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Abstract: Nanoscale zero-valent iron (nZVI) has attracted considerable attention for its potential
to sequestrate and immobilize heavy metals such as Cr(VI) from an aqueous solution. However,
nZVI can be easily oxidized and agglomerate, which strongly affects the removal efficiency. In this
study, graphene-based nZVI (nZVI/rGO) composites coupled with ultrasonic (US) pretreatment
were studied to solve the above problems and conduct the experiments of Cr(VI) removal from an
aqueous solution. SEM-EDS, BET, XRD, and XPS were performed to analyze the morphology and
structures of the composites. The findings showed that the removal efficiency of Cr(VI) in 30 min
was increased from 45.84% on nZVI to 78.01% on nZVI/rGO and the removal process performed
coupled with ultrasonic pretreatment could greatly shorten the reaction time to 15 min. Influencing
factors such as the initial pH, temperature, initial Cr(VI) concentration, and co-existing anions were
studied. The results showed that the initial pH was a principal factor. The presence of HPO4

2−,
NO3

−, and Cl− had a strong inhibitory effect on this process, while the presence of SO4
2− promoted

the reactivity of nZVI/rGO. Combined with the above results, the process of Cr(VI) removal in
US-nZVI/rGO system consisted of two phases: (1) The initial stage is dominated by solution reaction.
Cr(VI) was reduced in the solution by Fe2+ caused by ultrasonic cavitation. (2) In the following
processes, adsorption, reduction, and coprecipitation coexisted. The addition of rGO enhanced
electron transportability weakened the influence of passivation layers and improved the dispersion
of nZVI particles. Ultrasonic cavitation caused pores and corrosion at the passivation layers and
fresh Fe0 core was exposed, which improved the reactivity of the composites.

Keywords: graphene-based nanoscale zero-valent iron; ultrasonic pretreatment; hexavalent chromium

1. Introduction

With the rapid development of industrialization, urbanization, and agriculture activ-
ities, chromium (Cr) has played a great role both in industrial and agricultural produc-
tion [1,2]. In industrial production, it is extensively used in electroplating, metal finishing,
tannery operations, chemical and battery manufacturing, etc. [3,4]. Waste residue and
wastewater with Cr are discharged irrationally, which may be responsible for severe water
and soil pollution [5,6]. In agricultural production, pesticides containing Cr are widely
used [7,8]. Thus, wastewater with Cr runs into rivers or lakes via surface runoff or into
ground water by permeation. The toxicity of chromium is mainly due to the damage of hex-
avalent chromium (Cr(VI)) in animals and plants [9,10]. It is recognized that Cr(VI) is much
more toxic and mutagenic than Cr(III), even at a lower concentration [6,11]. The maximum
acceptable levels of Cr(VI) specified by the World Health Organization (WHO) and by
the European Union, United States, and Chinese drinking water standards are 50 µg L−1,
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50 µg L−1, 100 µg L−1, and 50 µg L−1, respectively [12]. Therefore, the uppermost way to
remove Cr(VI) from aqueous is to convert Cr(VI) into Cr(III).

In the previous research, there have been several kinds of methods for Cr(VI) removal
and remediation, such as chemical, physical, and biological methods [13]. Bioremediation
technology has been proven to have good economic benefits and high efficiency. However,
functional bacteria reproduce slowly, which makes the remediation term quite long. Ad-
sorption has been considered as an economical and efficient method for Cr(VI) removal.
Nevertheless, most absorbents does not have reduction ability [14]. Of all the known
methods, sequestration by nanoscale zero-valent iron (nZVI) has been considered as an
economic, efficient, and easily implemented process [15], owing to its large specific surface
area, high surface reactivity, and low cost [16–18]. Cr(VI) can be reduced to Cr(III) by nZVI.
Afterward, Cr(III) will form a complex precipitate with OH−, Fe2+, and Fe3+, which can be
adsorbed by nZVI and coprecipitated onto nZVI particles.

However, nZVI corrodes easily during the application and storage process [19,20].
Researches have confirmed the “core-shell” structure of iron nanoparticles by spherical
aberration-corrected transmission electron microscopy (Cs-STEM) [21]. The iron oxide
shell hinders the transfer of electrons, which results in a loss of the activity of nZVI.
Moreover, due to its small size, high surface energy, and inherent magnetic character, nZVI
is extremely easy to agglomerate, which downsizes the specific surface area and inhibits
the interaction of nZVI particles with contaminants [22,23]. Therefore, researchers have
attempted to explore methods to avoid these limitations, such as activating nZVI particles
before use, modifying with metal, or employing suitable supports [24–26].

Graphene, owing to its high electron mobility and large surface area (2630 m2 g−1) [27–29],
has attracted wide concern as an absorbent support material. However, the mass produc-
tion of pristine graphene is hardly achieved because of the difficult bottom-up synthesis.
Graphene oxide (GO), which can be synthesized from graphite obtained directly from
nature and has a similar hexagonal carbon structure to graphene, has come into public
sight [30]. Consequently, as an alternative, reduced graphene oxide (rGO), which could to
a certain extent resemble pristine graphene’s properties [31,32] and be easily obtained by
reduction of GO [33], has become a preferred support material for absorbent research.

ZVI and nZVI usually need to be activated before use. However, iron oxide can also
provide many adsorption sites and has excellent adsorption capacity for pollutants. It
is necessary to develop an activation method without removing the iron oxide shell [25].
Ultrasonic technology has gradually developed as a novel and clean pollutant purification
method since the 1980s. It has broad prospects due to its low cost, simple control, and
potential application in industrial production. Studies have shown that ultrasonic cavitation
has the ability of cleaning and activating the passivation layer on the surface of nZVI
particles. In a heterogeneous ultrasonic reaction system, microjets rushing to the surface of
the solid catalyst caused by cavitation can lead to pores and corrosion on the surface of
nZVI particles [34,35].

So as to alleviate the passivation and agglomeration of nZVI and improve the efficiency
of Cr(VI) sequestration on nZVI, ultrasonic pretreatment coupled with a graphene-based
nanoscale zero-valent iron (US-nZVI/rGO) system was established in this study. GO was
used to synthesis the graphene-based nZVI composite because GO can be reduced at the
same time as the Fe(III) reduction during the process of nZVI preparation. Ultrasonic
pretreatment was used before the reaction to lead to corrosion on nZVI and speed up the
reaction of Cr(VI) reduction. Characterizations such as SEM-EDS, BET, XRD, and XPS were
performed to investigate the difference in structure between nZVI and nZVI/rGO, and to
uncover the mechanism of Cr(VI) removal in the US-nZVI/rGO system.

2. Materials and Methods
2.1. Preparation of Composites

Graphene oxide used in this study was synthesized using the modified Hummers
method [36,37], which is the same method used in the previous study by our group [38].
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First, nZVI was synthesized with a classic method of chemical reduction (shown in the
Supplementary Materials), as previously reported [39]. When preparing the nZVI/rGO,
0.088 g GO was added into 50 mL deoxy-deionized water and sonicated for 30 min. The
amount of GO accounted for 15% of the total of the synthesized composites. Then, the
prepared FeCl3·6H2O aqueous solution was added into the GO suspension and stirred
for 30 min with mechanical agitation. The follow-up procedures were similar to those for
synthesizing nZVI.

2.2. Characterization

Scanning electron microscopy (SEM, Zeiss Merlin) was selected to characterize the sur-
face morphologies, surface composition, and dispersibility of the nanoparticles. Followed
that, energy-dispersive X-ray spectroscopy (EDS) was used to determine the element com-
position. Brunauer, Emmett, and Teller (BET) specific surface area was determined on an
automatic specific surface and porosity analyzer (Quantachrome IQ2, Boynton Beach, FL,
USA). X-ray diffraction (XRD) spectra were measured using a Bruker AXS D8 Advanced
diffractometer with Cu/Kα radiation at 40 kV and 40 mA. The surface compositions of
samples before and after reaction were analyzed via X-ray spectroscopy (XPS) using an Al
Kα source with a power of 150 W (ESCALAB 250Xi, Thermo Fisher, Waltham, MA, USA).

2.3. Bath Experiments

The bath experiments of the Cr(VI) sequestration were conducted in serum bottles
(250 mL). A stock solution of Cr(VI) (1000 mg L−1) was previously prepared by dissolving
potassium dichromate in deionized water. First, 0.2 g nZVI/rGO was added into 200 mL
of deoxygenated deionized water. To ensure the anaerobic conditions, deionized water
was purged with N2 for 10 min before adding nZVI/rGO particles. Second, a required
volume of the Cr(VI) stock solution was rapidly injected into the solution and shaken in
a thermostatic water bath shaker (SH-A, Changzhou, China) at 180 rpm. For ultrasonic
pretreatment experiments, the serum bottles were sealed with rubber plugs and then
sonicated for several minutes before adding the Cr(VI) stock solution. The samples were
collected and immediately filtered through a 0.22 µm filter with a disposable syringe. The
impact of different materials for Cr(VI) removal was investigated by 3 kinds of materials
(GO, nZVI, and nZVI/rGO) with the same dosage (0.1 g L−1). The ultrasonic pretreatment
experiments were studied with 40 kHz ultrasonic frequency. The controlled experiments
were carried out under 4 control conditions: Initial pH, system temperature, initial Cr(VI)
concentration, and coexisting anions, respectively (Table 1). Moreover, the pH values were
adjusted with 0.1 M of HCl and 0.1 M of NaOH. All the experiments were performed
in duplicate.

Table 1. Controlled conditions of the batch experiments (dosage of adsorbents 0.1 g L−1; ultrasonic
frequency 40 kHz).

Influence Factors Conditions

Initial pH 3, 4, 5, 7, 9, 11
System temperature 10 ◦C, 20 ◦C, 30 ◦C, 40 ◦C, 50 ◦C

Initial Cr(VI) concentration 5, 10, 15, 20, 30 mg·L−1

Coexisting anions Cl−, SO4
2−, NO3

−, HCO3
−, HPO4

2−

The concentration of Cr(VI) was determined using a ultraviolet-visible (UV) spec-
trophotometer (752, Shanghai Precision Science Instrument Co., Ltd.) at a wavelength of
540 nm. The concentration of Fe(II) was determined by the phenanthroline spectropho-
tometric method at a wavelength of 510 nm. The pH value was measured by pH meter
(Thermo Scientific, Waltham, MA, USA). The removal capacity of Cr(VI) by nZVI/rGO
was calculated with Equation (1). The concentration of Total chromium (TCr) and Total iron
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(TFe) were monitored by inductively coupled plasma mass spectrometry (ICP-MS, Agilent
7800, Santa Clara, CA, USA).

qt= (
C0−Ct

m
)V (1)

where C0 (mg/L) is the initial concentration of Cr(VI), Ct (mg/L) is the concentration of
Cr(VI) at time t, m (g) is the amount of nZVI/rGO added into the solution, and V (L) is the
volume of the solution.

2.4. Adsorption Kinetics

The process of Cr(VI) removal on nZVI/rGO from an aqueous solution was described
by the pseudo-first-order kinetic model (PFO) [40], pseudo-second-order kinetic model
(PSO) [41] and intraparticle diffusion model [42]. The equations of these models are
expressed as Equations (2)–(4), as follows:

Linearized PFO kinetic model:

ln(q e − qt) = ln qe−k1t (2)

Linearized PSO kinetic model:

t
qt

=
1

kadqe2 +
t
qe

(3)

where qe is the equilibrium adsorption capacity of nZVI/rGO (mg g−1), qt is the adsorption
amount at time t (mg g−1), t is the contact time (min), k1 is the reaction rate constant
of the PFO reaction (min−1), and kad is the reaction rate constant of the PSO reaction
(g mg−1 min−1).

Intraparticle diffusion model:

qt = kdi f t0.5 + C (4)

where kdif is the intraparticle diffusion constant (mg g−1 min−0.5) and C is related to the
boundary thickness effect (mg g−1).

3. Results and Discussion
3.1. Cr(VI) Removal by GO, nZVI and nZVI/rGO

Figure 1 and Tables 2 and 3 depict the effects of different materials on Cr(VI) removal
efficiency. The results showed that nZVI presented a much lower removal efficiency than
nZVI/rGO. nZVI/rGO obtained the highest removal efficiency of 78%. GO presented the
poorest performance on Cr(VI) removal. GO had nearly no adsorption effect on Cr(VI)
because of the negative charge brought by the oxygen-containing functional groups on the
surface of GO [43].

Table 2. PFO and PSO kinetic parameters for different materials.

Kinetic Model Material Parameter

PFO

k1 (min−1) qe (mg g−1) R2

GO 0.061 3.98 0.8865
nZVI 0.16 30.56 0.9221

nZVI/rGO 0.16 55.53 0.9441

PSO

kad (g mg−1

min−1) qe (mg g−1) R2

GO 0.10 3.46 0.9928
nZVI 0.015 46.84 0.9994

nZVI/rGO 0.0072 80.91 0.9996
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Figure 1. (a) Performance on Cr(VI) removal by different materials, (b) PFO models, (c) PSO models, and (d) intraparticle
diffusion models. Experimental conditions: Temperature, 30 ◦C; pH = 5, initial concentration, 10 mg L−1; dosage of
adsorbents, 0.1 g L−1.

Table 3. Parameters of the intraparticle diffusion models for different materials.

Material

The First Stage The Second Stage The Third Stage

kdif
(mg g−1 min−0.5) R2 kdif

(mg g−1 min−0.5) R2 kdif
(mg g−1 min−0.5) R2

nZVI 19.73 0.9998 7.70 0.9805 2.26 0.9618
nZVI/rGO 30.51 0.9986 15.01 0.9567 4.48 0.9673

GO kdif = 0.7665 R2 = 0.9550

Compared to the pseudo-first-order kinetic (PFO), the process of Cr(VI) removal by
nZVI/rGO was better fitted by the pseudo-second-order kinetic (PSO) model with a high
coefficient of determination (R2 = 0.9995), which indicated that the rate-limiting step of
this process was chemical adsorption rather than physical diffusion and there might be
electrons sharing or transfer between Cr(VI) and nZVI/rGO [44]. Moreover, the theoretical
equilibrium adsorption capacity (qe) calculated based on PSO model was more consistent
with the actual experimental situation.

Each of the multilinear curves simulated by the intraparticle diffusion model included
three portions. This showed that the adsorption of Cr(VI) on nZVI/rGO was a process with
three different stages, which was similar to the process on nZVI, including the transport of
Cr(VI) from the aqueous solution to the surface of absorbents (nZVI/rGO), the adsorption
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onto the absorbents, and the equilibrium adsorption [44,45]. In addition, the curves that
did not pass through the origin indicated that the intraparticle diffusion was not the only
adsorption mechanism of Cr(VI) anions onto nZVI and nZVI/rGO.

In accordance with the half-reactions (Equations (5) and (6)), it takes 3 mol electrons
to reduce 1 mol Cr(VI) to Cr(III), while 1 mol Fe(0) can offer 2 mol electrons by being
oxidized to Fe(II). In theory, it was sufficient for the electrons provided by 0.1 g/L nZVI
to reduce 10 mg/L Cr(VI) (200 mL solution). However, in Figure 1, nZVI only presented
45.84% efficiency for Cr(VI) removal. The phenomenon might exist because as the reaction
proceeded, the passivation layer composed of (hydro)oxides of Cr(III) and Fe(III) continued
to generate, which interfered with the electron transfer between nZVI and Cr(VI) and
therefore inhibited the subsequent reaction [46]. By comparison, only 85% of the total
mass was accounted for nZVI in the nZVI/rGO composites even though the nZVI/rGO
presented nearly 80% efficiency for Cr(VI) removal, which demonstrated the specific role of
graphene in this process. Graphene has a particularly strong capability of electron transfer.
Through graphene, the electrons in the Fe0 core can penetrate the passivation layer and
cause electron-accepting reactions by Cr(VI) on the graphene.

Cr6++3e− → Cr3+, (5)

Fe0 − 2e− → Fe2+ (6)

3.2. Ultrasonic Pretreatment

The ultrasonic method has wide prospects due to its low cost, simple control, and
potential application in industrial production. So as to study the effect of ultrasonic (US)
pretreatment coupled with nZVI/rGO for Cr(VI) sequestration, we conducted control
experiments with and without ultrasonic pretreatment. As shown in Figure 2a, sonication
could effectively speed up the reaction rate. When pretreated with ultrasound, the process
of Cr(VI) removal achieved equilibrium within 15 min. In the early stages of the process,
the reaction rate was quite rapid, with approximately 65% removal efficiency within 1 min,
whereas the two systems without ultrasonic pretreatment had not reached equilibrium by
30 min. In addition, the efficiency of Cr(VI) removal by nZVI/rGO increased slightly from
72.94% and 78.15% to 74.57% and 80.05% for aerobic and anaerobic conditions, respectively.

According to the kinetic fitting results (Figure 2c and Table S1), the processes with
ultrasonic pretreatment were still well fitted by the PSO model after 1 min. The curves
simulated by the intraparticle diffusion model also included three portions (Figure 2d)
which were similar to that obtained without ultrasonic pretreatment. However, the fitting
results (Table 4) of the first stage (0~2 min) of the US-nZVI/rGO system was not ideal.
The coefficients (R2) were 0.8903 (aerobic) and 0.9311 (anaerobic), respectively, which were
lower than the R2 of the system without US (0.9987 (aerobic) and 0.9986 (anaerobic)). The
point at 1 min was above the simulating curves, which proved that the inflection point
between the first stage and the second stage occurred within 2 min. Nevertheless, we regret
that we could hardly acquire more compact experimental data because of the short reaction
time. Moreover, the kdif of the first stage in the US-nZVI/rGO system increased compared
with that in the system without ultrasonic pretreatment, indicating that the adsorption rate
of the first stage increased in the US-nZVI/rGO system. Ultrasonic cavitation makes the
membrane diffusion between nZVI/rGO and the aqueous solution much easier.

By monitoring the concentration of Fe(II) in the solution (Figure 2b), a large amount
of Fe2+ ions was found in the anaerobic system after 1 min of sonication. The Fe(II) in the
system played a pivotal role in the sequestration of Cr(VI) as it not only participated in the
reduction process of Cr(VI), but also made the surface of nanomaterials carry more positive
charge, thereby accelerating the adsorption of negatively charged chromate [47]. Therefore,
it can be inferred that there might be a solution reaction process at the very beginning of the
ultrasonic pretreatment-coupled system to remove Cr(VI). During the whole reaction phase,
both the solution reaction and the interfacial reaction existed simultaneously. Ascribable to
the effect of ultrasonic cavitation, small gaps or pores emerged at the passivation layer of
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nZVI, which exposed the Fe0 core to the solution, thus generating a large amount of Fe2+

and speeding up the removal of Cr(VI).
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Figure 2. (a) Effects of ultrasonic pre-reatment: Removal efficiency, (b) concentration of Fe(II) in solution during sonication,
(c) PSO model fitting results, and (d) intraparticle diffusion model fitting results. Experimental conditions: Temperature,
30 ◦C; pH = 5; initial concentration, 10 mg L−1; dosage of nZVI/rGO, 0.1 g L−1; ultrasonic frequency = 40 kHz.

Table 4. Parameters of the intraparticle diffusion models in different systems.

System
The First Stage The Second Stage The Third Stage

kdif
(mg g−1 min−0.5) R2 kdif

(mg g−1 min−0.5) R2 kdif
(mg g−1 min−0.5) R2

Aerobic 25.63 0.9973 15.48 0.9882 4.15 0.9969
US/Aerobic 49.44 0.8903 3.68 0.9799 1.33 0.8749
Anaerobic 30.51 0.9972 15.01 0.9567 4.48 0.9673

US/Anaerobic 54.27 0.9311 3.58 0.9685 0.54 0.9781

3.3. Reactivity Test of the Ultrasonic Pretreatment Coupled nZVI/rGO System for Cr(VI) Removal
3.3.1. Effect of Initial pH

pH is one of the most important characteristics of wastewater. It plays an important
role in most technologies of wastewater treatment. Therefore, it is necessary to study
the influence of the initial pH on Cr(VI) removal by nZVI/rGO in an aqueous solution.
Figure 3a depicts the effect of the initial solution pH on the sequestration of Cr(VI). The
removal efficiency declined continuously as the initial solution pH increased. The capacity
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of Cr(VI) removal increased sharply when pH < 4 and decreased sharply when pH > 9,
while it varied slightly between pH 4–9. Even at pH 9, the Cr(VI) removal efficiency can
reach 81.99%. Compared with nZVI [48], the nZVI/rGO composite increased the tolerance
to acid and alkali conditions in the Cr(VI) removal experiments. The existence of Cr(VI) can
be affected by the pH value and chromium concentration in the aqueous solutions. When
the pH of an aqueous solution remains below 1, Cr(VI) exists as H2CrO4, and when the
pH of an aqueous solution varies between 1 and 6, Cr(VI) exists as the anion of HCrO4

−.
When the pH of an aqueous solution is above 6, the form of Cr(VI) changes to the anion
of CrO4

2− [14,49]. As in the previous research [50,51], nZVI particles have a zero-point
charge (pHzpc) around a pH of 7~8. Nanoparticles acquire a positive point charge below
pHzpc and a negative point charge above pHzpc. When the reaction was conducted at
a pH below the pHzpc of nZVI/rGO, the Cr(VI) anions HCrO4

− with a negative charge
could be easily adsorbed onto the surface of nZVI/rGO with a positive charge. The lower
the pH, the more Fe(II) cationic will be dissociated from the surface of nZVI/rGO, and the
faster the rate of adsorption caused by electrostatic interaction will be.
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3.3.2. Effect of Temperature

The effect of temperature on Cr(VI) removal is shown in Figure 3b. When the tem-
perature increased from 10 ◦C to 50 ◦C, the removal efficiency at equilibrium grew from
70% to 100%. With the increase of temperature, the movement of each component in the
reaction system was accelerated, which accelerated the diffusion rate of Cr(VI) from the
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solution to the surface of adsorbents and promoted the binding of Cr(VI) to the active
sites on the composites [52]. However, as shown in Figure 3b, the influence of the reaction
temperature was not appreciable, especially at the very beginning of the process. When the
temperature rose from 10 ◦C to 40 ◦C, the removal efficiency at 30 min only increased by
10%. When the temperature rose from 40 ◦C to 50 ◦C, the variation of removal efficiency
was particularly significant with an increase of 20%. The results demonstrate that the
application of nZVI/rGO could be carried out in a wide temperature range.

3.3.3. Effect of the Initial Cr(VI) Concentration

The initial Cr(VI) concentrations with 5 mg L−1, 10 mg L−1, 15 mg L−1, 20 mg L−1,
30 mg L−1, and 40 mg L−1 were investigated in order to understand their effects on the
removal performance. Figure 3c showed that the corresponding removal efficiency of
Cr(VI) at 30 min was 100%, 80.05%, 58.36%, 49.44%, 36.40%, and 26.21%, respectively. To
further investigate the effect of the initial concentration on the Cr(VI) removal, PSO kinetic
analysis was performed. As shown in Figure S1 and Table S2, the equilibrium removal
capacity kept an upward tendency as the initial concentration of Cr(VI) increased from
10 mg L−1 to 20 mg L−1. However, it dropped significantly when the initial concentration
of Cr(VI) increased to 30 mg L−1. Many studies have also reported that the increase
of the initial concentration can easily lead to a reduction of the removal efficiency. As
known, Cr(VI) is an oxidant, which can effectively passivate nZVI. The main reason for the
reduction of the removal efficiency is the passivation effect of Cr(VI) on the nZVI surface.
With the increase of the Cr(VI) and nZVI concentration ratio, the amount of Cr(VI) around
nZVI increased, leading to the accelerated oxidation of nZVI. Subsequently, a large amount
of iron and chromium (hydro)oxides such as (CrxFe1−x)(OH)3 and CrxFe1−xOOH were
deposited on the surface of nZVI and graphene, which impeded the further reaction of
nZVI/rGO with Cr(VI). In addition, the dosage of nZVI was fixed and the available active
sites remained unchanged, resulting in a decrease in the percentage of Cr(VI) removal as
the initial concentration increases [53].

3.3.4. Effect of Coexisting Anions in the Solution

Natural waters and wastewater are both complex systems. Because of the high reac-
tivity of nZVI/rGO, there are many components which can strongly affected the removal
efficiency of Cr(VI) on nZVI/rGO. For this reason, this paper studied the effects of the
presence of several common inorganic anions, such as HCO3

−, HPO4
2−, SO4

2−, Cl−, and
NO3

−, on the reactivity of nZVI/rGO to remove Cr (VI) in water. In order to eliminate
the influence of different cations, the inorganic salts used in the experiment were sodium
salts of the same cation, and the equivalent ion concentration (1 mmol L−1) was selected.
As shown in Figure 3d, when these five species of anions separately existed in aqueous
solution, the removal efficiency was 88.15%, 50.35%, 98.73%, 58.76%, and 63.86%, respec-
tively. The presence of HPO4

2−, NO3
−, and Cl− had a strong inhibitory effect on this

process, among which HPO4
2− showed the poorest appearance. The equilibrium adsorp-

tion capacity (qe) of nZVI/rGO in these three solutions was 51.03 mg g−1, 59.56 mg g−1,
and 64.73 mg g−1, respectively, which decreased by 37.10%, 26.59%, and 20.22% com-
pared to the qe (81.14 mg g−1) of the single nZVI/rGO system. The strong inhibition of
phosphates is due to the competition with Cr(VI) in the reaction system. Phosphates
can be adsorbed by nZVI/rGO composites and precipitate with Fe2+ or Fe3+ by forming
Fe3(PO4)2 or FePO4 [54,55]. The existence of HCO3

− and SO4
2− can promote the efficiency

of Cr(VI) removal, of which the effect of SO4
2− was more obvious. The qe (100.06 mg g−1)

of nZVI/rGO in the SO4
2−-containing system was about 20% higher than that of the single

nZVI/rGO system. SO4
2− is a low-affinity ligand which can form outer-sphere complexes

with iron hydroxide or carobnyl [56]. Outer-sphere complexation has a weak effect. There-
fore, the competition with Cr(VI) during the reaction can be negligible. The facilitation of
SO4

2− might be attributed to the increase of ionic strength in the solution. The appropriate
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increase of ionic strength can aggravate the corrosion of Fe0 and thus accelerate the reaction
between Cr(VI) and Fe0 [57].

3.4. Characterization
3.4.1. SEM-EDS and BET Analysis

The SEM of nZVI, GO, nZVI/rGO, and the solids obtained after the reaction are
shown in Figure 4. The nZVIs synthesized in this study were spherical particles, which
had diameters varying from 10–100 nm, and were aggregated into chains under magnetic
force and electrostatic force (Figure 4a). The structure of the GO was nanosheets with
folds (Figure 4b). After loading onto graphene, the single nZVI particles were dispersed
in the folds of graphene (Figure 4c), which improved the dispersion of the nanoparticles.
After use, the spherical particles symbolizing nZVI disappeared. Instead, needle-like
solids appeared on the surface of composite (Figure 4d), which were presumed to be
iron (hydro)oxides.
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The EDS spectra can qualitatively and semi-quantitatively analyze the element dis-
tribution of the outer layer of materials. As shown in Figure S2 and Table S3, the nZVI
had attached to the surface of the rGO, and the mass ratio of nZVI to GO was close to the
theoretical value.

According to the previous references, the BET specific area of the bare nZVI was
around 14–35 m2/g (Table S5). In accordance with the results of the BET (Figure S3 and
Table S4), the specific area of the GO and nZVI/rGO was 1.23 m2/g and 59.31 m2/g,
respectively. Apparently, although the specific area of the new composite made little
improvement compared with the bare nZVI, dispersibility had been developed. It has also
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been demonstrated that nZVI/rGO composite has a typical mesoporous structure [53,54].
Based on the BJH(Barrett-Joyner-Halenda) desorption technology, the average pore size of
nZVI/rGO was 2.324 nm.

3.4.2. XRD Analysis

Figure 5 showed the wide-angle X-ray diffraction (XRD) patterns of the GO, nZVI,
nZVI/rGO, and the used nZVI/rGO. GO exhibited a diffraction peak centered at 2θ = 11.16◦

(001), which indicated that GO had a typical lamellar structure [58]. During the preparation
of nZVI/rGO, GO was reduced to rGO by NaBH4. As a consequence, the (001) peak of GO
disappeared and was alternatively replaced by a diffraction peak at 2θ ≈ 23.12◦, which cor-
responds to the crystal plane of graphite (002) [59]. The ideal (002) crystal plane of graphite
presented at 2θ = 26.4◦. In this study, the peak shift of the (002) crystal plane occurred
because the rGO produced by chemical reduction was not completely reduced and there
were still a few oxygen-containing functional groups between the layers or at the edges
of the layers. Similar results were observed in the research of Stobinski et al. [60]. They
used hydrazine hydrate to reduce GO, and the (002) peak of the obtained rGO occurred at
2θ = 23.76◦.
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As observed in Figure 5, the nZVI showed an obvious reflection peak at 2θ = 44.36◦,
belonging to the characteristic peak (110) of the cubic Fe (JCPDS, file no. 06-0696), which
was easily oxidized when exposed to air due to its high activity with a large specific surface
area. A strong reflection peak also appeared at 2θ = 44.53◦ on the curve of nZVI/rGO,
similar to the peak of nZVI, which means that the nZVI was successfully loaded on the
layer of rGO. In addition to the (110) peak detected at 2θ = 44.8◦, weak diffraction peaks
of 2θ = 35.42◦ and 2θ = 62.94◦ were detected in the XRD pattern of the used nZVI/rGO,
indicating the presence of Fe3O4 or γ-Fe2O3 [61,62].
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3.4.3. XPS Analysis

An XPS analysis was performed to provide insight into the actual components on the
surface of nZVI/rGO before and after the reaction. Figure S5 exhibited the full XPS spectra
of nZVI/rGO and GO after reaction. As shown in Figure S4, photoelectron lines appeared
at binding energies of 285.6 eV, 532.6 eV, and 712.6 eV, which belonged to C 1 s, O 1 s, and
Fe 2p, respectively. The results prove that Fe(0) was successfully adapted onto the surface
of rGO.

Moreover, the narrow region XPS spectra of each single element was studied to
develop their transformation during the experiments. The spectra of C 1 s are shown in
Figure 6a–c. The spectra apparently indicate that there were different carbon atoms in
four different functional groups on the surface of GO, as follows: The nonoxygenated
ring carbon (C–C), the carbon in C–O bonds, the carbonyl C (C=O), and the carboxylate
carbon (O–C=O), whose photoelectron peaks usually appeared at around 284.6 eV, 286.0 eV,
287.8 eV, and 289.0 eV, respectively [63]. Although there were also peaks of these oxygen
functional groups in the C 1s XPS spectrum of nZVI/rGO, the intensity was much weaker
than those in GO. Then, we integrated the spectra to obtain the area of each peak. The results
(Table S6) showed that the peak area of C-C groups amounted to 44.06%, which increased to
67.45% after reduction. The amount of oxygen-containing groups decreased from 55.94% to
38%, which demonstrates that most of the oxygen functional groups were eliminated during
the reduction of Fe(III). Graphene is known to be highly conductive, mainly because of the
long-range conjugated network in the graphitic lattice [63,64]. Nevertheless, the existence
of functional groups could break the conjugated network and localize the π-electrons.
Consequently, the aim of reducing GO is not only to remove the oxygen functional groups
bonded to graphene and other atomic-scale lattice defects but also to recover the conjugated
network [63]. Then, the electrical conductivity of the graphene would be recovered through
the reduction of GO.
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Figure 6d–f show the high-resolution XPS spectrum of O 1s of GO and nZVI/rGO. The
O 1s spectrum of the GO could be deconvoluted into three peaks, which were attributed
to C–O (531.7 eV), C=O (532.8 eV) [50], and O–H groups of adsorbed H2O (533.7 eV) [65].
The O 1s spectrum of nZVI/rGO could also be fitted by three types of oxygen species,
which were contributed to the oxygen-containing atom groups O–H, C–O (531.7 eV), C=O
(532.8 eV), and O2− (530.4 eV) in the oxide layers of iron, respectively [66]. Compared with
these two spectra, the amount of C=O declined, and C–O–Fe may have formed on the
surface of GO during the process of reduction by NaBH4.

3.5. Mechanism Analysis

In order to study the mechanism of Cr(VI) removal from an aqueous solution by
nZVI/rGO, the XPS spectrum was further developed. As can be seen in Figure S4, the
photoelectron peaks of Cr 2p were detected in the full survey pattern of nZVI/rGO after
the reaction, which illustrates that chromium was adsorbed onto nZVI/rGO. The C 1s
spectrum of nZVI/rGO after the reaction (Figure 6c) was similar to that of nZVI/rGO,
which means that the reduction of Cr(VI) had little effect on the surface functional groups of
nZVI/rGO. As described in Figure 6f, the amount of OH− (531.6 eV) increased significantly
after the reaction, which provided the conditions to form chromium oxide or hydroxide.

Figure 7a,b display the high-resolution XPS spectrum of Fe 2p. Compared with the
two spectra, Fe(0) (707.5 eV) was detected as a weak signal in unused nZVI/rGO, which
indicates that there might have been an oxide layer wrapping on the surface of the nZVI be-
cause the photoelectrons could only be detected by XPS from the outer surface of 10 nm [50].
Moreover, the photoelectron peaks at binding energies 710.9 eV and 724.2~724.5 eV were
attributed to Fe(II), while the peaks at 712.7~712.8 eV and 725.9 eV were ascribed to
Fe(III) [67]. A large amount of Fe(II) still existed on the surface because of the enrichment
of Fe(II) by nZVI/rGO [68]. In conclusion, there might have been two processes that
happened on Fe species during the Cr(VI) reduction, namely: (a) Fe(0) could have reacted
with Cr(VI) directly, and (b) Fe(II) could have reduced Cr(VI) into Cr(III). Furthermore,
the valence states of the Cr species on nZVI/rGO after the reaction were analyzed by the
narrow region XPS spectrum of Cr 2p in Figure 7c. The two peaks corresponding to the
Cr 2p1/2 and Cr 2p3/2 could be deconvoluted into two doublets. The peaks at binding
energies of 577.7 eV and 587.1 eV, between which there was a firm distance of 9.4 eV, were
attributed to Cr(III) [69–71]. There were no obvious photoelectron peaks of Cr(VI) from
which we could deduce that most Cr(VI) had been reduced to Cr(III).
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It is well known that nZVI is inevitably oxidized during the preparation and repositing
process, which can result in the formation of a passivation layer and restrain the contact of
contaminant and nZVI. During this research, we found that the passivation of nZVI in the
nZVI/rGO composite was distinctly alleviated. In order to prove this, we used the samples
of nZVI/rGO, which had been kept for 1, 6, and 12 months after preparation to conduct
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the experiment of Cr(VI) sequestration. The results showed that even the oldest sample
had a removal efficiency of around 70% (Figure S5). This might be because graphene has
good electron transfer ability, which could help the electrons from nZVI ”penetrate” the
passivation layer and arrive at Cr(VI) anions. Furthermore, the electrons entering the
reaction system through graphene could also reduce the Fe(III) in the passivation layer to
Fe(II) by a neutralization reaction, which could eliminate the passivation layer and provide
a new electron transportation aisle for the nZVI. The obtained Fe(II) could be used to
continue reducing Cr(VI), and thus facilitate in the process of the reduction reaction. Under
acid conditions, nZVI and rGO could form a primary battery, in which nZVI performs as
the anode and rGO as the cathode [50]. The electrons were transferred over the surface of
the nZVI/rGO materials and between nZVI and rGO.

Based on the above results, the chemical reactions occurring in the system can be
summarized as follows (Figure 8):

Cr2O7
2−+14H++6e → 2Cr3++7H2O ECr(VI),Cr(III)= 1.33V (7)

3Fe − 6e → 3Fe2+ EFe2+ ,Fe = −1.32V (8)

2Fe3++Fe0 → 3Fe2+ ∆E = 2.21Ev (9)

Cr2O7
2−+6Fe2++14H+ → 6Fe3++2Cr3++7H2O (10)

xCr3++(1− x)Fe3++2H2O → CrxFe(1−x)OOH(s) + 3H+ (11)
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When ultrasound was applied, a high-energy source was generated, which caused
cavitation. Acoustic cavitation is a process in which bubble generation, maturation, and
implosion occur simultaneously in a liquid environment. The last moment of bubble
burst can form a liquid jet with a high speed of about 111 m/s, which is also known
as a shockwave [72]. Under this impact, the passivation layer could partly fall off and
form a gap on the surface of nZVI. Meanwhile, part of the Fe(0) core could be freshly
exposed and improve the reactivity of nZVI (Figure 8). Additionally, because of the large
specific surface area of graphene, quantities of cavitation bubbles were adsorbed onto the
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composites, which strengthened the process. Moreover, at the instant of cavitation bubble
burst, extremely high temperature and pressure were generated, as well as rapid heating
and cooling rates [73], which could be a positive drive of chemical reactions.

4. Conclusions

An efficient nZVI/rGO composite for the removal of Cr(VI) from an aqueous solu-
tion was produced in this research. Compared with nZVI, the introduction of rGO could
help alleviate the passivation and agglomeration of nZVI. Ultrasonic pretreatment on the
nZVI/rGO composite was implemented before the reaction. The addition of ultrasonic pre-
treatment efficiently shorted the adsorption time and speeded up the remove rate of Cr(VI)
removal, as proven by the simulating result of the intraparticle diffusion model. Moreover,
acid pH value and high temperature played a catalytic role in Cr(VI) removal. The presence
of SO4

2− and HCO3
− accelerated the sequestration of Cr(VI) in US-nZVI/rGO system,

while the presence of HPO4
2−, NO3

− and Cl− had an inhibitory effect on this process. The
mechanism of Cr(VI) removal on nZVI/rGO coupled with ultrasonic pretreatment can be
concluded as: Cr(VI) first reacted with Fe(II) generated by the ultrasonic cavitation, Cr(VI)
was reduced on the surface of nZVI/rGO, and Cr(III) (hydro)oxides were adsorbed and
coprecipitated on rGO. nZVI/rGO coupled with ultrasonic pretreatment is a promising
method for the removal of Cr(VI) and many other kinds of heavy metals and organics
from an aqueous solution. The US-nZVI/rGO system can also be applied in some special
situations which need to be solved in a very short time, such as an emergency in a factory.
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