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Abstract: Background: This study intends to identify the best model for predicting the incidence of 

hand, foot and mouth disease (HFMD) in Ningbo by comparing Autoregressive Integrated Moving 

Average (ARIMA) and Long Short-Term Memory Neural Network (LSTM) models combined and 

uncombined with exogenous meteorological variables. Methods: The data of daily HFMD incidence 

in Ningbo from January 2014 to November 2017 were set as the training set, and the data of Decem-

ber 2017 were set as the test set. ARIMA and LSTM models combined and uncombined with exog-

enous meteorological variables were adopted to fit the daily incidence of HFMD by using the data 

of the training set. The forecasting performances of the four fitted models were verified by using 

the data of the test set. Root mean square error (RMSE) was selected as the main measure to evaluate 

the performance of the models. Results: The RMSE for multivariate LSTM, univariate LSTM, 

ARIMA and ARIMAX (Autoregressive Integrated Moving Average Model with Exogenous Input 

Variables) was 10.78, 11.20, 12.43 and 14.73, respectively. The LSTM model with exogenous mete-

orological variables has the best performance among the four models and meteorological variables 

can increase the prediction accuracy of LSTM model. For the ARIMA model, exogenous meteoro-

logical variables did not increase the prediction accuracy but became the interference factor of the 

model. Conclusions: Multivariate LSTM is the best among the four models to fit the daily incidence 

of HFMD in Ningbo. It can provide a scientific method to build the HFMD early warning system 

and the methodology can also be applied to other communicable diseases. 
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1. Introduction 

Hand, foot and mouth disease (HFMD) is common in children under five years old, 

but anyone can get it. The illness is usually not serious, but it is very contagious. It spreads 

quickly at schools and day care centers. HFMD has caused widespread social concern in 

countries such as China [1–3], Japan [4] and the United Kingdom [5]. Hence, exploring 

accurate prediction methods has great practical significance for the prevention and con-

trol of HFMD. Some studies have put forward different prediction methods for HFMD 

[6–8]. Time series analysis is a very powerful tool to detect disease status and predict fu-

ture development, because it is based on the changes in historical datasets over time and 
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produces mathematical models that can be extrapolated. Time series forecasting can be 

challenging as there are many different methods you could use and many different hyper 

parameters for each method [9]. Within the field of time series analysis, two models are 

particularly popular: the Autoregressive Integrated Moving-Average (ARIMA) model 

and the Long Short-Term Memory Neural Network (LSTM) model. The ARIMA model is 

one of the most popular methods used in infectious disease prediction, such as HFMD 

[2,8], COVID-19 [10], hepatitis [11], influenza [12], tuberculosis [13], as well as blood glu-

cose concentrations and hypoglycemia [14], hospital daily outpatient visits [15], etc. LSTM 

is a special case of Recurrent Neural Networks (RNN) and is increasing in use in recent 

years in domains such as stocks [16], speech recognition [17], and disease prediction, such 

as HFMD [18], COVID-19 [19] and HIV [20]. 

Both ARIMA and LSTM are suitable for analyzing time series data and making pre-

dictions. For the prediction of the incidence of HFMD by the ARIMA model, most of the 

studies involve direct prediction [2,8], and some involve meteorological factors [21]. Sim-

ultaneously, most of the previously reported studies on HFMD prediction using the LSTM 

model were univariate, and were not combined with exogenous variables [18]. As far as 

we know, no studies have compared the accuracy of these two prediction models com-

bined and uncombined with exogenous meteorological variables. 

This study intends to identify the best model for predicting HFMD incidence in 

Ningbo by comparing ARIMA and LSTM models combined and uncombined with exog-

enous meteorological variables, based on the daily incidence of HFMD and daily meteor-

ological data from 2014 to 2017 in Ningbo. 

2. Materials and Methods 

2.1. Study Area 

Ningbo is located on the coast of the East China Sea and the southeast corner of the 

Yangtze River Delta. It is located in the Ningshao plain with moderate latitude (latitude 

from 28°51′ to 30°33′ N and longitude from 120°55′ to 122°16′ E). Its land area is 9714 km2, 

while its oceanic territory covers 9758 km2. At the end of 2017, the permanent resident 

population of Ningbo was 8.05 million. Ningbo belongs to the north subtropical monsoon 

climate zone, which is mild and humid, with obvious alternations of winter and summer 

monsoon. It has four distinct seasons, with four months in winter and summer and two 

months in spring and autumn. The annual average temperature of Ningbo is 16.4 °C, 

while the hottest (in July) is 28.0 °C, and the coldest (in January) is 4.7 °C. The annual 

average precipitation is 1480 mm. The annual average sunshine duration is 1850 hours. 

2.2. HFMD Incidence and Meteorological Data 

The daily incidence data of HFMD from 1 January 2014 to 31 December 2017 in 

Ningbo were collected from the official website of The Data Center of China Public Health 

Science [22].  

The meteorological data during the study period were taken at Yinzhou station 

(29°47� N, 121°33� E), the national meteorological monitoring station in the central city of 

Ningbo (See Figure 1). The meteorological data included daily mean temperature 

(Tmean, ℃), daily mean pressure (Pmean, hPa), daily mean relative humidity (RHmean, %), 

daily mean wind speed (WSmean, m/s), daily precipitation (PPTN, mm) and daily sunshine 

duration (Sunshine, h). These data were provided by the China Meteorological Admin-

istration. 
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Figure 1. The geographical location of Ningbo and Yinzhou station. 

2.3. Data Analysis 

The data from January 2014 to November 2017 were set as the training set and the 

data of December 2017 were set as the test set. 

The ARIMA and LSTM models with and without exogenous meteorological varia-

bles were adopted to fit the training set of the data for predicting the testing set of the 

daily incidence of HFMD. 

All the four models were combined with “Rolling Forecast”. We predicted just one day; 

we took into account the real value on that day, and then we predicted the next day, etc. 

Three indexes were selected as the measures to evaluate the performance of the models.  

The first performance measure is root mean square error (RMSE), which is used to 

compare the predicted value with the actual value. The RMSE is computed as: 

RMSE = �
∑ (������)��

���

�
 

The second performance measure is mean absolute error (MAE). The MAE is defined 

as: 

MAE = 
∑ |������|�

���

�
 

The third performance measure is mean absolute percentage error (MAPE), a meas-

ure of relative overall fitness. This performance measure is defined as: 

MAPE = 
∑

|����� �|

��
 ×����

���

�
, 

�� is the observed daily incidence of HFMD on the i day, and ��� is the predicted daily 

incidence of HFMD on the i day where i = 1, …, n. 

Another parameter used is the Akaike information criterion (AIC), which is an ex-

tensively used measure for evaluating an ARIMA model. It quantifies the goodness of fit 

for the model as well as the simplicity of the model. It should be as low as possible [23]. 

Various measures of goodness of fit, such as RMSE, MAE, MAPE, and AIC, were 

computed for the ARIMA model. For LSTM, three parameters, RMSE, MAE and MAPE, 

were calculated. 

2.3.1. ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) is an adaptation of dis-

crete time-filtering methods developed in the 1930–1940s by electrical engineers [15]. Stat-

isticians George Box and Gwilym Jenkins developed systematic methods for applying 

ARIMA to predict business and economic data in the 1970s. ARIMA is a class of models 

that capture temporal structures in time series data and employ a linear regression-based 
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forecasting approach. They provide a general framework for the prediction of non-sta-

tionary observed time series data [24]. 

ARIMA combines both auto regression (AR) and moving average (MA) models as 

well as a differencing pre-processing step of the sequence to make the sequence stationary, 

which is called integration (I). The notation for the model involves specifying the order of 

the AR (p means the number of autoregressive terms), I (d means the number of non-

seasonal differences), and MA (q means the number of moving-average terms) models as 

parameters of an ARIMA function. A non-seasonal ARIMA model can be completely sum-

marized by three numbers: p, q and d. Y denotes the original series and y denotes the 

differenced series. We can employ the following equations: 

�� = ��, (�� � = 0); 

�� = �� − ����, (�� � = 1); 

�� = (�� − ����) − (���� − ����) = �� − 2���� + ����, (�� � = 2); 

The forecasting equation for y is: 

��� = � + ∅����� + ⋯ + ∅����� − ������ − ⋯ − ������ 

where �  is a constant, ∅����� ⋯ ∅�����  are AR terms (lagged values of y), and 

������ ⋯ ������ are MA terms (lagged errors). 

The seasonal part of an ARIMA model is summarized by three additional numbers: 

P, D and Q. The complete model is called an “ARIMA (p,d,q)(P,D,Q)” model. p, d and q 

are orders of auto-regression, the degree of trend difference and the order of moving av-

erage, respectively. P, D and Q are seasonal autoregressive terms, seasonal differences and 

seasonal moving average terms, respectively [9]. For ARIMA (p,d,q)(P,D,Q), we can get: 

�� = �� − ����, (�� � = 0, � = 1); 

�� = (�� − ����) − (���� − ������)

= �� − ���� − ���� + ������, (�� � = 1, � = 1); 

where s is the seasonal period [25]. 

ARIMAX is an extension of the ARIMA model, which includes the modeling of ex-

ogenous input variables. Exogenous input variables, also known as covariates, can be con-

sidered as parallel input sequences, and their observed values have the same time steps 

as the original series. The original sequence can be used as endogenous data to compare 

with the exogenous sequences. The observations of exogenous variables are included in 

the model directly at each time step, and are not modeled in the same way as the primary 

endogenous sequence (e.g., as an AR, MA, etc. process). 

We conducted the ARIMA/ARIMAX analysis in the previous studies [8,19,21,26]. 

This can be simply described in three stages. These are time series stability, parameter 

estimation and model evaluation. 

The first stage is time series stability. The ARIMA/ARIMAX model requires station-

ary time series, which means the time series show no fluctuation or periodicity with time. 

We used the Augmented Dickey–Fuller (ADF) unit-root test to estimate whether the time 

series is stationary or not. Log transformation and differences are the preferred ways to 

stabilize the time series. Seasonal differences were adopted to stabilize the term trend and 

periodicity in this study. 

The second stage is parameter estimation. An autocorrelation function (ACF) graph 

and partial autocorrelation (PACF) graph were used to identify the optimal ARIMA 

model. Automatic identification and artificial estimation were adopted in this study. The 

“autoarima ()” command in R software (R Foundation for Statistical Computing, Vienna, 

Austria) was first adopted to automatically identify the model parameters. Then, ACF, 
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PACF and differences were employed to identify p, d and q and P, D and Q of a seasonal 

ARIMA model. 

The last stage is model evaluation. All the models that passed the Box–Ljung test 

were compared using AIC and the RMSE of the test set, so that the best model, which 

usually has the lowest values of AIC and RMSE, can be found. 

2.3.2. LSTM Model 

Recurrent neural networks (RNNs) are a kind of artificial neural network. They add 

additional weight to the network and create cycles in the network graph to maintain an 

internal state. The LSTM Deep Learning algorithm, developed by Hochreiter and Schmid-

huber (1997) [26], allows the preservation of weights that are forward- and backpropa-

gated through layers. All recurrent neural networks take the form of a chain of repeating 

modules of a neural network. In standard RNNs, this repeating module will have a very 

simple structure, such as a single tanh layer (See Figure 2a) [27]. LSTMs also have this 

kind of chain-like structure, but the repeating module has a different structure. There is 

no single neural network layer, but there are four layers that interact in a very special way. 

In Figure 2b, each line carries an entire vector, from the output of one node to the inputs 

of others. The pink circles represent pointwise operations, such as vector addition, while 

the yellow boxes are learned neural network layers. Lines merging denote concatenation, 

while a line forking denote its content being copied and the copies going to different lo-

cations [27].  

 
(a) 

 
(b) 

Figure 2. The repeating modules of RNN and LSTM. (a). The repeating module in a standard RNN contains a single layer; 

(b). The repeating module in an LSTM contains four interacting layers (A is a chunk of neural network). 
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The network can continue to learn over many time steps by maintaining a more con-

stant error. Thus, the network can be used to learn long-term dependencies [26]. LSTM 

networks try to combat the vanishing/exploding gradient problems by introducing gates 

and an explicitly defined memory cell. These are inspired mostly by circuitry, not so much 

by biology. Each neuron contains one memory cell and three gates: input, output and for-

get. The function of these gates is to safeguard the information by stopping or allowing 

the flow of it. The input gate determines how much of the information from the previous 

layer gets stored in the cell. The output layer takes up the job on the other end and deter-

mines how much of the next layer gets to know about the state of this cell. The forget gate 

is useful to forget some prior values, i.e., it controls the extent to which a value remains in 

the cells due to some future works [26]. 

LSTM is able to almost seamlessly model problems with multiple input variables. 

This is a great benefit in time series forecasting, where classical linear methods can be 

difficult to adapt to multivariate or multiple input forecasting problems. 

The original LSTM model consists of a single hidden LSTM layer and a standard 

feedforward output layer. The Stacked LSTM is an extension to this model. It has multiple 

hidden LSTM layers, each of which contains multiple memory cells. A Stacked LSTM ar-

chitecture can be defined as an LSTM model comprised of multiple LSTM layers. The up-

per LSTM layer provides a sequence output to the lower LSTM layer instead of a single-

value output. Stacked LSTM is a stable technique for challenging sequence prediction 

problems, which makes the model more accurate. In our study, we used a three-layer 

stacked LSTM to fit the data. 

The training and prediction of the LSTM model can be divided into the following 

three steps. Firstly, the data were rescaled and normalized to the range of 0 to 1 as the 

LSTM models were sensitive to the scale of the input data. Secondly, the time steps of 

univariate and multivariate LSTM were set to 7/30/60/180, which means that we used the 

data of the previous 7/30/60/180 days to predict the incidence of the next day. Finally, a 

three-layer stacked LSTM structure was established. Every LSTM layer has one hidden 

layer that was set for the LSTM model, with neurons options of 4/8/16/32/64/72/128/256. 

The alternative optimization functions are Adaptive Moment Estimation (Adam), Sto-

chastic Gradient Descent (SGD) and Root Mean Square Prop (RMSProp). All these learn-

ing processes were run in 200/250/500/1000 epochs. We specified the initial learning rate 

as 0.005 and instructed the model to drop the learning rate every 125 epochs by multiply-

ing by 0.2 (See Figure 3). Based on the above results, we chose the optimal model accord-

ing to the minimum RMSE of the test set. 
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Figure 3. A three-layer stacked Long Short-Term Memory Neural Network (LSTM) architecture. 

2.3.3. One Step Ahead Rolling Forecast 

In the real world, the environment is unstable and changes quickly. If a disease pre-

diction model cannot respond quickly to changes, then the model is unqualified. There-

fore, a flexible prediction model is very important to meeting the challenge. In this study, 

a rolling forecast scenario, also known as walk-forward model validation, was used. 

Each time step of the test dataset is walked one step at a time. The model is used to 

make a forecast for the time step, and then the actual observed value is obtained from the 

test set and provided to the model for prediction in the next time step [9]. This mimics a 

real-world scenario where new daily incidence observations can be obtained every day 

and used for the prediction of the next day. Through rolling forecast, we can keep abreast 

of the pulse of the changing situation at any time, and quickly adjust the disease preven-

tion and control points. Therefore, the one step ahead rolling forward forecast is more 

precise. 

The geographical location of Ningbo and Yinzhou station was determined using 

ArcGIS (version 10.6, ESRI, Redlands, CA, USA). Excel(version 2016, Microsoft, Redmond, 

WA, USA) was used to build the database of the daily incidence of HFMD in Ningbo, and 

the ARIMA model and LSTM model were developed by the R software (version 3.6.2, R 

Foundation for Statistical Computing, Vienna, Austria) with packages “forecast” and 

“tensorflow”. The significance level is 0.05. 

3. Results 

3.1. Descriptive Analysis 

Descriptive statistics for the daily incidence of HFMD (incidence) and meteorological 

variables including Tmean, Pmean, RHmean, WSmean, PPTN and Sunshine are summa-

rized in Table 1. A total of 129,897 HFMD cases from January 2014 to December 2017 were 

included in our analyses. The daily mean incidence was 88.9 cases. The mean value of 

Tmean was 17.5 ℃ and its range was from −4.5 ℃ to 32.9 ℃. The mean value of Pmean 

was 1016.0 hPa and its range was from 985.7 hPa to 1039.7 hPa. The mean value of 

RHmean was 79.8% and its range was from 34.0% to 100.0%. The mean value of WSmean 
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was 2.0 m/s and its range was from 0.1 m/s to 8.3 m/s. The mean value of PPTN was 

5.0 mm and its range was from 0.0 mm to 276.2 mm. The mean value of Sunshine was 4.4 

h and its range was from 0.0 h to 12.7 h. 

Table 1. Descriptive statistics of daily incidence of HFMD cases and meteorological factors in 

Ningbo, 2014–2017. 

Indicators  Mean ± SD Min P25 P50 P75 Max 

Incidence(cases) 88.9 ± 76.8 1 33 64 120 479 

Tmean (℃) 17.5 ± 8.4 −4.5 10.1 18.5 24.2 32.9 

Pmean (hPa) 1016.0 ± 8.8 985.7 1008.6 1015.7 1023.2 1039.7 

RHmean (%) 79.8 ± 11.2 34 73 81 88 100 

WSmean (m/s) 2.0 ± 0.9 0.1 1.4 1.8 2.4 8.3 

PPTN (mm) 5.0 ± 14.4 0 0 0 3.3 276.2 

Sunshine (h) 4.4 ± 4.1 0 0 3.7 8.3 12.7 

Note: SD stands for standard deviation, Min stands for minimum value, Max stands for maximum 

value, P25 stands for 25th percentile, P50 stands for 50th percentile and P75 stands for 75th percen-

tile; Tmean stands for daily mean temperature, Pmean stands for daily mean pressure, RHmean 

stands for daily mean relative humidity and WSmean stands for daily mean wind speed and PPTN 

stands for daily precipitation. 

Figure 4 shows the time series of the daily incidence of HFMD and all of the meteor-

ological variables during the study period. The daily incidence of HFMD in Ningbo ex-

hibits strong seasonality. A bimodal seasonal pattern was observed, which was character-

ized by peaks in HFMD incidence in the summer (June) and early winter (November). 
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Figure 4. The time series distribution of the daily incidence of HFMD and meteorological variables in Ningbo, 2014–2017. 

The univariate Spearman correlation analysis indicated that Tmean, Pmean and 

RHmean were significantly associated with the incidence of HFMD. Notably, strong cor-

relations were detected between Tmean and Pmean, with correlation coefficients of −0.89 

(Table 2). To avoid multicollinearity, only Tmean and RHmean were considered as mete-

orological variables in the models. 

Table 2. Analysis of correlation between daily incidence of HFMD and meteorological variables. 

Indicators Tmean Pmean RHmean WSmean PPTN Sunshine 

HFMD 0.34 * −0.36 * 0.09 * −0.05 0.04 −0.02 

Tmean  −0.89 * 0.15 * −0.02 0.11 * 0.17 * 

Pmean   −0.26 * 0.03 −0.17 * −0.06 * 

RHmean    −0.32 * 0.35 * −0.58 * 
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WSmean     0.08 * 0.07 * 

PPTN      −0.29 * 

Note: *: p < 0.05; Tmean stands for daily mean temperature, Pmean stands for daily mean pressure, 

RHmean stands for daily mean relative humidity and WSmean stands for daily mean wind speed. 

3.2. ARIMA and ARIMAX Model 

The incidence data of HFMD in Ningbo from January 2014 to November 2017 were 

used as a training dataset to build prediction models. The time series of the training da-

taset was not stationary according the result of the ADF test (p = 0.10). The first trend 

difference (d = 1) was assessed to eliminate numerical instabilities in the time series. After 

the one order differencing, the time series passed the ADF test (p = 0.01). Eight alternative 

ARIMA models (Table 3) with and without external variables (daily mean temperature 

and daily mean pressure) were primarily selected for further model selection by observing 

ACF and PACF graphs (Figure S1) and running autoarima () in the R 3.6.2 software. The 

results of the Box–Ljung test and AIC values of different models are shown in Table 3.  

Table 3. Comparison of the ARIMA and ARIMAX models. 

Models 
Ljung–Box Test 

AIC RMSE MAE MAPE 
X-Squared p-Value 

ARIMA (5,1,4) 2.73 0.10 13,825.48 12.43 9.71 0.21 

ARIMA (5,1,2) 0.11 0.74 13,988.18 14.23 11.59 0.24 

ARIMA (2,1,1)(0,1,0)365 0.02 0.88 11,439.60 43.27 32.59 0.57 

ARIMA (3,1,1)(0,1,0)365 0.00 0.99 11,440.77 43.2 32.61 0.58 

ARIMAX (5,1,3) 0.04 0.84 13,973.31 15.98 12.70 0.22 

ARIMAX (4,1,3) 0.97 0.32 14,049.60 17.23 13.49 0.23 

ARIMAX (5,1,2) 0.33 0.57 13,973.21 15.92 12.71 0.22 

ARIMAX (5,1,4) 3.00 0.08 13,808.40 14.73 11.26 0.21 

Note: AIC stands for Akaike information criterion, RMSE stands for root mean square error, MAE stands for mean absolute error 

and MAPE stands for mean absolute percentage error. 

According to Table 3, all models meet the requirement of white noise for the residual 

time series (p > 0.05), so the AIC values were compared. ARIMA (2,1,1)(0,1,0)365 was se-

lected as the best model by autoarima (), as it had the lowest AIC (AIC = 11,439.60). How-

ever, it did not perform well in the fitting process of testing (RMSE = 43.27). Therefore, we 

chose ARIMA (5,1,4) as the best model, because it had the lowest RMSE in the process of 

testing (RMSE = 12.43). ARIMAX (5,1,4) was selected as best model by autoarima (), which 

had the lowest AIC (AIC = 13,808.40) and performed well in the process of testing (RMSE 

= 14.73). The results of the Box–Ljung test for both selected fitting models showed that the 

residuals satisfied an independent normal distribution (Table 3), which indicated that the 

fitting models were effective. 

3.3. Univariate LSTM and Multivariable LSTM Model 

Ten alternative univariate LSTM models and ten multivariate LSTM models were 

listed in Table 4. The results show that the model with 64 neurons and the SGD of uni-

variate LSTM had the lowest RMSE for test set (RMSE = 11.20) in comparison with the 

models using other parameters. The model with 32 neurons and the Adam of multivariate 

LSTM had the lowest RMSE for the test set (RMSE = 10.78) in comparison with models 

using other parameters.   
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Table 4. Comparison of the univariate LSTM and multivariate LSTM models. 

Models Time Steps Neurons Optimizer Epochs Batch Size RMSE 

Univariate LSTM 

1 60 64 SGD 250 32 11.20 

2 60 72 RMSProp 250 16 11.33 

3 60 72 Adam 250 16 11.33 

4 60 72 RMSProp 200 16 11.99 

5 60 72 RMSProp 250 64 12.43 

6 60 64 RMSProp 250 16 12.52 

7 60 128 SGD 250 32 19.30 

8 30 128 SGD 250 32 19.56 

9 180 64 SGD 250 32 20.59 

10 60 32 SGD 250 32 21.57 

Multivariate LSTM 

1 60 32 Adam 250 32 10.78 

2 60 64 RMSProp 250 32 11.09 

3 60 64 Adam 250 32 11.17 

4 60 64 RMSProp 250 64 12.07 

5 60 64 RMSProp 200 32 12.99 

6 30 32 Adam 250 32 13.64 

7 7 32 Adam 250 32 15.09 

8 180 32 Adam 250 32 15.48 

9 60 128 Adam 250 32 17.07 

10 60 64 SGD 250 32 19.99 

Note: SGD stands for stochastic gradient descent, RMSProp stands for root mean square prop, Adam stands for adaptive moment 

estimation. 

3.4. Prediction Performance Comparison 

The predicting outputs are displayed in Table 5 and Figure 5. Among the four mod-

els, the multivariate LSTM model performed best in the prospective forecasting of HFMD 

incidence over the following 31 days, with the smallest values of RMSE (10.78), MAE (8.71) 

and MAPE (0.17). The ARIMA showed a better goodness of fit than the ARIMAX model. 

For the forecast accuracy, the ARIMA model showed a smaller RMSE (12.43) than the 

ARIMAX model (14.73), as well as a smaller MAE (9.71 vs. 11.26) and MAPE (0.20 vs. 0.21). 

However, both performed much worse than the two LSTM models. 

Table 5. The forecasting performance of the four models. 

Model RMSE MAE MAPE 

ARIMA (5,1,4) 12.43 9.71 0.20 

ARIMAX (5,1,4) 14.73 11.26 0.21 

Univariate LSTM 11.20 9.03 0.18 

Multivariable LSTM 10.78 8.71 0.17 



Int. J. Environ. Res. Public Health 2021, 18, 6174 12 of 15 
 

 

 

Figure 5. The actual daily incidence of HFMD and values predicted by the four models in December 2017. 

4. Discussion 

In this study, the daily mean temperature and daily mean pressure were used as ex-

ogenous variables, and four models were used to predict the daily incidence of HFMD. 

By comparing the results, we found that both of the two LSTM models performed better 

than the two ARIMA models. This indicates that the LSTM models are more suitable than 

ARIMA models in predicting the daily incidence of HFMD in Ningbo. At the same time, 

we found that the prediction performance of the multivariate LSTM model was better 

than that of the LSTM model without exogenous variables, while the prediction perfor-

mance of the ARIMA model was better than that of the ARIMAX model. Our findings 

have profound implications for the local public health departments in terms of establish-

ing precision measures to prevent and control the prevalence of HFMD.  

The two ARIMA models transformed the influence factors of HFMD into some spe-

cial time variables and then matched them. The limitation of these two ARIMA models is 

that they can only analyze the linear part of the infectious disease series. However, the 

non-linear part of the infectious disease data may not be white noise, which means some 

information may not be captured by the two ARIMA models. LSTM is an advanced kind 

of Recurrent Neural Network (RNN) and a deep learning application that is designed to 

learn temporal patterns, capture non-linear dependences, and store useful memory for a 

longer time, so it produces better results in situations where the number of datasets is 

large [26]. This may explain why the performances of the two ARIMA models were not as 

accurate as those of the two LSTM models. The finding that LSTM achieved higher accu-

racy than ARIMA is also consistent with previous studies [19,28]. 

Our results indicate that meteorological factors could improve the prediction accu-

racy of LSTM. Meteorological factors could affect the incidence of HFMD by influencing 

the breeding, growth, and transmission of pathogens, as well as human behaviors [29–31]. 

Many previous studies have shed light on the non-linear effects of meteorological factors 

on HFMD [32–35]. According to the principle of the neural network model, LSTM can 

effectively fit these non-linear meteorological data. Therefore, the prediction accuracy of 

multivariate LSTM as regards the influence of meteorological factors was better than that 

of univariate LSTM without exogenous variables. 
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As mentioned above, meteorological factors are usually nonlinearly associated with 

an epidemic of HFMD. Both ARIMA and ARIMAX are essentially linear methods. Using 

random noise is not very effective in interpreting multiple periodic structures with char-

acteristic fluctuations caused by nonlinear dynamics. This may explain why, compared 

with the ARIMA model, meteorological factors did not improve the prediction accuracy 

of ARIMAX, but became interference factors.  

In terms of computational time, the ARIMA models consume more time when using 

the rolling forecast method, and  it is unfeasible to train new models when the orders of 

p, d and q increase [9]. LTSM models take significantly less time to train, and once trained, 

constant predictions can be obtained, while ARIMA models need to be retrained. To sum 

up, LSTM models are more suitable than ARIMA and ARIMAX models for predicting the 

daily incidence of HFMD in Ningbo. 

However, LSTM also has some disadvantages. The optimization of the neural net-

work model is a very complex technical issue. The LSTM model involves the risk of over-

fitting or under-fitting, which usually causes poor prediction performance [36]. According 

to the results, the performance deteriorated when the number of memory cells was less 

than 32, which suggested that too few memory cells may cause severe under-fit. Moreo-

ver, the performance can be improved by increasing the capacity of the model, such as the 

number of memory cells or number of hidden layers. In addition, when the training epoch 

is more than 250, the performance of the model will get worse too. Additionally, this phe-

nomenon indicates over-fit. In this study, the selection of the parameter was based on the 

value of RMSE, and the LSTM model with the minimum RMSE on the test set was selected 

as the most optimal model. 

Admittedly, this study has some limitations. First, the data of the study come from 

the Data Center of China Public Health Science, which is derived from the hospital reports 

of HFMD cases. There may be selection or under-reporting bias, which may affect the 

precision of the predictions. Second, the incidence of HMFD is affected by many natural, 

social and environmental factors, including the pathogen, environment, host factors, me-

teorological and air pollution indicators, etc. Given the availability of the data, only mete-

orological indicators were considered in the model. Third, our study focused on Ningbo, 

a southern city in China. The epidemiological characteristics of cities in different geo-

graphical locations are different, and the associations between the incidence of HFMD and 

meteorological variables varied with different cities. Therefore, the findings need to be 

verified when applied to other cities or regions. However, our results warrant further re-

search on the prediction of the daily incidence of HFMD, and provide a scientific reference 

for the planning of the control and prevention of HFMD in Ningbo. 

5. Conclusions 

In this study, four models were constructed to forecast the daily incidence of HFMD 

in Ningbo, China. The LSTM model combined with exogenous meteorological variables 

has the best accuracy among the four models. The results offer a scientific method to build 

an HFMD early warning system, and help local health departments to make preparations 

in advance to treat possible outbreaks of HFMD. The methodology could also be applied 

to other communicable diseases. 
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