread and mortality of COVID-19? A four-month global 

analysis. Environ. Pollut. 2021, 271, 116326, doi:10.1016/j.envpol.2020.116326. 

33. Park, J.; Son, W.; Ryu, Y.; Choi, S.B.; Kwon, O.; Ahn, I. Effects of temperature, humidity, and diurnal temperature range on 

influenza incidence in a temperate region. Influ. Other Respir. Viruses 2020, 14, 11–18, doi:10.1111/irv.12682. 

34. Zhang, Y.; Feng, C.; Ma, C.; Yang, P.; Tang, S.; Lau, A.; Sun, W.; Wang, Q. The impact of temperature and humidity measures 

on influenza A (H7N9) outbreaks—evidence from China. Int. J. Infect. Dis. 2015, 30, 122–124, doi:10.1016/j.ijid.2014.11.010. 

35. Dai, Q.; Ma, W.; Huang, H.; Xu, K.; Qi, X.; Yu, H.; Deng, F.; Bao, C.; Huo, X. The effect of ambient temperature on the activity 

of influenza and influenza like illness in Jiangsu Province, China. Sci. Total Environ. 2018, 645, 684–691, doi:10.1016/j.sci-

totenv.2018.07.065. 

 


