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Abstract: Air pollution is one of the major environmental problems that endanger human health. 

The COVID-19 pandemic provided an excellent opportunity to investigate the possible methods to 

improve Beijing’s air quality meanwhile considering Beijing’s economic impact. We used the TVP-

VAR model to analyze the dynamic relationship among the pandemic, economy and air quality 

based on the daily data from 1 January to 30 August 2020. The result shows that the COVID-19 

pandemic indeed had a positive effect on air governance which was good for human health, while 

doing business as usual would gradually weaken this effect. It shows that the Chinese authority’s 

production restriction effectively deals with air pollution in a short period of time since the pan-

demic is just like a quasi-experiment that suddenly suspended all the companies. However, as the 

limitation stops, the improvement decreases. It is not sustainable. In addition, a partial quarantine 

also has a positive impact on air quality, which means a partial limitation was also helpful in im-

proving air quality and also played an important role in protecting people’s health. Second, the 

control measures really hurt Beijing’s economy. However, the partial quarantine had fewer adverse 

effects on the economy than the lockdown. It is supposed to be a reference for air governance and 

pandemic control. Third, the more the lag periods were, the smaller their impact. Thus, restrictions 

on production can only be used in emergencies, such as some international meetings, while it is 

hard to improve the air quality and create a healthy and comfortable living environment only by 

limitation in the long-term. 
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1. Introduction 

Air pollution is one of the major environmental problems that endanger human 

health [1–5]. Rapid economic development has promoted motor vehicles and industrial 

activities and resulted in serious air pollution [6]. PM2.5, with a particulate matter concen-

tration of less than 2.5 μm, is one of the most important factors from the health perspective 

[7]. It is said that exposure to high PM2.5 caused more than 3.7 million premature deaths 

over the world in 2012 [1]. Concerned with the damaging health impacts of haze, the pub-

lic has demanded a cleaner and more satisfying environment [8,9]. 

Poor air quality remains a severe issue for Chinese cities, especially Beijing, due to 

its capital functions [10,11]. In 2013, Beijing had 52% of days where the air quality was 

unhealthy, and the proportion of heavy pollution days reached 16.2% [12]. Since then, 

frequent air pollution occurrences in Beijing even became a cause for panic and regularly 

emerged as the main topic in social media [13,14]. Lots of research in various fields paid 

attention to air quality, seeking to solve the issue [15–17]. In line with data from China 

Environmental Monitoring Center, Beijing achieved a historic breakthrough in 2020. That 

is, the annual average concentration of PM2.5 was only 38 micrograms/cubic meter. If the 

control measures such as locking down cities substantially improved the air quality, the 
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implied health benefits should be compared with the possible economic loss [18] to for-

mulate the urban development strategy accordingly. 

The COVID-19 pandemic might significantly influence air quality since the control 

measures decreased air pollutant emissions [19–22]. In late January, public transport net-

works, some enterprises, schools, and entertainment venues were suspended, and some 

areas even locked down [23]. The Chinese New Year national holiday was extended, and 

residents were encouraged to work from home. Thus, the emission these days was rela-

tively low comparing with recent years [24–26]. Until 10 February, the government al-

lowed some industries to get back to work, while the resumption process was compli-

cated. Beijing’s Gross Domestic Product (GDP) decreased by 6.6% in the first quarter of 

2020 [27]. On 12 June, the coronavirus was detected again in salmon in the Beijing Xinfadi 

Market, and then, the second outbreak occurred. The enterprises in the Beijing-Tianjin-

Hebei region were affected again but less than the first outbreak owing to the partial quar-

antine. As of 16 July, Beijing has basically reached 100% of industrial enterprises above 

the designated size, and the resumption rate of catering above the designated size is 91.1% 

[28]. It is crucial to consider the pandemic’s impact on air quality to find better ways to 

improve air pollution and protect human health since it is just like a precious ‘natural 

experiment’. 

The COVID-19 pandemic provided an excellent opportunity to investigate the possi-

ble methods to improve Beijing’s air quality meanwhile considering Beijing’s economic 

impact. To provide a sound basis for the effective control of urgent air pollution, it is of 

great importance to investigate the impact of the pandemic on air quality, also considering 

the economy. Since the policies and economy change rapidly during the pandemic, this 

study used the TVP-VAR model to analyze the dynamic relationship among the pandemic, 

economy, and air quality based on the daily data from 1 January to 30 August 2020. The 

results will shed light on the impact of the pandemic on air quality considering the economy 

and guide future control strategies and policymaking in Beijing’s air governance. 

The rest of the paper presents the methodology and data (Section 2), the dynamic 

impacts of COVID-19 on air quality in Beijing (Section 3). Finally, we conclude. 

2. Methodology and Data 

2.1. Methodology 

The TVP-VAR model is capable of seizing the time-varying feature in the economy 

and its development [29]. Social policies and economic environments change swiftly dur-

ing the COVID-19 pandemic, and the relationship among the pandemic, the economy, and 

the air quality is obviously varying as time goes on. Traditional quantitative analysis 

methods such as VAR and SVAR are suitable for the study of maintaining a constant re-

lationship between variables. However, during the COVID-19 pandemic, which has both 

obvious time-varying characteristics, traditional methods are likely to miss key time-var-

ying information. while the time-varying parameter autoregressive model can capture the 

relationship and characteristics of variables in various backgrounds [30], overcoming the 

burden of randomly selected rolling-window-size [31–34]. Moreover, the TVP-VAR 

model does not have the same variance assumption [35,36], which is more in line with the 

actual situation. Therefore, the research results are more realistic. 

The basic vector autoregressive (VAR) model is as follows: 

1 1 , 1t t s t s tAy M y M y t s n           , , . (1)

This paper involves a total of m variables. Therefore,  ��  is a m × 1 vector, 

�,��,… ,�� is a m × m matrix of coefficients, and �� is a structural impact, which is also 

a m×1 vector. The above formula can be rewritten as the following form: 

 1
1 1 ~ 0,,t t s s t t mty B y B y A N I 

       . (2)
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It can be rewritten as: 

1 '
1, ( , ..., )mt t t t t t sy X A X I y y  

          . (3)

Among them,  means Kronecker product, which is an operation between two ma-

trices. 

Furthermore, taking into account the time changes of the parameters, we obtained 

the time-varying parameter vector autoregressive (TVP-VAR) model [36]. The model form 

is as follows: 

1 1,..., ,t t t t t ty X A t s n          (4)

In the formula, the coefficient ��, parameter �� and matrix ��  all change with time. 

Let t  denote the stacked vector of lower triangular elements in matrix ��, and H be the 

logarithmic random volatility matrix. Suppose 
2

jt jth ln , and for all 

1, , m,   1, ,j t s n     , the parameters of the TVP-VAR model obey random walks. 

Suppose they are first-order random walk processes, which is 
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where  0 0~ ,s t N     ,  0 0~ ,s t N     ,  0 0~ ,s t h hh N   . Assume that 

the impacts of time-varying parameters are uncorrelated and that 0 , 0 , 0h  are 

all diagonal matrices. The estimation of the model in this paper is done by Markov Chain 

Monte Carlo (MCMC) method [35], which realizes dynamic simulation in which the sam-

pling distribution changes as the simulation progresses. 

2.2. Data 

The phase of the epidemic can be judged based on changes in the number of con-

firmed COVID-19 cases. Therefore, this paper selected the number of newly confirmed 

COVID-19 cases on Beijing from January to August 2020 to represent the COVID-19 pan-

demic (new). The data were retrieved from the “Daily Epidemic Bulletin” of Beijing Mu-

nicipal Health Commission (available online at 

http://www.nhc.gov.cn/xcs/yqtb/list_gzbd.shtml accessed on 25 September 2020) 

This article used the daily passenger flow of Beijing Subway to represent Beijing’s 

economy (pas). According to the statistics of the “Beijing Transport Development Annual 

Report”, the passenger flow of Beijing rail transit was 3.85 billion passengers in 2018, ac-

counting for 49.5% of the total urban passenger transport [37]. The subway is one of the 
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main modes of transportation for residents in Beijing. Therefore, since most schools in 

Beijing closed from January to August 2020, the passenger flow of subway reflected the 

economic operation and the start of enterprises in Beijing. The data came from the daily 

passenger flow information published on the official Weibo website of Beijing Subway 

(available online at https://weibo.com/bjsubway accessed on 7 October 2020). 

This article used PM2.5 to represent air quality in Beijing (pek). PM2.5 is one of the 

critical standards for measuring air quality, and the Beijing-Tianjin-Hebei region is an area 

with serious PM2.5. Therefore, this article extracted the hourly data of PM2.5 in Beijing and 

surrounding cities, calculated the daily data, and analyzed the relationship between the 

pandemic and air quality in Beijing. The data came from China Environmental Monitoring 

Center (available online at http://www.cnemc.cn/ accessed on 1 September 2020). 

This paper used multiple imputation methods to impute and fill missing values in 

the data to ensure the validity and accuracy of the results. Since the data used in this article 

was daily data from 1 January 2020 to 29 August 2020, including the four seasons of 

spring, summer, autumn, and winter, the seasonality and periodicity of the data should 

be considered. Therefore, we adjusted the seasonally by subtracting the average data of 

the corresponding month in 2019 from the daily data in 2020 (see Table 1, the descriptive 

statistics of original data is shown in Appendix A). 

Table 1. Data description. 

Variables N Mean Min Max Std. Dev. 

new 242 3.967 0 36 7.603 

pas 242 −481.235 −850 170 231.252 

pek 242 −2.018 −49 153 33.308 

3. The Dynamic Impacts of COVID-19 on Air Quality in Beijing 

3.1. Unit Root Test 

The sequences at level of three variables were stationarity. The stationarity of time 

series data was very important. We used the augmented Dickey–Fuller (ADF) test to check 

the stationarity of our series. the maximum lag order was 14 [38]. As mentioned in Table 

2, the three series of the COVID-19, Beijing’s economy, and air quality were all stationary, 

which met the data requirements of the TVP-VAR model. 

Table 2. Augmented Dickey–Fuller test. 

 Variables 
Without Constant and 

Drift 
With Drift With Constant and Drift 

At Level 

new −3.046 *** −3.915 *** −4.301 *** 

pas −0.526 *** −3.069 *** −4.232 *** 

pek −2.870 *** −2.837 *** −2.837 *** 

Note: *** p < 0.01, ** p < 0.05, * p < 0.10. 

3.2. Estimation Results by MCMC 

The SBIC and HQIC provide a consistent estimate of the correct lag order [39], so we 

used 1 as the lag order in this paper. We set the initial values of the parameters: 

0 0 0
0h      , 

0 0
10I    , 

0
100h I  ,  2( ) 40,0.02t  ～ , 

 2( ) 4,0.02t  ～ ,  2( ) 4,0.02h t  ～ , referred to Nakajima et al. [35]. Then we ex-

ecuted the MCMC algorithm for 10,000 samplings and discarded the first 1000 samplings 

by OxMetrics which is developed by Jurgen Doornik and David Hendry, then getting 

valid samples for model posterior estimation. It can be seen in the first line of Figure 1, in 

the displayed 500 samples, the autocorrelation of the sample decreased steadily. As for 
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the second line, we found that each variable's sample value fluctuates around the mean, 

which was not entirely random. The third line showed the density function of the poste-

rior distribution. In general, Figure 1 showed that after the samples were discarded in the 

burn-in period, the degree of autocorrelation of the variables declined, meaning that it 

could usefully generate uncorrelated samples and ensure the exactitude of the results. 

 

Figure 1. Estimation Results of the TVP Regression Model for the Simulated Data. 

3.3. Time-Varying Impulse Analysis of Equal Interval 

The parameter estimated of the TVP-VAR model changed over time. We could com-

pare and analyze the difference of the influence of dependent variables at different time 

points by the impulse analysis of equal interval (also called impulse analysis of different 

time horizons). Figures 2–4 showed the dynamic impulse response. We just took the im-

pulse responses of equal intervals for a one-day horizon, a one-week horizon, and a two-

week horizon, which represented the short-term, mid-term, and long-term, respectively, 

as an example. Moreover, according to Figures 2–4, the impact of COVID-19 on air quality 

had obvious time-varying characteristics, which may be due to differences in control 

measures of the pandemic in different phases. Therefore, we used the impulse response 

of different time points to analyze the differences in the relationship among the COVID-

19 pandemic, economy, and air quality in Beijing in different backgrounds. We took 22 

January, 30 March, and 17 June 2020 as examples since they were in different stages of the 

COVID-19. January 22 was in the outbreak period of the pandemic. On 30 March, the 

number of newly confirmed cases of COVID-19 in mainland China went down to 3, which 

was much lower than the number of newly cured cases. However, on 17 June, the number 

of newly confirmed cases of COVID-19 in mainland China rose again. 
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Figure 2. Time-varying responses of air quality to Beijing’s pandemic shock during the pandemic. Note: The Time-axis 

donates the date from January 2020 to August 2020, the Horizon-axis represents the impulse response horizons, and the 

Impulse-response-axis indicates the impulse response values after the shock of one-unit standard deviation. 

 

Figure 3. Time-varying responses of economy to Beijing’s pandemic shock during the pandemic. Note: The Time-axis 

donates the date from January 2020 to August 2020, the Horizon-axis represents the impulse response horizons, and the 

Impulse-response-axis indicates the impulse response values after the shock of one-unit standard deviation. 
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Figure 4. Time-varying responses of air quality to the economic shock during the pandemic. Note: The Time-axis donates 

the date from January 2020 to August 2020, the Horizon-axis represents the impulse response horizons, and the Impulse-

response-axis indicates the impulse response values after the shock of one-unit standard deviation. 

Figure 2 shows that air quality’s impulse responses to the COVID-19 pandemic shock 

were below zero. The mid-term and long-term impulse response values were weaker than 

the short-term impulse response values, but the overall trends were consistent. In terms 

of all short-term effects, at the beginning of 2020, the pandemic had a small impact on air 

quality, with the short-term impulse responses at around −0.1, and the mid-term and long-

term around 0. As time went by, the impulse responses gradually deepened, and the 

short-term impulse responses even reached about −0.25 in April. It was not until early 

April that the impact began to weaken. In mid-June, the impulse responses of Beijing air 

quality to COVID-19 shock deepened again. We knew that at the beginning of 2020, the 

pandemic had an impact on Beijing’s air quality, but the society had insufficient aware-

ness of the pandemic and did not immediately adopt strict measures. Therefore, the 

COVID-19 pandemic led to an improvement in Beijing’s air quality, but the influence was 

small. At the end of January, the absolute values of impulse responses gradually in-

creased. It means that most parts of China implemented the “lockdown” policy. Although 

Beijing announced that it would not lockdown, it also extended the Spring Festival holi-

day. The shutdown due to the pandemic also led to a reduction in industrial and exhaust 

emissions, which has further strengthened air quality optimization. At the beginning of 

April, it was at the point of partial to whole resumption. Emissions and pollution caused 

by getting back to production weakened the effect of the pandemic on air purification. In 

mid-June, due to the salmon incident in the Beijing Xinfadi Market, the pandemic re-

peated. The application of the “partial quarantine” policy once again strengthened the 

optimizing effect of the pandemic on Beijing’s air quality. According to the impulse re-

sponse results, COVID-19 did have a positive effect on air governance, and getting back 

to business weakened this effect. It was consistent with the results of He et al. [18]. In 

addition, it is obvious that in January and February, the impact of the pandemic had a 

little impact on Beijing’s air quality, smaller than that in May and June. It shows that the 

anti-pandemic policy of partial quarantine was also of great help in improving air quality, 

and could provide a reference for air quality improvement. 

The responses of air quality to the COVID-19 pandemic shock at three different time 

points were not wholly consistent but similar (Figure 2). The impulse response on 22 
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January converged faster than on 30 March and 17 June. It shows that on 22 January, the 

lagging impact of the pandemic on air quality was relatively small and short. It might be 

because Beijing did not implement strict pandemic control measures on 22 January. How-

ever, a similar trend indicates that the research results were robust. 

Figure 3 shows that the impulse responses of the economy to the COVID-19 shock 

were also negative, and this effect decreased as the lag period increased. From the per-

spective of the short-term impulse responses, at the beginning of 2020, the impact of the 

pandemic on Beijing’s economy slightly increased. A turning point occurred in mid-

March, and then, the impact gradually weakened. At the end of June, the impact of the 

pandemic on the economy deepened again. We found that initially, the impact of the pan-

demic on Beijing’s economy slightly deepened. It shows that the strict anti-pandemic pol-

icies implemented at the beginning of the year had an increasingly negative impact on 

population movements and economic operations. With the reopening plan, in mid-March, 

the negative impact of the pandemic on Beijing’s economy gradually diminished. In June, 

the pandemic in Beijing repeated, and the quarantine measures once again affected Bei-

jing’s economy. However, compared with January, it was evident that the partial isolation 

policy in June had a less negative economic impact than the total shutdown of production 

in January and February. As for the medium and long term, the overall trends were the 

same as the short-term one, with a small influence but large fluctuations. In mid-term and 

long-term responses, the time when the impact of the repeated pandemic on the economy 

deepened became advanced. In mid-June, the absolute values of the impulse responses of 

the economy to pandemic shock increased, which also shows that the partial quarantine 

in June had a less negative economic impact than the policy in February. According to the 

impulse response results, the pandemic harms Beijing’s economy, which was consistent 

with He et al. [18]. Both the partial quarantine and the lockdown could control the pan-

demic, and the partial quarantine had fewer negative effects on the economy than the 

lockdown. 

The impulse responses of the economy to COVID-19 shock at three different time 

points were generally consistent (Figure 3), which were all negative and became weak, 

while the response on 17 June was a little slower than the others. Because the second pan-

demic policy was partial segregation, which was looser than in the first pandemic, it 

shows that the partial quarantine policy had fewer negative effects on the economy than 

the total lockdown. 

Figure 4 shows that the impulse responses of air quality to Beijing’s economic shock 

had obvious time-varying characteristics in the short term. The more the lag periods were, 

the smaller their impact . Almost all impulse responses converged near 0 after the seven-

day horizon. Therefore, the relationship between the air quality and the economy in Bei-

jing was mainly short-term. Initially, the short-term impulse responses of Beijing’s air 

quality to Beijing’s economic shock quickly dropped to around −13. In mid-March, the 

impulse responses increased over zero. In April and May, the impulse responses of Bei-

jing’s air quality to Beijing’s economy stabilized at around 7.5. In June, the impulse re-

sponses again went down below zero and returned above zero in July. We knew that at 

the beginning of 2020, the impulse responses were negative. It shows that from January 

to early March, the shutdown and the initial economic reopening of Beijing were condu-

cive to optimizing air quality. At that time, Beijing was implementing strict anti-pandemic 

policies, companies stopped work and production, and the traffic volume was also signif-

icantly reduced. Although some production began to resume, nature repaired itself 

[40,41]. From mid-March to May, the impulse responses of Beijing’s air quality to the econ-

omy increased. It shows that at that time, Beijing’s economic recovery aggravated the level 

of PM2.5, and it means that the environmental impact of getting back to production ex-

ceeded the tolerance of nature. In June, the impulse responses appeared negative again, 

but the absolute values of the impulse response were smaller than the first pandemic. It 

shows that the partial quarantine policy implemented in June was also conducive to re-

ducing PM2.5, but the effect was weaker than the lockdown. According to the results of the 
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impulse responses, the shutdown of work was indeed beneficial to the improvement of 

PM2.5, but production within the natural carrying capacity would not aggravate the dete-

rioration of the environment. 

We also took shocks at three different time points as an example. The changing trends 

of the impulse responses of the air quality to economic shock on 22 January and 17 June 

were basically similar, both below zero, and gradually became weaker. While the response 

on 30 March was above zero and then decreased. It was consistent with the findings of 

impulse analysis of equal intervals. From January to early March and June, Beijing’s eco-

nomic recovery was conducive to the optimization of air quality. From mid-March to 

April, and July and August, Beijing’s economic recovery increased air pollution. Besides, 

the air quality on March 30 was less affected by the economic shock. It illustrates that the 

partial quarantine was also conducive to the reduction of PM2.5, but the effect was weaker 

than the lockdown. 

4. Discussion 

The COVID-19 pandemic led to an improvement in air quality and therefore bene-

fited people’s health, consistent with the conclusions of Berman and Ebisu [42], Singh and 

Chauhan [43], Stratoulias and Nuthammachot [44], Nadzir et al. [45], Nakada and Urban 

[46], Ma and Kang [47], and Donzelli et al. [48]. They all presented evidence of the better-

ing of the air quality over large metropolitan areas during the COVID-19 pandemic. We 

also examined the dynamic impact of the pandemic on the economy, which had also been 

negative, but it was clear that the absolute value of the impulse response in February was 

larger than that in June. It explains that the negative economic impact of the second out-

break was not as great as the first one. It was related to the severity of the pandemic and 

the rationality of response policies. The influence of Beijing’s economy on PM2.5 was un-

stable, but in both outbreaks, the impulse responses were below zero since the economy 

improved air quality due to the control measures. In addition, these measures caused the 

shutdown of factories and traffic, and ultimately reduced pollution emissions. During the 

corresponding recovery periods, the impulse responses increased above zero. When the 

economy reopened, factories and road traffic resumed, and PM2.5 went up again. There-

fore, Beijing’s air control measures should not be “one-size-fits-all” across the whole city 

but should be implemented separately by region. When the smog is severe, the authorities 

should limit the emissions by regions and stages, and it is supposed to be able to achieve 

similar significant results. 

The application of the “partial quarantine” also strengthened the optimizing effect of 

the pandemic on Beijing’s air quality, the same as the lockdown. However, the partial 

quarantine in June had a less negative economic impact than the lockdown, consistent 

with He et al. [18]. Therefore, the anti-pandemic policy of partial quarantine was also of 

great help in improving air quality and could provide a reference for air quality improve-

ment and health protection. 

The mid-term and long-term impulse response values were weaker than the short-

term impulse response values, but the overall trends of the three were consistent. There-

fore, the research results were robust, and the more the lag periods were, the smaller the 

impact would be. Almost all impulse responses converged after the seven-day horizon. It 

illustrates that the relationship of the pandemic, the economy, and the air quality in Bei-

jing was mainly short-term. Therefore, restrictions on production and emission can only 

be used as immediate policies to respond to emergencies, and it is difficult to produce 

long-term improvements to the environment and living conditions. 

5. Conclusions 

In order to find a possible way to improve Beijing’s air quality meanwhile consider-

ing the economic impact in Beijing, this article used the time-varying parameter vector 

autoregressive model based on the daily data of the pandemic and air quality from Janu-

ary to August 2020 to analyze the differences in the relationship between the pandemic, 
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the economy, and air quality in Beijing during different phases of the pandemic. The re-

search results show the following: First, the COVID-19 pandemic indeed had a positive 

effect on air governance which is good for people’s health, while doing business as usual 

would gradually weaken this effect. It may result due to the reduction of emissions from 

both production and traffic during the pandemic. It also shows that the Chinese author-

ity’s production restrictions effectively deal with air pollution in a short period of time 

since the pandemic is just like a quasi-experiment that suddenly suspended all the com-

panies. Moreover, local emission restrictions had a positive impact on air quality too. 

Thus, a partial limitation was also helpful in improving air quality and also played a role 

in protecting people’s health. Second, the pandemic hurt Beijing’s economy. Both the par-

tial quarantine and the lockdown would control the pandemic, while the partial quaran-

tine had fewer adverse effects on the economy than the lockdown. It is supposed to be a 

reference for air governance and pandemic control. Third, the more the lag periods were, 

the smaller the impact would be. It may be because the relationship between the pandemic 

and the air quality in Beijing was mainly short-term. Thus, restrictions on production can 

only be used in emergencies, and it is hard to improve the air quality for people’s health 

in the long term. 

Based on the above conclusions and the status quo of Beijing, we propose some im-

plications for Beijing’s air governance and pandemic prevention: As the pandemic has 

become the “new normal”, it is vital to find a good response that less influences the econ-

omy. The partial quarantine policy can effectively prevent and control the COVID-19 pan-

demic. At the same time, it can improve air quality with few negative effects on the econ-

omy. Therefore, improving the partial quarantine policy will help ensure the economy’s 

stable operation while controlling the pandemic. Moreover, Beijing’s air control measures 

should not be “one size fits all” across the whole city but should be implemented sepa-

rately by region. When the smog is severe, the authorities should limit the emissions by 

regions and stages, and it is supposed to achieve similar significant results. Besides, we 

should also find more effective measures to improve air quality since emission restriction 

can only be used in emergencies. 
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Appendix A 

Table A1. Data description. 

Variables N Mean Min Max Std. Dev. 

new 242 3.967 0 36 7.603 

pas 242 396.741 412 10265 248.790 

pek 242 40.774 4 206 33.919 
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