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Abstract: The heating degree days (HDDs) could indicate the climate impact on energy consumption
and thermal environment conditions effectively during the winter season. Nevertheless, studies on
the spatial-temporal changes in global HDDs and their determinants are scarce. This study used
multi-source data and several methods to explore the rules of the spatial distribution of global HDDs
and their interannual changes over the past 49 years and some critical determinants. The results
show that global HDDs generally became larger in regions with higher latitudes and altitudes. Most
global change rates of HDDs were negative (p < 0.10) and decreased to a greater extent in areas with
higher latitudes. Most global HDDs showed sustainability trends in the future. Both the HDDs and
their change rates were significantly partially correlated with latitude, altitude, mean albedo, and EVI
during winter, annual mean PM2.5 concentration, and nighttime light intensity (p = 0.000). The HDDs
and their change rates could be simulated well by the machine learning method. Their RMSEs were
564.08 ◦C * days and 3.59 ◦C * days * year−1, respectively. Our findings could support the scientific
response to climate warming, the construction of living environments, sustainable development, etc.

Keywords: climate change; energy consumption; thermal environment; Hurst exponents; influence
factors; enhanced vegetation index; PM2.5; albedo; remote sensing; general regression neural network

1. Introduction

The near-surface temperatures have increased significantly in most parts of the globe
over the past 100 years, especially in recent decades [1,2]. During the 62 years from 1951
to 2012, the temperature has increased by 0.12 ◦C every ten years, which was 1.88 times
the increase observed since 1880 [1]. Climate change can cause consequences that are not
only related to the energy consumption for heating and cooling but also the indoor and
outdoor thermal comfort conditions, and can further affect human health, especially that
of sick people, the elderly and children, etc. [3,4]. Buildings are among the sectors with the
highest energy consumption, accounting for approximately 40% of the total global energy
consumption and generating more than 30% of human-made carbon dioxide emissions [5].
A considerable part of this energy consumption is used in space heating and cooling.
Heating, ventilation, and cooling account for 35% of primary energy use in America, while
a similar level will be reached within five years in China [6]. High energy consumption
could result in huge emissions of greenhouse gases and harmful gases, the depletion
of abiotic resources, acid precipitation and acidification, the depletion of stratospheric
ozone, ecotoxicity and radiological exposure, and the health problems they can cause,
etc. [7,8]. In the future, climate change will have more significant impacts on energy
consumption and thermal comfort conditions with the increasing global population [7],
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rapid progression of global urbanization, the increase in ownership and utilization rates of
air conditioning [6,9], the improvements in people’s economic conditions [10] and living
standards [7], the popularity of glass facade buildings [11], and so on.

It is of great theoretical and practical value to analyze climate change’s influence
on energy consumption and thermal comfort conditions. Building heating and cooling
energy consumption is generally assumed to be proportional to the difference between
indoor and outdoor temperatures. Based on this assumption, the degree days indices,
which are closely related to temperature, have become a widely recognized and adopted
simple, efficient, and reliable indicator to represent the impacts of climate change on the
energy consumption of building heating and cooling [8,12–14]. Moreover, some studies
used the degree days indices to indicate the thermal comfort conditions [12–15]. These
indices can be mainly divided into three categories: heating degree days (HDDs), cooling
degree days (CDDs), and their sum (HDDs + CDDs) [8,12–14]. Previous studies have ana-
lyzed the spatial-temporal changes in HDDs or CDDs [8,13,14], HDDs + CDDs [15] in the
past [8,12,14] or the future [15–17] at the city [18,19], region [13,20] or global scale [8,12,14].
Moreover, some studies have also explored the influence factors. The current study ar-
eas are limited to a tiny number of places, including Madison, WI, USA [21], Florence,
Italy [22], Andalusia Autonomous Region, Spain [23], Bangladesh [13], Xinjiang Uygur
Autonomous Region, China [24], etc. Factors that have been considered include latitude,
longitude, and altitude [13,24], distance to large water bodies [21,23], the abundance of
impervious surfaces [21,22], large-scale atmospheric circulation indices [13], etc. However,
to the best of our knowledge, studies on the spatial-temporal changes and the associated
determinants of global HDDs are scarce, which is very important for estimating energy
consumption, the indoor and outdoor thermal environment, and human’s public health
in the winter season. Therefore, our study aimed to use multi-source data and several
methods to explore the rules of spatial distribution and interannual changes and some
important influencing factors of global HDDs.

2. Materials and Methods
2.1. Materials

The global HDD data at a 0.25◦ × 0.25◦ gridded resolution, spanning 90◦ N–60◦ S,
covering 49 years over the period 1970–2018, were provided by the official website of
PANGAEA (a data publisher for earth & environmental science) (https://doi.pangaea.
de/10.1594/PANGAEA.903123) (accessed on 2 June 2021) [12]. They were derived using
meteorological variables from the Global Land Data Assimilation System (GLDAS) [25].
GLDAS is a new generation global high-resolution reanalysis data product developed
jointly by the National Aeronautics and Space Administration, Goddard Space Flight Cen-
ter, and National Centers for Environmental Prediction [26]. GLDAS provides a consistent
quality-controlled long global gridded time series of several key meteorological variables
at fine-scale spatial-temporal (0.25◦ gridded, 3-hourly) resolution [26]. Equation (1) shows
the calculation method of HDDs.

HDDs = ∑n
i=1(Tb − Td)

+ (1)

where ‘+’ signifies that only positive values accumulate over n days in the chosen period,
and Td and Tb represent the daily mean outdoor air and base (threshold) temperatures,
respectively. The Tb was defined as 18 ◦C in this study, referring to previous studies [12]
and increasing the standard of living thermal comfort.

The global monthly vegetation indices data (MYD13C2.006) and global daily albedo
data (MCD43C3.006) at 0.05 degree (5.6 km at the equator) and the global land cover
data (MCD12Q1.006) with the spatial resolution of 1 km in 2016 were downloaded from
the official website of moderate resolution imaging spectroradiometer (MODIS) (https:
//search.earthdata.nasa.gov/search) (accessed on 2 June 2021). In generating this monthly
product, the algorithm ingests all the MYD13A2 products (with the spatial resolution
of 1 km and the temporal resolution of 16 days) that overlap the month and employs
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a weighted temporal average. The enhanced vegetation index (EVI) was adopted in
this study because EVI has improved sensitivity over high biomass regions than the
normalized difference vegetation index. The global annual visible infrared imager radiome-
ter sensor (VIIRS) nighttime light (NTL) data at the spatial resolution of 15 arc seconds
(about 0.5 km at the equator) in 2016 were obtained from the website of the Colorado
School of Mines (https://eogdata.mines.edu/download_dnb_composites.html) (accessed
on 2 June 2021). The global urban extent data in 2016 with the spatial resolution of 250 m
were provided by the official website of the Institute of Remote Sensing Information Pro-
cessing, Wuhan University (http://irsip.whu.edu.cn/resources/MGUP.rar) (accessed on
2 June 2021) [27]. These urban regions were derived from the MODIS land cover type
produce (MCD12Q1) based on a locally adaptive and fully automated global mapping
approach. Accuracy assessment indicates that MGUP has an F-score of 0.88, achieving
better results than the contemporary global products. The annual PM2.5 data were down-
loaded from the official website of Atmospheric Composition Analysis Group, Washington
University (http://fizz.phys.dal.ca/~atmos/martin/?page_id=273) (accessed on 2 June
2021). They were derived using advances in satellite observations, chemical transport
modeling, and ground-based monitoring [28]. The resultant annual mean geophysi-
cal PM2.5 estimates were highly consistent with globally distributed ground monitors
(R2 = 0.81, slope = 0.90) [28]. Other data included the global digital elevation model data
with the spatial resolution of 30 s (about 0.5 km) in ENVI 5.3, global continents border in
ArcMap 10.2, etc.

2.2. Methods
2.2.1. Spatial-Temporal Changes in Global Heating Degree Days

First, the global average HDDs during the last five years (2014–2018) were computed.
Second, the change rates of global HDDs from 1970 to 2018 in each grid and their corre-
sponding significance levels were calculated using the widely applied Mann–Kendall test
method, which did not require the sample data to fit a certain distribution type and was not
disturbed by a few abnormal values [12,24,29–31]. Third, the global spatial autocorrelation
analysis of HDDs and their interannual change rates were done by using Moran’s I statistic
method [32]. When Moran’s I was larger or smaller than 0, the HDDs and their change
rates had positive or negative spatial correlation, respectively; when Moran’s I was equal
to 0, both the HDDs and their interannual change rates were distributed randomly and
did not have an obvious spatial correlation. Moreover, the degrees of clustering of either
high or low values of HDDs and their interannual change rates were measured using the
Getis-Ord General G statistic. When the derived z-scores were larger or smaller than 0,
the HDDs or their interannual change rates had high or low values aggregation areas. In
addition, local Moran’s I analysis (LISA) was performed for global HDDs at the grid-scale,
which can identify the spatial heterogeneity and the dependence of each spatial object
attribute in local space [32]. Four types of clusters can be obtained through LISA analysis,
including high-high (HH) clusters, low-low (LL) clusters, high-low (HL) clusters, and low-
high (LH) clusters. The first and latter two areas corresponded to the spatially dependent
and heterogeneous areas, respectively. In addition, the hot spot analysis was done for the
interannual rates of HDDs. From this, the clusters of both high or low significant values
can be derived. Finally, the Hurst exponent (H) approach through rescaled range (R/S)
analysis was adopted to explore the variation trends of global HDDs in the future. It is an
effective method to describe the self-similarity and long-term dependence of climate [33],
hydrology [34], environmental factors [35], etc. The computed Hurst exponents derived by
the R/S analysis method were more reliable and robust than other approaches [33]. If H
equals 0.5, the time series of HDDs is uncorrelated and could be described as a random
walk; if H is large than 0.5 and smaller than 1, the time series is sustainable and character-
ized by long-term correlation; if H is larger than 0.5 and smaller than 1, the time series is
anti-sustainable and characterized by the opposite variation trends in the future compared
with the past [33–35]. Furthermore, the sustainability types of variation trends of time
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series could be divided into weak (0.5 < H < 0.75), medium (0.75 < H < 0.85) and strong
sustainability (0.85 < H < 1); and the anti-sustainability types of variation trends of time
series could be categorized as weak (0.35 < H < 0.5), medium (0.25 < H < 0.35) and strong
anti-sustainability (0 < H < 0.25) [36].

2.2.2. Associated Determinants of Global Heating Degree Days and Their Interannual
Change Rates

Seven influence factors were analyzed for HDDs and their interannual change rates,
including the latitude, altitude, distance to large waterbodies, mean enhanced vegetation
index in winter, mean albedo in winter, annual PM2.5 concentration, and nighttime light
intensity. Latitude refers to the absolute value of latitude in this study. The distance to
large waterbodies was defined as the Euclidean distance to the global coastline and the
lake shoreline of the Caspian Sea (the largest lake in the world). To overcome the spillover
effects of waterbodies, these VIIRS NTL intensities were reset as 0 in the waterbodies.
Moreover, we set the abnormal values as 0, including the negative and extremely large
values, which referred to the NTL intensities were larger than their largest values in the
urban areas. The two largest urban agglomerations were chosen to determine the largest
NTL intensity in each continent except for Antarctica.

The partial correlation analysis method can analyze the relationship between two
variables while controlling for the linear influences of other variables. Therefore, it can
reflect the internal relationship between the two variables more truly than correlation
analysis. The partial correlation coefficients and their significance levels were computed
between HDDs in 2016 or their interannual change rates from 1970 to 2018 and the seven
associated determinants mentioned above.

Moreover, we built the stepwise multiple regression equations and computed both
the determination coefficients and their corresponding significant levels. In addition, both
HDDs and their interannual change rates were simulated by the general regression neural
network (GRNN) algorithm, which exhibits a strong nonlinear mapping ability, high fault
tolerance, and robustness [37]. Moreover, it can obtain good fitting and prediction results
when the number of samples is small or instability exists in the data [37]. This method has
been universally applied to various prediction and forecasting tasks in civil engineering
and environmental science disciplines [31,38,39]. The proportion was set as 4:1 between
training and testing sample sets. The root-mean-square error (RMSE), correlation coefficient
(R), and the corresponding significance level were calculated to indicate the simulation
accuracy. The parameter optimization and simulation processes were repeated five times
to avoid uncertainties during the process and to obtain stable results. It should be noted
that the operations mentioned above in this paragraph have been performed only when
the HDDs existed, which means the HDDs were larger than 0 during the past 49 years.

3. Results and Discussion
3.1. Spatial-Temporal Changes in Global Heating Degree Days
3.1.1. Spatial Variations of Global Heating Degree Days

The global five-year average HDDs showed extremely obvious spatial variation laws,
which generally became larger in places with higher latitudes and altitudes (Figure 1).
HDDs did not exist in most regions which the equator crossed, including northern and
central South America, central Africa, and South and Southeast Asia. The HDDs were
lower than 553 ◦C * days in the regions surrounding the regions mentioned above—in the
vast majority of Central America, central South America, northern and southern Africa, the
Arabian peninsula, central and northern India, northern Southeast Asia, and central and
northern Australia, etc. The HDDs in Qinghai-Tibet Plateau were obviously lower than its
nearby regions, most ranging from 2766 to 11,493 ◦C * days. The largest HDDs occurred in
central Greenland, at larger than 14,504 or even 15,672 ◦C * days.



Int. J. Environ. Res. Public Health 2021, 18, 6186 5 of 15

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 5 of 15 
 

 

vast majority of Central America, central South America, northern and southern Africa, 
the Arabian peninsula, central and northern India, northern Southeast Asia, and central 
and northern Australia, etc. The HDDs in Qinghai-Tibet Plateau were obviously lower 
than its nearby regions, most ranging from 2766 to 11,493 °C * days. The largest HDDs 
occurred in central Greenland, at larger than 14,504 or even 15,672 °C * days. 

The global Moran’s index for global five-year average HDDs was 0.988 at the 0.000 
significant level. This indicated that high spatial positive correlations existed for global 
HDDs, and their values became more similar as the measured distance decreased. More-
over, both HH and LL clusters existed (Figure 2). The HH clusters mainly occurred in 
Greenland, northern Canada, northeastern Siberia, and some regions in Qinghai-Tibet 
Plateau and Sayan Mountains (a large upland area lying along the frontiers of east-central 
Russia and Mongolia). The LL clusters were mainly distributed in the southern United 
States, Central America, to vast majority of central South America, Africa, the Arabian 
peninsula, most of Iran, southwestern Afghanistan, south and southeast Asia, some of 
southern China, and the overwhelming majority of Australia. 

 
Figure 1. Distribution of global heating degree days between 2014 and 2018. 

 
Figure 2. Spatial pattern of global heating degree days based on Anselin Local Moran Index. 

3.1.2. Interannual Spatial-Temporal Changes in Global Heating Degree Days 
Most global change rates of HDDs were negative during the past 49 years (through-

out 1970–2018) due to the unequivocal global warming in most regions of the world (Fig-
ure 3a) [1]. The rates of HDDs generally decreased to a greater extent in areas with higher 

Figure 1. Distribution of global heating degree days between 2014 and 2018.

The global Moran’s index for global five-year average HDDs was 0.988 at the 0.000 sig-
nificant level. This indicated that high spatial positive correlations existed for global HDDs,
and their values became more similar as the measured distance decreased. Moreover, both
HH and LL clusters existed (Figure 2). The HH clusters mainly occurred in Greenland,
northern Canada, northeastern Siberia, and some regions in Qinghai-Tibet Plateau and
Sayan Mountains (a large upland area lying along the frontiers of east-central Russia and
Mongolia). The LL clusters were mainly distributed in the southern United States, Central
America, to vast majority of central South America, Africa, the Arabian peninsula, most of
Iran, southwestern Afghanistan, south and southeast Asia, some of southern China, and
the overwhelming majority of Australia.
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3.1.2. Interannual Spatial-Temporal Changes in Global Heating Degree Days

Most global change rates of HDDs were negative during the past 49 years (through-
out 1970–2018) due to the unequivocal global warming in most regions of the world
(Figure 3a) [1]. The rates of HDDs generally decreased to a greater extent in areas with
higher latitudes due to their larger increase rates of near-surface air temperatures [1]. The
decreasing rates ranged from −7.5 to 0 ◦C * days * year−1, and were mainly distributed in
the southeastern United States, a few regions in the western part of Canada and the United
States, most of Greenland, most of the southern tip of South America, most of Europe except
for northern Europe, and some of the surrounding West Siberian Plain areas, northern and
southern Africa, most of West Asia, northern South Asia, southeastern China, northeastern
China, Outer Manchuria, the Korean peninsula, and Japan. The declining rates ranging
from −20 to −7.5 ◦C * days * year−1, and mainly included most of northeastern Canada,
some of the western United States and northern Greenland, northern Europe and its nearby
Russian regions, some regions located to the east of Caspian Sea, northern China (including
Tibet, but excluding northeastern China), Mongolia, and some areas in some central and
eastern Siberian regions. The largest change rates were chiefly located in Alaska, northern
Canada, quite a few northern Russian and some central Siberian regions, and some western
Mongolian regions. It should note that HDDs did not decrease and instead increased in
some areas. The change rates were mainly from 0 to 4 ◦C * days * year−1 in these regions,
mainly including most of southeastern South America, certain areas in Mexico, certain
regions in northern Africa, the Arabian peninsula, northern India, southwestern China and
Hainan island, northeastern regions of Southeast Asia, southeastern Australia and some
regions in New Zealand, and a few regions in the northwestern, eastern and southeastern
United States, Greenland, southwestern Norway, western Ukraine, southern Africa, eastern
Turkey, and northern and western Australia. Moreover, the change rates were from 6 to
8 ◦C * days * year−1 in some places, including some regions in Greenland, Central Asia,
and north India adjacent to China, a few regions in the northwestern United Stated, the
southern Andes, and New Zealand. In addition, the variation rates can be larger than 8
or can even be 17.41 ◦C * days * year−1 in a few regions in northeastern marginal areas of
Canada, the northern Andes, and eastern marginal areas of Afghanistan.
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The change rates mentioned above in most regions passed the significant level of 0.1,
especially in the middle and higher latitudes (Figure 3b). The areas with the variation
rates at the significance level of 0.05 mainly included most regions in central and eastern
Canada and their adjacent regions in the United States, many European regions and a
certain number of areas in neighboring Russia and Kazakhstan, and some regions in South
America (Figure 3c). The areas with change rates at a significance level of 0.01 continued to
decrease. These areas were mainly distributed in regions in the center of Canada and the
United States, eastern Europe and its neighboring regions in Russia and Kazakhstan, and
South America (Figure 3d).

The global Moran’s index for the change rates of global HDDs during the last 49 years
was 0.946 at the 0.000 significant level. This indicates that high spatial positive correlations
existed for the variation rates of global HDDs. Moreover, both cold and hot spots at
the 0.10, 0.05, and 0.01 significant levels existed (Figure 4). The cold spots with high
confidence referred to regions with change rates of HDDs that were obviously smaller
than other regions due to their evidently larger increasing rates of air temperature. These
regions at the significance of 0.05 mainly occurred in northern marginal areas in North
America and northern Europe, and most of central and eastern Siberia, and some regions
in western Mongolia and its surrounding Russian regions, some areas in the regions
where northeastern China, Russia and Mongolia were adjacent, and some regions in
the Qinghai-Tibet Plateau, the northwestern Loess Plateau, and the western section of
the South Tianshan Mountains. The hot spots with high confidence referred to regions
with change rates of HDDs that were obviously larger than other regions due to their
obvious smaller air temperature increasing rates. These regions at the significance of 0.05
mainly included the vast majority of Central and South America, the eastern, southeastern
and northwestern United States, western Canada, central and southern Greenland, the
overwhelming majority of Africa, western Asia, most of South and Southeast Asia, and
some their surrounding regions in central Asia and southern China, as well as the vast
majority of Oceania.
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Most global HDDs decreased in the past and showed sustainability trends in the future
(Figure 5). The strong sustainability type with decreased trends was widely distributed in
northern North America, the southwestern United States and some of its adjacent north-
western Mexico regions, North and East Europe, northern and southern Africa, most of
the northern Arabian peninsula, Iran and Afghanistan, certain areas in Pakistan and its
surrounding Indian regions, the vast majority of the regions in northeastern India, East
and Northeast Asia, and many regions in central and southern Australia. The medium
sustainability type with decreased trends was concentratedly distributed in the surround-
ing regions of the above-mentioned type, especially in the West Siberian Plain and central
Asia. The weak sustainability type with decreased trends was mainly distributed in east-
ern North America, East Europe, and Australia. Nevertheless, there were a few regions
with decreased rates but anti-sustainability trends (Figure 5). Those regions with strong
anti-sustainability were mainly located in some Australian regions. Those regions with
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weak anti-sustainability were distributed primarily in the southern marginal areas of North
Africa, some of southwestern Russia, some of India, and southeastern Asian regions, as
well as a few regions in Australia. The HDDs increased in some areas over the past 49 years
and showed strong sustainability, mainly including a few regions in southeastern South
America, the Andes, central Mexico, the northwestern United States, the western marginal
areas of Canada, southern and central Greenland, some regions in northern Africa and the
Arabian peninsula, Tajikistan, northeastern Pakistan, northern India and its nearby regions,
some Southeast Asian regions and some their surrounding southern Chinese regions, some
regions in western marginal Australia and New Zealand. Overall, the future change type
was sustainability in the majority of global regions (Figure 5), meaning the change direction
will continue in these regions in the future.
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3.2. Associated Determinants of Global Heating Degree Days
3.2.1. Associated Determinants of Spatial Variation of Global Heating Degree Days

The HDDs were significantly positively partially correlated with latitude, altitude,
mean albedo, and EVI during winter (p = 0.000) (Figure 6). The absolute value of latitude
has obvious effects on HDDs (r = 0.76) due to the lower incoming solar radiation at higher
latitudes. The HDDs could be larger with the increase in altitude (r = 0.47) because of the
lower absorption of longwave radiation, the poorer heat-retaining capacity of the thinner
air, etc. Previous studies have found significant correlations between HDDs and latitude,
HDDs and altitude [13,24]. The partial correlation coefficient was 0.41 between HDDs and
the mean albedo during winter. This was because materials with lower albedos could
absorb more energy during the daytime. The stored heat can be emitted upward into the
atmosphere during the nighttime, contributing to higher ambient temperatures, as stated in
previous studies [40–42]. The HDDs were positively partially correlated with the mean EVI
during winter (r = 0.17, p = 0.000). This is mainly because higher vegetation activity could
lead to the decrease in air temperatures and the increase in HDDs during the daytime due
to the impact of the transpiration of plants. However, it should be noted that more and
denser vegetation (especially in forests) may increase air temperature and lower HDDs
during the nighttime. On the one hand, the penetrated solar energy could be stored within
and beneath canopies because of the water content [43]. On the other hand, more and
denser vegetation could decrease the sky view factor, lowering the amount of radiation
emitted into the open sky [43]. Moreover, a previous study found that temperate forests
show moderate warming in winter, and that boreal forests have strong warming in winter
and net warming annually due to the lower albedo than nearby open land (grassland
and cropland) [44]. This means that higher and denser vegetation could decrease the air
temperature and further increase HDDs from the all-day aspects at the global scale.
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The annual mean concentration of PM2.5 was significantly negatively partially cor-
related with HDDs (r = −0.16, p = 0.000). This result is consistent with previous related
studies, which found that the annual surface urban heat islands during the nighttime could
be obviously enhanced by haze pollution in China [45], and that aerosols could increase the
urban heat island during the winter daytime in China [46]. The NTL intensities are usually
used to indicate the intensities of human activities and are closely related to the abun-
dance of impervious surfaces. In theory, higher NTL intensities could lead to an increase
in temperature and a decrease in HDDs. The effect was minor in this study (r = −0.06,
p = 0.000). Nevertheless, the abundance of impervious surface could explain 67% of the
spatial variation of HDDs in Madison, Wisconsin, United States [21]. This difference may
be due to different indicators, especially different research scales. Another important
potential reason for this was that HDD datasets were derived from reanalysis data, whose
validity was controversial in analyzing the effects of urbanization on temperature (the most
important determinant of HDDs) [47,48]. In theory, the distance to large waterbodies has
a positive impact on HDDs. This is because it could be warmer in those regions closer to
large waterbodies. Nevertheless, this effect was neglected in this study (r = −0.00). This
may be related to the complex atmospheric circulations and ocean currents, the neglect of
the effects of other large waterbodies, topographic obstructions, etc.

The multiple regression equation between HDDs and their seven influence factors
is shown in Equation (2). The explain rate was 85.30%, which indicated the HDDs could
be simulated by these determinants at any place where the temperature data were not
accessible or available. The predicted HDDs by GRNN algorithm have high accuracy
(Table 1). The RMSEs for the training and testing samples were 551.59 and 564.08 ◦C * days,
respectively. Moreover, the simulated HDDs were significantly highly correlated with the
actual HDDs (Table 1). The correlation coefficients were 0.987 and 0.986 for the training
and testing samples at the significance level of 0.000, respectively.

HDD = 125.67 ∗ Lat + 0.94 ∗ Alt + 5429.53 ∗ Alb_win + 2556.15 ∗ EVI_win − 39.73 ∗ NTL − 13.24 ∗ PM2.5
−3752.86(R2 = 0.8530, p = 0.000)

(2)

where Lat, Alt, Alb_win, EVI_win, PM2.5, and NTL correspond to the absolute values of
latitude, altitude (with the unit of meters), mean albedo and EVI during winter, annual
mean PM2.5 concentration and NTL intensity, respectively.
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Table 1. Simulation accuracy of heating degree days (HDDs) and their interannual change rates
based on the generalized regression neural network algorithm.

Samples
HDDs Change Rates of HDDs

RMSE R RMSE R

Training samples 551.59 0.987 ** 3.56 0.881 **
Testing samples 564.08 0.986 ** 3.59 0.879 **

** represent being significant at the 0.000 level.

3.2.2. Associated Determinants of the Interannual Change Rates of Global Heating
Degree Days

The change rates of HDDs were significantly partially correlated with the seven in-
fluence factors mentioned above (p = 0.000), except for the distance to large waterbodies
(p = 0.388) (Figure 6). The regions with higher latitude experienced higher decrease rates
(r = −0.51). The main reason for this was the obviously larger increase in temperature in
these regions, especially in the Northern Hemisphere [2]. Moreover, the increased tempera-
tures could easily contribute to the accumulation of HDDs due to the lower temperatures
here, which were usually lower than the base temperature for heating. Therefore, the
significant cold spots were mainly located in the northernmost regions. In contrast, the
hot spots were densely distributed in the areas with lower latitude and their surrounding
areas, especially in the Southern Hemisphere. These spatial patterns of the change rates
of temperature and HDDs were probably because the widely distributed ice and snow
in higher-latitude regions were more sensitive to climate change. The melted ice and
snow could decrease the albedo, increase the moisture content in the air and the clouds in
the atmosphere, which could reduce the reflection of short-wave radiation, increase the
absorption of long-wave radiation in the air, and enlarge the sunshine duration, etc. In
addition, the convection effects were weak in high-latitude areas, and the near-surface
heat was difficult to diffuse into the upper atmosphere. All the factors mentioned above
could accelerate the temperature rise. The effects of altitude on the variation rates of HDDs
were negative but small (r = −0.04) at the global scale. On the one hand, the contributions
of increased temperatures on HDDs were more obvious due to the lower temperatures
in the regions with higher latitude, which were usually lower than the base temperature
for heating. On the other hand, the relationships between the attitude and the variation
rates of temperature [49], or HDDs, were complex in different locations and contexts. For
instance, the rates of HDDs were larger and smaller than its surrounding regions with
lower altitudes in the Qinghai-Tibet Plateau and some Andean regions, respectively. Areas
with higher albedo were more sensitive to climate warming and gained higher and smaller
change rates of air temperature and HDDs (r = −0.05), respectively.

Regions with higher and denser levels of vegetation were more insensitive to climate
change, mainly due to the adjustment abilities of vegetation on temperature [50,51], re-
sulting in lower variation rates of temperature and HDDs in these regions. However, the
partial correlation coefficient was minor (r = 0.07) between the change rates of HDDs and
mean EVI during winter. This result was mainly due to the lower coverage and activities of
vegetation during the cold period. Moreover, positive partial correlations existed between
the variation rates of HDDs and PM2.5 concentration (r = 0.06). This result may be because
of the larger greenhouse effect that existed in the polluted air, resulting in lower change
rates of temperature and HDDs. In addition, the NTL intensity had minor significant
positive impacts on the variation rates of HDDs (r = 0.03). The larger NTL intensity meant
higher urbanization levels. A previous study found that nighttime surface urban heat
island intensities (SUHIIs) became larger in some cities (p < 0.05) from 2003 to 2013 in
China during the winter, while the daytime SUHIIs became larger and smaller in some
cities (p < 0.05) in southern and northern China, respectively [52]. This finding could
indicate complex relationships between the NTL intensity and the change rates of HDDs to
a certain degree. Theoretically, the regions closer to large waterbodies were liable to enjoy
lower variation rates of HDDs due to the larger regulating effects of the seas or oceans on
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temperature. However, no significant correlations existed in this study. This may be due to
the complexity of atmospheric circulations and ocean currents, the neglect of other large
waterbodies, topographic obstructions, etc. The multiple regression equation between
the interannual change rates of HDDs during the past 49 years and their seven influence
factors is shown in Equation (3). The explanatory rate was 58.81%, which indicates that the
interannual variations rates of HDDs could be partially simulated by these determinants
in any region where the temperature data were not accessible or available. The predicted
change rates of HDDs by GRNN algorithm have high accuracy (Table 1). The RMSEs
for the training and testing samples were 3.56 and 3.59 ◦C * days * year−1, respectively.
Moreover, the simulated change rates of HDDs were significantly highly correlated with
the actual rates (Table 1). The correlation coefficients were 0.881 and 0.879 for the training
and testing samples at the significance level of 0.000, respectively.

VHDD = −0.24 ∗ Lat − 0.0004 ∗ Alt − 2.99 ∗ Alb_win + 3.92 ∗ EVI_win + 0.09 ∗ NTL + 0.01 ∗ PM2.5
+2.75(R2 = 0.5881, p = 0.000)

(3)

where VHDD refers to the interannual change rates of HDDs, and the meanings of Lat, Alt,
Alb_win, EVI_win, NTL, PM2.5 are the same as in Equation (2).

3.2.3. Limitations and Future Work

The datasets of HDDs were derived from the reanalysis data, which were based on
the upper air observations and did not directly include the effects of the local surface on
observations [53–55]. Moreover, some drawbacks existed regarding the reanalysis data,
including the neglect of clouds and surface moisture, changes in atmospheric composi-
tion effects [54], non-homogenization and time-varying of the input data [56], and bias
associated with the income and expense balance of surface heat [54]. Therefore, although
this study was able to obtain certain findings on the spatial-temporal changes and associ-
ated determinants of global HDDs, some uncertainty still existed. Exploring these laws
using other data, especially the near-surface observed records, should be encouraged in
the future.

Due to the coarse resolution of HDDs, the large research areas (the global regions),
and the difficulty of data availability, etc., some important influence factors have not been
considered in this study, such as the greenhouse gas concentration, atmospheric circulation
indices, landscape composition and pattern, remotely sensed indices of buildings, water
and bare soil, the sky view factor, heat release, population density, etc. [13,57]. Moreover,
only the effects of seas, oceans, and the Caspian Sea on HDDs and their interannual
change rates were considered in this study, rather than all large waterbodies. This was
mainly because it was too difficult to determine the influence distances of waterbodies with
different sizes [31] and to quantify the combined effects of several waterbodies. In addition,
the annual PM2.5 concentration was used rather than the mean value in winter due to
the lack of data availability. In addition, it should be noted that only the data in a single
year rather than several years were adopted to explore the influences of the distribution
of HDDs. However, this may not be a limitation but an advantage, since using the mixed
data over many years is likely to reduce the correlation degrees between HDDs and their
factors. Moreover, scholars should be encouraged to analyze the change rates of HDDs
with the variation rates of some determinants rather than their mean values during the
specified period. This has not been analyzed in this study mainly due to the data shortage
of many determinants covering such a long period, 1970–2018. In addition, the driving
forces for HDDs should be analyzed under different contexts at multiple scales during
different periods (such as in the different climate zones during the daytime and nighttime
at the local, regional and global scales, etc.), due to their spatial-temporal heterogeneity
under different conditions at different scales. In addition, although the driving forces of
spatial-temporal changes in HDDs and their interannual change rates were analyzed by
several methods, including partial correlation analysis, multiple regression, and machine
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learning, more accurate and detailed mechanisms should be explored by more methods,
such as experimental observation, numerical simulation, etc.

4. Conclusions

This study aimed to use the climate data, remotely sensed data, PM2.5 concentration
data, etc., and adopted the spatial analysis, mathematical statistics, and machine learning
method, etc., to explore the rules of spatial distribution and their interannual changes in
global HDDs, and some important influencing factors. The main findings were as follows:

(1) The global HDDs showed extremely obvious spatial distribution laws, which gen-
erally became larger in places with higher latitudes and altitudes. The largest HDD
was 15,672 ◦C * days, which occurred in central Greenland. High spatial positive
correlations existed for global HDDs, and both HH and LL clusters existed.

(2) Most global change rates of HDDs were negative during the past 49 years (over the
period 1970–2018), and they generally decreased to a greater extent in areas with
higher latitudes. The negative rates mainly occurred in southeastern South America,
the Andes, Mexico, the northwestern United States, southern Greenland, southern
North Africa, the southern Arabian peninsula, eastern Turkey, northern South Asia,
and its northern surrounding regions, northern Southeast Asia and southwestern
China, southeastern Australia, and New Zealand. Most of the abovementioned
change rates passed the significant level of 0.1. High spatial positive correlations
existed for the variation rates of global HDDs, and both cold and hot spots existed.
The vast majority of the global HDDs showed sustainability trends in the future.

(3) The HDDs were significantly positively partially correlated with latitude, altitude,
mean albedo, and EVI during winter, and significantly negatively partially corre-
lated with annual mean PM2.5 concentration, NTL intensity, and distance to large
waterbodies (seas or oceans) (p = 0.000). The interannual change rates of HDDs
were significantly negatively partially correlated with latitude, altitude, mean albedo
during winter, and distance to large waterbodies, and significantly positively partially
correlated with the mean EVI during winter, annual PM2.5 concentration and NTL
intensity (p = 0.000).

(4) Both the predicted HDDs and their interannual change rates by GRNN algorithm
were significantly highly correlated with their actual values (p = 0.000). The RMSEs
of HDDs and their variation rates for the testing samples were 564.08 ◦C * days and
3.59 ◦C * days * year−1, respectively.

(5) Our findings could support the scientific response to climate warming, the construc-
tion of living environments, sustainable development, etc. In the future, the global
HDDs should be derived from other data, especially the observed data for the related
studies. Moreover, more influence factors should be considered, such as the green-
house gas concentration, atmospheric circulation indices, landscape composition and
pattern, remotely sensed indices, the sky view factor, heat release, population density,
etc. More accurate and detailed mechanisms should be explored under different
contexts at multiple scales during different periods. More effective methods should
be adopted, such as experimental observation, numerical simulation, etc.
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