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Abstract: As COVID-19 run rampant in high-density housing sites, it is important to use real-time
data in tracking the virus mobility. Emerging cluster detection analysis is a precise way of blunting
the spread of COVID-19 as quickly as possible and save lives. To track compliable mobility of
COVID-19 on a spatial-temporal scale, this research appropriately analyzed the disparities between
spatial-temporal clusters, expectation maximization clustering (EM), and hierarchical clustering (HC)
analysis on Texas county-level. Then, based on the outcome of clustering analysis, the sensitive
counties are Cottle, Stonewall, Bexar, Tarrant, Dallas, Harris, Jim hogg, and Real, corresponding to
Southeast Texas analysis in Geographically Weighted Regression (GWR) modeling. The sensitive
period took place in the last two quarters in 2020. We explored PostSQL application to portray
tracking Covid-19 trajectory. We captured 14 social, economic, and environmental 14 impact’s
indices to perform principal component analysis (PCA) to reduce dimensionality and minimize
multicollinearity. By using the PCA, we extracted five factors related to mortality of COVID-19,
involved population and hospitalization, age structure, natural supply, economic condition, air
quality, and medical care. We established the GWR model to seek the sensitive factors. The result
shows that population, hospitalization, and economic condition are the sensitive factors. Those
factors also triggered high increase of COVID-19 mortality. This research provides geographical
understanding and solution of controlling COVID-19, reference of implementing geographically
targeted ways to track virus mobility, and satisfy for the need of emergency operations plan (EOP).

Keywords: geographical weighted regression; space-time cluster’s detection; COVID-19; mortality

1. Introduction

The coronavirus disease 2019 (COVID-19), as a global disaster, inhibited social-
economic development worldwide in 2020. It has threatened the loss of human life,
public health, safety, and disruption of face-to-face communication due to intangible, clini-
cal severity of the infection, and fatal symptoms [1]. By 11 March 2021, 2.62 million lost
their lives around the world, accounting for 15% of World War One fatality. A pervasive
sense of quarantine fatigue and panic attacks of getting infected are challenging human
resilience [2,3]. COVID-19 is one of the extreme diseases as incurable and universally
fatal, killing 25–50% of patients [4]. In particular, the COVID-19 pandemic in the US was
exposed to mass dislocation, directly accelerating the decline and failure of public health.
With around 30 million diagnosed cases and over 540,000 deaths as of mid-January 2020, a
disproportionate impact on COVID-19 was produced. About 40% of cases should have
been averted with international cooperation of medical care [4]. In addition, age-specific
mortality rates in the United States had remained corresponding to the weighted average
of G7 nations [4].

Texas is the second-largest state in the United States and has one-tenth of the aging
people. Despite unremitting Texas Executive Orders (TEO) and Public Health Disaster Dec-
larations (PHDD) were made, the Texas government maintained economic openness. The
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first COVID-19 case in the United States was confirmed on 19 January 2020, in Washington
State [5], whereas the first case was announced by The Texas Department of State Health
Services on 4 March in Fort Bend County. As of 28 February 2021, Texas surpasses 2,300,000
total COVID-19 cases and 372,086 deaths cases. As United States has gone through several
waves of epidemic cycles, Texas has undergone all five stages of COVID-19 risk-based
guidelines. Texas disease surveillance and response systems have disclosed the vulnerabil-
ity to deal with the global pandemic, which underlines the requirement to establish global
scheme, regulation, and collaboration [6]. A silver lining is that the pandemic provides
a unique and empirical opportunity to observe a large-scale and prolonged episode of
public health emergency. Accordingly, it is imperative to understand the spatial-temporal
clusters of COVID-19 mortality and explore its relationships with environmental and
social-economic factors.

A popular statistical tool to look into that relationship is space-time scan statistic,
which is widely used to quantify cluster strength and statistical significance [7]. Epidemic
surveillance and spatiotemporal trending analysis can provide unique insights for decision-
makers to be aware of potential uptakes and adopt proactive public health measures to
mitigate the risk and minimize COVID-19 infection. Detecting patterns of COVID-19
confirmed cases and mortality in the United States are well documented to formulate inter-
ventions, targeted rapid testing, and resource allocation [8–10]. However, the usefulness of
space-time analysis depends on the data quality (e.g., accuracy, spatial resolution, temporal
currency, completeness, etc.), which are somewhat limited at the early stages of pandemic.
Besides, Desjardins mentioned deaths could be conducted, but not incorporated in the
research scope. Those spaces are filled in our study. The distribution of the COVID-19
pandemic is well represented by Geographical Information Systems (GIS) spatial analysis
with the multidimensional social, economic, and health consequences, exposing to geo-
graphical inequity and a long-term impact on global health accurately [11–13]. GIS-driven
spatial analysis can facilitate the combination between health data and characteristic of
spatial attributes. Descriptive modeling research that took advantage of those strength has
deeply exposed the spatial-temporal associations of COVID-19 with socioeconomic and
environmental characteristics [14,15]. However, as far as an engaging empirical study, it is
important to select variables that reveal the degree of social vulnerability [16–18].

Spatial-temporal analysis of COVID-19 is crucial to understanding the spread of
COVID-19 and explore appropriate community containment strategies, which are fun-
damental public health measures used to control the spread of communicable diseases,
including isolation and quarantine. This paper focuses on the county level within a state
to eliminate the possibility of policy divergences between states, since existing research
spatial-statistically calculated county-level data, but not temporal lag disparity of county-
level [19–23]. Due to varying social vulnerability associated with different population
demographics, such as age, gender, and race/ethnicity, some population groups are more
vulnerable to the threat of COVID-19. A few variables are presented in the previous mod-
eling [24–29], albeit population mobility, age, race were significant factors [30–36]. As a
respiratory disease, air pollution indices like PM2.5 and air quality index (AQI) are highly
related to COVID-19. Despite air quality, Qian contends, is viewed as a robust interaction
with COVID-19 [37], AQI and PM2.5 have not been explored in previous spatial-temporal
models, only added as impact factors on the environmental list [38–42].

The research purposes are of two folds—first, to identify any emerging space-time
clusters of COVID-19, and second, to examine any significant factors related to mortality.
By exploring the spatiotemporal clusters based on a more comprehensive set of data over
a year-long period, this research examines the correlation between COVID-19 mortality
rate and social-economic, environmental factors with GWR analysis. It aims to identify
sensitive indicators to assist the formulation of targeted intervention suitable for vulnerable
populations and break the chains of transmission. Hence, this research is expected to
provide references for preventing and controlling COVID-19 and related infectious diseases,
evidence for disease surveillance, and response systems to facilitate the appropriate uptake
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and reuse of geographical data, to contribute to safeguarding Texas public health. Our
long-term goal is to improve and strengthen health seamless connection and surveillance
system by timely dynamic monitor mechanism.

2. Materials and Methods
2.1. Data

COVID-19 mortality is the subject of observation in the space-time scan statistic.
The COVID-19 mortality rate as the dependent variable is acquired from the Centers for
Disease Control and Prevention (CDC), COVID-19 fatality data based on death certificates.
A fatality is counted as a COVID-19 fatality when the medical certifier attests to the death
certificate that COVID-19 is a cause of death. Mortality rate is equal to fatalities divide by
cumulative cases. Hospitalization (i.e., total hospital bed, bed per capitalPC) from The Texas
Department of State Health Services (DSHS) is reported daily by hospitals through eight
Hospital Preparedness Program providers that coordinate health care system preparedness
and response activities in Texas. The data were collected from 4 March 2020 to 1 March 2021
as explanatory variables. Demographic data, such as race, age group, gender, population
density, are acquired from the 2020 U.S Census Bureau. Economic data (e.g., annual income)
in 2020 are obtained from the Texas Association of Counties, the statistical period is 2020.
Environmental data are interpolated from limited samples collected by the United States
Environmental Protection Agency (i.e., AQI, PM2.5) and National Weather Service (i.e.,
temperature, precipitation) during 1 March 2020–28 February 2021. All variables are in
Table 1.

Table 1. A-list of variables used for geostatistical analysis.

Variable Category Variable Name Acronym Variable Description

Economic Annual income PCI Median Household Income
Unemployment UEM Percent of residents who don’t have job

Environmental Precipitation PCN Mean precipitation per month
Temperature TPE Mean temperature per month

PM2.5 PM2.5 Mean PM2.5 per day
Air quality AQI Mean air quality per day
Land Area LA Total land area per county

Demographic Population density POD Population density

Total population TP Total population
Male population PMP Percent of residents who are male
Black population PBP Percent of residents who are black

Population between 20–59 P59 Percent of residents who are between 20–59
Population beyond 80 P80 Percent of residents who are beyond 80

Health Total hospital beds THB Total hospital beds
Beds per capital BPC Incidents per 1000 residents

Covid-19 Fatalities TF Total death number
Mortality Rate MR Percent of fatalities case on total case

2.2. Study Framework

From a temporal study framework perspective, the study period was classified into
four boxes based on the number of fatalities (TF) per quarter. Quarterly statistical data are
based on environmental and socio-economic indices at the end of each quarter in response
to COVID-19 fatalities at that time. The temporal-study framework in Figure 1.



Int. J. Environ. Res. Public Health 2021, 18, 5541 4 of 21Int. J. Environ. Res. Public Health 2021, 18, x  4 of 21 
 

 

 
Figure 1. Temporal-study framework. 

For the spatial study, we explore the inter-correlations among independent variables 
before building the GWR models. Since dependent variables must meet the assumption 
of a normal distribution, we have to describe their statistical characteristics and spatial 
autocorrelation analysis. To minimize any multicollinearity, all explanatory variables are 
standardized and examined by principal component analysis into composite factors. After 
that, we try to model simple ordinary lease square (OLS) and geographically weighted 
regression between variables. Finally, via model comparisons, we pay more attention to 
their differences in spatial heterogeneity and analyze how did it happen, as shown in Fig-
ure 2. 

 
Figure 2. Spatial study framework (PCA = Principal Component Analysis; GWR = Geographical 
Weighted Regression; OLS = Ordinary Least Square). 

2.3. Space-Time Scan Statistics 
In Kulldorff’s scan statistic method, the first step is to determine a congruous proba-

bility model of data, then compute the likelihood ratio test statistic λ(z) for each scan win-
dow z. After that, we identify primary cluster candidates with the maximum λ(z), a Monte 
Carlo hypothesis procedure tests the statistical significance and obtains a p-value [43]. On 
the one hand, Kulldorff’s method tests the null hypothesis H0 (constant probability for all 
areas) and the alternative hypotheses H1 (the specific area z has a larger probability than 
outside areas) using a Poisson model [7]. For a given region z, the likelihood function 
based on the Bernoulli model can be expressed using Equation (1): 

Clustering Analysis 

Figure 1. Temporal-study framework.

For the spatial study, we explore the inter-correlations among independent variables
before building the GWR models. Since dependent variables must meet the assumption
of a normal distribution, we have to describe their statistical characteristics and spatial
autocorrelation analysis. To minimize any multicollinearity, all explanatory variables are
standardized and examined by principal component analysis into composite factors. After
that, we try to model simple ordinary lease square (OLS) and geographically weighted
regression between variables. Finally, via model comparisons, we pay more attention to
their differences in spatial heterogeneity and analyze how did it happen, as shown in
Figure 2.
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= Ordinary Least Square).

2.3. Space-Time Scan Statistics

In Kulldorff’s scan statistic method, the first step is to determine a congruous probabil-
ity model of data, then compute the likelihood ratio test statistic λ(z) for each scan window
z. After that, we identify primary cluster candidates with the maximum λ(z), a Monte
Carlo hypothesis procedure tests the statistical significance and obtains a p-value [43]. On
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the one hand, Kulldorff’s method tests the null hypothesis H0 (constant probability for
all areas) and the alternative hypotheses H1 (the specific area z has a larger probability
than outside areas) using a Poisson model [7]. For a given region z, the likelihood function
based on the Bernoulli model can be expressed using Equation (1):

L(z) = sup
p>qL(z, p, q) = (p)nz × (1 − p)µ(z)−nz × qnG−nZ × (1 − q)(µ(G)−µ(z))−(nG−nZ) (1)

where, µ(G) and µ(Z) are the total population of the study area and population in region Z;
nG and nZ are the total numbers of observed cases in the study area and in region Z; p is
the probability that an incident falls in region Z, and q is the probability that an incident
falls in the rest of the study area. The likelihood of observing n (Z) in region z is given by
the function shown below:

L(z) =


sup
p>qL(z, p, q) = p̂nZ × (1 − p̂)µ(Z)−nZ × q̂nG−nZ × (1 − q̂)(µ(G)−µ(z))−(nG−nZ) i f p̂ > q̂

p̂nG
0 × (1 − p̂0)

µ(G)−nG
(2)

where, p̂
0 = nG

µ(G)
, p̂ = nZ

µ(z) , and q̂ = nG−nZ
µ(G)−µ(z) . The expected likelihood function has the

form as given in Equation (3):

L0 =
sup
p=qL(Z, p, q) = (

nG
µ(G)

)
nG

×
(
µ(G)− nG
µ(G)

)µ(G)−nG
(3)

Therefore the likelihood ratio λ(z) can be obtained as the quotient by dividing the
observed likelihood by expected likelihood:

(z) =


L(z)
L0

=
sup
p>q L(z,p,q)
sup
p=q L(z,p,q)

i f p̂ > q̂

1

(4)

Kulldorff (1997) also gave the formula to calculate the likelihood ratio based on the
Poisson model as shown below [7]:

(z) =


L(z)
L0

=

(
nZ

µ(Z)

)nZ
×( nG−nZ

µ(G)−µ(Z) )
nG−nZ(

nG
µ(G)

)nG i f p̂ > q̂

1

(5)

On the other hand, Kulldorff’s method tests the statistical significance of the detected
clusters. According to the Monte Carlo simulation, the p-value is used to assess the
statistical significance of the detected clusters. The Monte Carlo simulation, proposed by
Dwass in 1957 [44], Turnbull et al. took advantage of it at their cluster detection tests [45].
In a Monte Carlo simulation, a large number of random replications can be generated
under a chosen distribution model, conditioned by the simulated case number as real
data. In this study, the real population is used to calculate each area in the Monte Carlo
replication. The disease occurrence in each area is gathered from a non-homogeneous
Poisson distribution with mean µ(z) nG µ(G). The likelihood ratio is calculated by using the
replica data and the real data. Each simulated dataset has a maximum likelihood ratio and
p-values. The smaller p-value and the bigger likelihood ratio generates more likely cluster.
The problematical propositions are reliant on scan windows with predefined shapes [46].

2.4. Expectation-Maximization Clustering and Hierarchical Clustering Analysis

Two common clustering methods are partitioning clustering and hierarchical cluster-
ing. Partitioning cluster analysis pinpoints clusters with similar instances after a set of
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unlabeled data are given. For example, expectation-maximization algorithm clustering
(EM) conducts maximum likelihood estimation for samples in a mixture model. EM uti-
lized probability of cluster membership rather than a distance metric, and samples are
not assigned to one cluster but partially to distribution. It is common in chronic diseases
clustering detection such as diabetes patients, that tend to form groups that are either inter-
section or undependable shapes [47]. Hierarchical clustering is a method of automatically
seeking a hierarchy of clusters, which is a general application of DNA cluster detections.
It includes agglomerative clustering (i.e., bottom-up approach) and divisive clustering
(i.e., top-down approach). Both EM and hierarchical clustering belong to machine learning
analysis. They do not dependent on the predefined window and arbitrary patterns to
detect clusters.

2.5. Selection of Explanatory Variables

To reduce the dimensionality of the dataset down to fewer explanatory variables,
principal component analysis (PCA) is one of the common techniques to minimize multi-
linearity without losing the attribution of variables. PCA could maintain interpretability
while minimizing information loss. It does so by creating new independent factors or
components that successively maximize variance. In the PCA procedure, a set of possibly
correlated variables is transformed into a set of linearly uncorrelated variables using the
orthogonal transformation. The number of factors extracted from PCA is less than or equal
to the number of previous possibly correlated variables [48].

2.6. Model Selection

Owing to spatial dependence of COVID-19 spreading, the purpose of modeling
(Mortality Rate) MR is to figure out the external triggers that took place readily. Statistical
modelling is a good way to be considered to make predictions about the real world
via sample data. For instance, the ordinary least square (OLS) is a traditional method
for estimating a linear regression between dependent and independent variables. OLS
assumptions involve the disturbances that have zero mean and constant variance, in
addition to no correlation among explanatory variables [49]. However, multicollinearity in
OLS can cause bias of the model, inflate model performance, and influence the reliability
of the outcome. Then, to mitigate multicollinearity, stepwise regression (SR) is one of the
common approaches to be considered. SR is an automatic variable selection procedure
that selects the most related candidate(s) among a pool of explanatory variables iteratively.
Forward selection begins with no variables in the model, examining each additive variable
with a chosen model-fit criterion until none of the remaining variables improve the model
to a statistically significant extent [50]. In this study, SR is disregarded due to biased
R-square or coefficient [51]. The GWR modeling is initially taken into account for the
geographical disproportion of the number of deaths [52]. More importantly, compared to
OLS models, GWR models are local linear regression models. They embrace the calculation
of a parameter estimate of variations over space in the link between independent and
dependent variables [53,54].

2.7. GWR

The GWR procedure is founded upon two conditions. First, similarities between more
adjacent geographical entities exist based on the first law of geography [55]. Second, there
are disproportionate distribution of explanatory variables (e.g., socioeconomic factors) in
different regions, due to spatial autocorrelation and spatial heterogeneity. Based on Foster’s
spatial varying parameter regression, a Geographically Weighted Regression model (GWR)
is localized through weighting each observation in the dataset [54]. As pointed out by
Fotheringham, local smooth processing was used to address the spatial heterogeneity.
Under the consideration of spatial disparity, geographic coordinates and core functions are
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utilized to carry out local regression estimation on adjacent individuals of each group. The
equation of the GWR fitted model is as follows [54].

yi = β0(ui, vi) + ∑kβk(ui, vi)xk,i + εi (6)

where i denotes the individual sample; (ui, vi) is the coordinates of sample i; βk(ui, vi) is
the kth regression parameter of sample i; yi is the dependent variable of sample i, xk, i is
the kth independent variable for the sample i, εi is random error term which obeys normal
distribution when the variance is a constant, thus the parameter estimation value of sample
i is given by:

β̂(ui, vi) =
(

XTW(ui, vi)X
)−1

XTW(ui, vi)y (7)

where W is the spatial weight matrix, whose selection and setting are the core issues of
GWR regression. The calculation of GWR coefficients consists of two major steps—first by
selecting a proper kernel function to express the spatial relationship between the observed
units. Specifically, four major kernel functions are used in the existing research, namely
fixed Gaussian, fixed Bi-square, adaptive Bi-square, and adaptive Gaussian. Since the
merits of a kernel function play a direct and decisive role in obtaining the most accurate
possible regression parameter estimation of spatial heterogeneity, after careful analysis
and comparison, fixed Gaussian was chosen as the kernel function in the paper, which is
expressed as,

wij = exp
(
−d2

ij/θ
2
)

(8)

where wij represents the distance weight from sample i to sample j; dij is the Euclidean
distance between sample I and sample j; θ is the bandwidth, which determines the speed
at which the spatial weight attenuates with distance. The second step of spatial weight
matrix calculation is the selection of optimal bandwidth which could contribute to a higher
fitting degree. According to the GWR4.09 User Manual [55], bandwidth selection criteria
include AIC (Akaike Information Criterion), AICc (small sample bias-corrected AIC), BIC,
and CV (Cross Validation).

3. Results
3.1. Space-Time Scan Statistics

By using SaTCan software (Harvard Medical School and Harvard Pilgrim Health
Care Institute, 133 Brookline Avenue, 6th Floor, Boston, MA 02215, USA), two significant
space-time clusters of COVID-19 were detected at 0.05 level (Figure 3; Table 2). The bigger
cluster incorporates 172 counties of 13,085,347 population and 12,761 new cases, covering
the northern and western Texas. During the period of 6 November 2020–5 February 2021,
this cluster observed COVID-19 cases that were 2.48 times more than expected cases.
The second cluster centers around East Texas and involves 27 counties with 26,217,888
population and 3635 new cases during 6 July 2020–5 September 2020. This eastern cluster
has an observed/expected ratio of 5.23 times. It is noted, however, that this eastern cluster
took place during the earlier stage of the pandemic when the COVID-19 cases had just
started spreading in Texas and hence the expected cases were lower than the northern
cluster. Among the 254 counties in Texas, these two clusters occupied 199 counties. The
spatial extent of these clusters is too large to guide precise tracking of COVID-19 mortality.
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Table 2. Cluster comparison table.

Items Cluster 1 Cluster 2

Time frame 6 November 2020 to 5
February 2021

6 July 2020 to 5
September 2020

Population 13,085,347 26,217,888

Neighborhood 172 counties 27 counties

Log-likelihood Ratios 4084.27 3072.54

Number of cases 12,761 3635

Expected cases 5147.24 695.01

Observed/expected 2.48 5.23

Relative risk 3.08 5.61

p-value <0.0001 <0.0001

Focusing on the temporal trend, November 2020 is the most serious month in the
3 months space-time cluster in the northern and western Texas (Figure 4). According to the
above Figure 4, the highest month of the proportion of observed/ expected cases is shown
in November 2020. Hence, the cluster period is confirmed in the last two quarters of 2020
and the first quarter of 2021, and the cluster’s locations covered 199 counties, which is the
key of the following GWR analysis.



Int. J. Environ. Res. Public Health 2021, 18, 5541 9 of 21Int. J. Environ. Res. Public Health 2021, 18, x  9 of 21 
 

 

 
Figure 4. Temporal trend. (We used Highchart.com to generate above chart and accessed 
3/20/2021.) 

3.2. EM Clustering and HC Clustering 
Based on mortality rate alone, the EM algorithm identified seven clusters in the third 

quarter that are not significant (Table 3). In the last quarter, eleven clusters are produced 
, including seven significant clusters and four insignificant clusters. The maximum log 
likelihood is −86.34. In HC clustering, the cases are classified as cluster 0 and cluster 1. 

Cluster 0 means four counties as a group in the third quarter and eight counties as a 
group in the last quarter, including Cottle, Stonewall, Bexar, Tarrant, Dallas, Harris, Jim 
hogg, and Real. Incorrectly clustered instance are 251 counties in the third quarter and 247 
counties in the last quarter. Two clustering methods selected classes to cluster evaluation 
parameters. They are prior to the previous space-time cluster detection due to narrow 
county scales. 

Table 3. The EM clustering and HC clustering analysis. 

Cluster 
EM (Classes to Cluster Evaluation) HC (Classes to Cluster Evaluation) 
Quarter 3 Quarter 4 Quarter 3 Quarter 4 

County NO. p-Value County NO. p-Value County NO. Probability County NO. Probability 
0 11 0.36 10 0.27 4 55.01 8 62.78 
1 11 0.1 8 0.14  4.15  3.1 
2 10 0.1 8 0.07     
3 16 0.09 7 0.3     
4 4 0.09 6 0.03     
5 16 0.1 9 0.03     
6 8 0.07 4 0.02     
7 12 0.11 7 0.01     
8   6 0.04     
9   5 0.04     

10   8 0.04     
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3.2. EM Clustering and HC Clustering

Based on mortality rate alone, the EM algorithm identified seven clusters in the third
quarter that are not significant (Table 3). In the last quarter, eleven clusters are produced,
including seven significant clusters and four insignificant clusters. The maximum log
likelihood is −86.34. In HC clustering, the cases are classified as cluster 0 and cluster 1.

Table 3. The EM clustering and HC clustering analysis.

Cluster

EM (Classes to Cluster Evaluation) HC (Classes to Cluster Evaluation)

Quarter 3 Quarter 4 Quarter 3 Quarter 4

County NO. p-Value County NO. p-Value County NO. Probability County NO. Probability

0 11 0.36 10 0.27 4 55.01 8 62.78

1 11 0.1 8 0.14 4.15 3.1

2 10 0.1 8 0.07

3 16 0.09 7 0.3

4 4 0.09 6 0.03

5 16 0.1 9 0.03

6 8 0.07 4 0.02

7 12 0.11 7 0.01

8 6 0.04

9 5 0.04

10 8 0.04

Log likelihood −86.34 −73.25

Incorrectly Clustered instance 251 98.04% 247 96.48%

Highchart.com
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Cluster 0 means four counties as a group in the third quarter and eight counties as a
group in the last quarter, including Cottle, Stonewall, Bexar, Tarrant, Dallas, Harris, Jim
hogg, and Real. Incorrectly clustered instance are 251 counties in the third quarter and 247
counties in the last quarter. Two clustering methods selected classes to cluster evaluation
parameters. They are prior to the previous space-time cluster detection due to narrow
county scales.

3.3. Normal Distribution

Based on the above analysis, normal distribution was conducted on two clusters in the
last two quarters of 2020 and the first quarter of 2021. The request for normal distribution
has two conditions. One is uncertain variable that is symmetric about the mean, another is
the uncertain variable that is more likely to be in the vicinity of the mean than far away.
After the logarithm transformation, MR is qualified.

3.4. Correlation

According to Table 4, in the third quarter, MR is positively significant to annual income
and the population older than 80, but negatively significant to temperature, precipitation,
total hospital beds, population density, total population, black population, and the age
groups between 20 and 59. In the fourth quarter of 2020, MR is negatively significant
to temperature, precipitation, total hospital beds, population density, total population,
annual incomes, and the population between 20 and 59, while it is positively significant to
population older than 80. Interestingly, annual income began as positively related to MR
but then negatively related to MR.

Table 4. Correlation list.

Explanatory
Variables

Quarter 3
Coe./Sig.

Quarter 4
Coe./Sig.

TPE −0.265/0.000 ** −2.11/0.001 **

PCN −0.251/0.000 ** −0.166/0.008 **

AQI −0.121/0.054 −0.062/0.325

THB −0.145/0.020 * −0.176/0.005 **

BPC −0.007/0.908 −0.018/0.781

POD −0.203/0.001 ** −0.247/0.000 **

LA −0.074/0.241 −0.092/0.146

PCI 0.147/0.019 * −0.111/0.078 **

TP −0.176/0.005 ** −0.215/0.001 **

PBP −0.191/0.002 ** −0.082/0.194

UEM −0.106/0.093 −0.046/0.471

PMP 0.011/0.857 0.020/0.746

P59 −0.300/0.000 ** −0.250/0.000 **

P80 0.243/0.000 ** 0.183/0.00 3**
**. Correlation is significant at the 0.01 level (2-tailed). *. Correlation is significant at the 0.05 level (2-tailed). Coe.
= regression coefficients; Sig. = significance level.

3.5. Factor Analysis

Through PCA, the dataset was examined using Kaiser-Meyer-Olkin (KMO) and
Bartlett’s Test of Sphericity. The KMO test compares the correlation statistics to iden-
tify if the variables include sufficient differences to extract unique factors. A KMO value of
0.616 for 14 explanatory variables is more than the threshold value of 0.5. The Bartlett’s Test
of Sphericity (BTS) value of 0.0 was significant (p < 0.001), validating that correlation be-
tween variables does exist in the population. Communality is a common variance between
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0 and 1, using the remaining variables as factors, was used to determine if any variables
should be excluded from the factor analysis (Table 5). A 0.7 threshold is used to determine
the significance of explanatory variables.

Table 5. Varimax with Kaiser Normalization Rotated principal component analysis with six iterations.

Items
The Third Quarter Component in 2020 The Fourth Quarter Component in 2020 The first Quarter Component in 2021

Extr. 1 2 3 4 5 Extr. 1 2 3 4 5 Extr. 1 2 3 4 5

TPE 0.80 0.14 −0.06 0.48 0.32 0.66 0.62 0.15 0.55 0.21 0.03 −0.50 0.83 0.15 0.11 0.82 0.01 0.35

PCN 0.81 0.12 −0.12 0.65 0.37 0.48 0.77 0.10 0.37 0.77 0.06 −0.16 0.78 0.13 0.85 0.06 −0.08 0.19

AQI 0.63 0.29 0.02 −0.19 0.03 0.71 0.50 0.18 0.55 0.24 −0.02 −0.33 0.83 0.05 −0.31 0.85 −0.02 0.08

THB 0.95 0.97 0.06 0.01 −0.02 −0.01 0.96 0.97 0.01 0.02 0.08 0.04 0.96 0.98 0.02 −0.02 0.06 −0.02

BPC 0.34 0.15 0.04 0.05 0.08 −0.56 0.64 0.12 0.00 0.09 −0.05 0.79 0.33 0.11 −0.08 −0.54 0.08 0.13

POD 0.93 0.95 0.12 0.10 −0.06 0.07 0.93 0.94 −0.01 0.12 0.15 −0.04 0.93 0.94 0.13 0.03 0.12 −0.06

LA 0.71 0.07 0.06 −0.80 0.18 0.15 0.61 0.08 0.20 −0.75 0.10 0.03 0.67 0.15 −0.74 0.07 0.06 0.20

PCI 0.69 0.14 0.05 0.10 −0.81 0.09 0.63 0.18 −0.73 0.09 0.07 −0.23 0.60 0.09 0.03 0.00 0.06 −0.80

TP 0.97 0.98 0.08 0.02 −0.03 0.06 0.97 0.98 0.01 0.03 0.11 −0.02 0.97 0.98 0.03 0.02 0.09 −0.03

PBP 0.59 0.29 0.27 0.51 0.31 −0.26 0.71 0.23 0.26 0.70 0.23 0.22 0.69 0.26 0.65 −0.18 0.25 0.31

UEM 0.68 0.03 0.00 0.13 0.80 0.14 0.66 0.00 0.81 0.07 0.01 −0.06 0.68 0.03 0.12 0.20 0.01 0.79

PMP 0.36 −0.14 0.53 −0.16 0.01 −0.17 0.45 −0.16 −0.02 −0.08 0.46 0.46 0.39 −0.16 −0.16 −0.23 0.54 0.04

P59 0.79 0.19 0.84 0.20 −0.10 0.08 0.78 0.17 −0.08 0.17 0.84 −0.03 0.79 0.18 0.18 0.09 0.84 −0.12

P80 0.65 −0.21 −0.77 0.05 −0.03 −0.02 0.69 −0.19 −0.03 0.05 −0.81 0.03 0.64 −0.21 0.03 0.01 −0.77 −0.02

PCA was conducted as the factor analysis method in this paper. Using an eigenvalue
threshold greater than 1.0, 5 factors are identified that could explain a cumulative 70.18%
of the variance within the data model (Table 6 and Figure 5). A varimax rotation was
used to assist in the interpretation of the PCA analysis. The rotated component matrix
was examined for variables with a cutoff threshold of 0.7. Table 6 gave us the direct
relationship between factors and explanatory variables. The first factor, in three quarters,
represents high loading on variables related to CareBeds, Total Population, Population
Density, indicating the COVID-19 mortality rate is positively related to hospitalization
and total population. That means the metric of population and the index of medical care
are two main indicators of COVID-19. Factor 2 in the third quarter of 2020, factor 4 in
the first quarter of 2021 and factor 4 in the fourth quarter of 2020 were a composite adult
population index related to the population between 20 and 59 and beyond 80. Factor 3 in
two quarters of 2020 and factor 2 in the first quarter represent natural supply index, which
related to land area and precipitation, indicating keeping social distancing was helpful to
mitigate MR. The economic condition indexes include Factor 4 in the third quarter, factor 2
in the fourth quarter, and factor 5 in the first quarter in 2021 through household income
and unemployment. Factor 5 in the third quarter of 2020 and factor 3 in the first quarter of
2021 were environmental indexes. Meanwhile, factor 5 in the fourth quarter (i.e., beds per
capital), was the medical supply index, positively affecting MR.
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Table 6. The relationship between factors and explanatory variables.

Study Period Population and
Hospitalization Adult Population Land Area Economical

Condition
Air Quality and

Medical Care

2020 Quarter 3 Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

2020 Quarter 4 Factor 1 Factor 4 Factor 3 Factor 2 Factor 5

2021 Quarter1 Factor 1 Factor 4 Factor 2 Factor 5 Factor 3

Explanatory
Variables Cor./Sig. Cor./Sig. Cor./Sig. Cor./Sig. Cor./Sig.

THB 0.97/0.00

POD 0.95/0.00

TP 0.98/0.00

PCN

PBP

P59 0.84/0.00

P80 −0.77/0.00

TPE

AQI 0.71/0.00

PCI −0.81/0.00

UEM 0.801/0.00

BPC 0.78/0.00

LA −0.81/0.00
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3.6. Comparison of Composite OLS and Composite GWR Models

The OLS regression examines whether there is a linear relationship between cumu-
lative case and its factors, as well as between death rate and its factors. By the T-test and
F-test, all factors were significant. By binning MR by quarter, an iterative approach of
GWR is conducted to examine how the spatial relationship between MR and its factors
change over time, since MR is clustered and an adaptive kernel in GWR models is adopted.
The AICc method chooses the bandwidth that minimizes the AICc value—the AICc is
the corrected Akaike Information Criterion (it has a correction for small sample sizes). By
comparing the results (Table 7), the AICc value is decreased from 875.23 in the OLS model
to 851.54 in the GWR in the third quarter of 2020, whereas R2 increased from 0.17 in the
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OLS model to 0.37 in the GWR models of two quarters. As these two models represent
a global and a local approach respectively, the neighbors declined from 254 neighbors in
the OLS models to 128 neighbors in the GWR models. In Q4 2020, the same trend of AICc
decrease is observed from 665.44 in the OLS model to 653.85 in the GWR, and R2 increased
from 0.10 in the OLS model to 0.20 in the GWR model. For three times, the GWR model
enjoyed higher predictive power than OLS and is hence superior. Despite the GWR model
remained moderately weak in modeling MR, the models are significant.

Table 7. GWR and OLS models’ comparison.

Item
The Third Quarter of 2020 The Fourth Quarter of 2020 The First Quarter of 2021

OLS GWR OLS GWR OLS GWR

AICc 875.23 851.54 665.44 653.85 875.2 851.54

R2 0.17 0.37 0.10 0.20 0.16 0.37

Std. Deviation 0.59 0.74 0.29 0.35 0.59 0.74

Neighbors 254 128 254 201 254 128

Max_Value −1.52 −0.57 −2.78 −2.93 −1.52 −0.57

Min_Value −5.22 −4.92 −5.66 −4.97 −5.23 −4.92

Average −3.18 −3.14 −2.78 −3.80 −3.18 −3.14

AICc means Akaike information criterion.

3.7. GWR Result Analysis
3.7.1. Spatial Change of MR Factors

Based on existing research, COVID-19 quarterly GWR models are also implemented
in the research area [55,56]. Figure 6 incorporates Texas spatiotemporal distribution maps
based on five factors in terms of five aspects in three quarters.

In the third quarter of 2020, Factor 1 among 5 factors has the dominant effect on
MR because the maximum range of coefficient is −0.15 to 0.04. It is the lowest impact in
Central Texas thanks to the coefficient range of −2.14 to −1.73, implying the hospitalization
capacity has not been stressed beyond full capacity. Accordingly, when looking at Factor
1 in the third quarter, all Texas counties were in the negative range which was good. For
Factor 2, a high score reflects more population in 20–59 and population less than 80. A
negative relationship with MR indicates lower mortality in younger population (but also
higher mortality in elderly population). This negative relationship was the strongest in
northern TX but weakest in western TX. In addition, the negative values do not mean
smallest impact, just the way the relationship is. Interestingly, the progression was south-
north oriented in the third quarter but east-west oriented in the fourth quarter. Factor 3 is a
natural supply index, having remarkable spatial disparity for its coefficient range −0.52 to
−0.24 to range 0.3 to 0.45. In Central Texas, the land area is little driven COVID-19 MR, but
it reversely works on South Texas. That indicates spatial distancing is more available for
South Texas than Central Texas. Factor 4 is an economic composite index with coefficient
from range −0.63 to −0.48 to range 0.12 to 0.26. This is a “bad” economy factor where
PCI is negative and UEM is positive. Western TX has negative coefficients meaning bad
economy did not result in higher MR, but eastern TX did have positive coefficients which
indicates poorer population suffered first. Factor 5 is the air quality index that coefficient
is from range −0.58 to −0.38 to range 0.18 to 0.38. AQI is higher with poor air quality.
If air quality affects MR of COVID-19, it should have a positive relationship (i.e., the
worse the air quality, the higher MR). Hence, a negative relationship means air quality did
not matter (regardless of the AQI was good/bad in that area), but there was a positive
relationship in West and Central/East TX (near Harris County) when COVID-19 emerged
in the third quarter.
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In the fourth quarter of 2020, Factor 1 among the 5 factors does not have the dominant
effect on MR without the range of maximum coefficient which is −0.43 to −0.12. That
means the hospitalization capacity has not been stressed beyond full capacity. Factor 2
is an economic composite index whose coefficient is from range −0.21 to −0.14 to range
0.13–0.17. The Central TX became the divide with neutral relationship in this factor, but
western TX remained negative but eastern TX became positive. Factor 3 is a natural supply
index with the coefficient from the range −0.41–0.31 to range 0.02–0.08. In northern Texas,
the land area is little driven COVID-19 MR, but it reversely works on South and West
Texas. That indicates spatial distancing is more available for South and West Texas than
northern Texas. Factor 4 is adult population index the coefficient is moved from range -0.31
to −0.29 to range −0.14 to −0.1. A negative relationship with MR indicates lower mortality
in younger population (but also higher mortality in elderly population). This negative
association was the strongest in South and West TX but weakest in the northern TX. Factor
5 is the medical supply index with coefficient from range −0.04 to −0.03 to range 0.21–0.24.
Higher BPC was supposed to have lower MR in general. Nevertheless, there were only
very few TX counties with slightly negative coefficients, but most in positive. This indicates
that by the fourth quarter, MR still went up despite higher BPC.

In the first quarter of 2021, Factor 1 with coefficient from range −2.14 to −1.73 to range
−0.15 to −0.04 is negative related to deaths all across TX based on negative coefficients.
Factor 2 becomes positive precipitation and negative land area, and it is negatively related
to death across TX due to negative coefficients. That means the higher the precipitation
or less land area, the less death. This is a bit counter-intuitive. Factor 3 whose coefficient
is from range −0.52 to −0.24 to range 0.3–0.45 is an environmental factor of positive
temperature and AQI. A positive relationship death means the higher temp and the poorer
air quality caused more death, or colder temperature/better AQI caused less death. A
negative relationship is the opposite. It is negative in Central to West TX, but positive in the
eastern TX. Factor 4 is the adult population. It is all negative in the western TX but positive
in the South TX. Factor 5 is the poor economic condition. The positive relationship indicates
that the poor economic condition is affecting the West, Southeast, and the Central TX.

3.7.2. Temporal Change of CC Factors

Population and hospitalization impact on COVID-19 within the three quarters is
relatively negative. For coefficients, the value of the coefficient is fixed between −2.14
and −0.04. For the movement of spatial impacts, the spatial distribution of COVID-
19 impacts is stagnant across three quarters. Due to negative impacts in entire Texas
population, hospitalization is not determinant of curbing Texas COVID-19 CC spread.
Hence, community containment measures are the crucial result of cluster spreading as one
of the characteristics of COVID deterioration.

Adult population impacts are quite a few negative in two quarters of 2020 and positive
impact of 2021 the first quarter in terms of two aspects. First, the coefficients from the
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third quarter to the fourth quarter still account for −0.74 to 0.17. That means policy
restrictions are gradually working and the virus is spreading along with spatial cluster.
Second, air quality impacts during three quarters are flexible in terms of two aspects. First,
the coefficient range in the third quarter increased from −0.58 to 0.38 until no exhibition in
the fourth quarter. It demonstrated that the role of environment is decreasing. Second, both
the areas of positive impacts with red colors and the areas of negative impacts with blue
colors are moved from Northwest to Southeast Texas, from north-central to south-central,
respectively. Interestingly, positive air quality impacts are shown in the first quarter of 2021.
It implies that environmental impacts are still working and accelerate COVID-19 spreading.

Economic impacts during three quarters are remarkable but are the most important
factors among the five factors. On the one hand, the coefficient range in the three quarters
increased gradually from −0.63 to 0.48 to 0.18 to 0.77. It demonstrated that the role of
economic impacts is rising with COVID-19 case growth. Second, the areas of positive
impacts with red colors are increasing around East Texas, whereas the areas of negative
impacts with blue colors are extending around West Texas.

Natural supply impacts in three quarters have fluctuated. First, the coefficient range
within the three quarters changed from −0.52–0.24 to −0.19–0.04. It demonstrated that
the role of natural supply is barely noticed. Second, natural supply has few impacts on
COVID-19 expansions.

Medical supply impacts in three quarters have fluctuated as well. First, it is noticed
that there was no representation of medical supply index in the third quarter, and it
triggered in the fourth quarter. Its coefficient range changed from −0.04–0.03 to 0.21–0.24.
It demonstrated that the role of medical supply impacts is increasing and out of control.
Second, the cluster of positive impacts with red colors is in East Texas. Notably, medical
supply impacts are the temporary results from no emerging in the first quarter of 2021.

4. Discussion

COVID-19 virus runs rampant in high-density housing sites such as nursing homes.
Emergent cluster detection is a precise way of tracking the virus. In this study, we explored
three types of clustering the analysis methods. A space-time cluster’s detection of COVID-
19 mortality rate is built on Kulldorff’s scan statistic method, which is the most popular in
the epidemiology application. What we did first is to test the null hypothesis H0 (constant
probability for all areas) and the alternative hypotheses H1(the specific area z has a larger
probability than outside areas) using a Poisson model. Then we calculated the maximum
likelihood and p-value, based on a given region z. Two clusters were pointed out that
the sensitive period was July–September and November 2020–February 2021, referring
to 199 counties. To narrow the tracking area, we used EM and HC clustering to further
seek much better clusters. EM algorithm assists in finding out seven smaller clusters in
the last quarter. HC clustering analysis directly pinpointed eight counties as a significant
cluster. In fact, if the COVID-19 case data were available at street or neighborhood level,
meaning the address of individual death could be better captured, specific hotspot of
neighborhood or even building could be identified via GIS. HC and EM clustering provide
richer descriptions of clustering structures than traditional cluster detections. Importantly,
they facilitate the realization of tracing the trajectory of individual cases based on reality.
For example, there is a death case at Pioneer Lodge Motel in Zion National Park in Hays
county in Texas. We use ST_Buffer to build a 100-m quarantine area around the building of
Pioneer Lodge in PgAdmin software (pgAdmin Development Team, California, CA, USA)
in Figure 7. Next, the intersection area is selected around Pioneer Lodge Motel in Zion
National Park. Finally, it is easy to use ST_Area command to find out 10 of the biggest
building at the intersection area. The blue squares are identified as suspected buildings with
high-density connections. Due to confidential COVID-19 patient information, our research
does not incorporate patient addresses. The figure below aims to explain the possibility of
the implementation of tracking the virus based on geographical cluster detection.
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The purpose of GWR modeling is to find out related COVID-19 factors. That is
not only because the source of COVID-19 is still a puzzle, but also because there may
be a causality hidden within the correlation. In the GWR model, COVID-19 mortality
rate analysis, the research period is locked at the last two quarters in 2020 according
to the previous clustering analysis. We examined the inclusion of race, temperature,
air quality, precipitation, hospitalization, age structure 14 variables. Furthermore, the
principal component analysis (PCA) has integrated five factors related to mortality rate,
including total population and hospitalization, medical supply, age structure, air quality,
and economic condition. Explanatory variables are highly significant to the corresponding
factors as well as in Table 6. Lastly, by defining a weight as the variance proportions for
each variable, the GWR model disclosures sensitive factors in spatial-temporal variability
of COVID-19 mortality rates in response to social-economic and environmental impacts in
Texas counties. AQI, economic condition, and adult population indexes are regarded as
sensitive factors.

Since time series are too short to be enough considered, spatial-temporal cluster
detection, EM and HC clustering detection, and GWR modeling were explored to examine
the imbalanced distribution of COVID-19 MR and the complex relationship with its risk
factors [57]. The longitudinal monitor mechanism filled the gap of geographical analysis
of COVID-19. This study has conducted some spatiotemporal analysis that provides
unique insights about COVID-19, which is defined by the positions of objects within the
environment, the use of dynamic time intervals, ontology or the study of the relationships
of the objects, real-time or real-world modeling, and the use of analytical tools. It is a mix
of conventional Geographical Information Systems (GIS) with the use of modeling and
simulation skills [58].

The sensitive area is different in clustering analysis and GWR modeling due to different
distribution. In cluster analysis, the sensitive areas are located at Cottle, Stonewall, Bexar,
Tarrant, Dallas, Harris, Jim hogg, and Real eight counties, corresponding to Southeast
Texas. Their distinction is from different mathematical distributions. Clustering methods
are used by Poisson regression analysis while Gaussian distribution is applied in GRW
modeling. In spatial epidemiology, mortality using a Poisson process is more appropriate
than a linear scale, which the GWR is. Specifically, the Poisson regression identifies the
relative risk of mortality linked with a given exposure that can represent a risk rise with
some percent. Thus, clustering detection is more accurate than GWR in the forecast of
mortality region [59].
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Referring back to the current study, the first strength is that its performance geograph-
ically targeted ways to blunt the spread of COVID-19 as quickly as possible and save
lives. Through the comparison between objective clustering techniques and traditional
space-time cluster detection, we achieve an improved cluster solution. HC algorithm
clustering method tracked one cluster with eight counties in the last quarter and one cluster
with four counties in the third quarter, EM clustering analysis captured seven clusters
in the last quarter and no cluster in the third quarter, instead of two large-scale clusters
in the space-time cluster methods. The second strength is the possibility of modeling
GWR on the PCA outcomes, which improved the robustness of findings based on OLS
results. Furthermore, the combination of clustering analysis and PostSQL application can
provide instant information that helps decision-makers and public health professionals to
take immediate action to inhibit current disease spread and to save lives in the future. In
addition, quick position determination can blunt the avenue of the virus spreading and
save resources (time and lives).

5. Conclusions
5.1. Limitations

This research just focuses on the Texas Covid-19 scenario, the application of research
cannot extrapolate to other states. We did not capture chronic disease data to support this
research. As explanatory variables, they should be incorporated in future studies, although
are excited to see clinical characteristics [60] and cardiovascular conditions impacts on
COVID-19 health outcomes [61]. Collecting data of multiple dimensions might improve and
enrich spatial variability findings of COVID-19. This research focused on spatial-temporal
quarterly GWR models, yet there is a distance to be reached for daily dynamic GWR models.
GTWR or more effective spatial-temporal models should be further researched in the future.
COVID-19 virus spreading relies on intangible person’s mobility and social activities [62].
Due to dynamic and complicated people’s behavior, this research is fragmentation in the
constantly dynamic mobility, and traced people’s trajectory with stationary geographical
location. Clustering analysis is not only limited to the geographical field but also should
reach to other fields such as biological subjects. For instance, a multiple sequence alignment
is explored by clustering analysis, rather than using clustalW2 tools, which aims at DNA
or protein multiple sequence alignment program for proteins [63].

5.2. Implications

The COVID-19 pandemic revealed systemic flaws in the health distribution system and
American multiculturalism. It also exposed the weakness of conservative liberalism in the
US, which is hard to unify ideology in social crisis and flourish in a consistent manner [64].
This research will benefit geographical health divides evenly and provide medical service
references transparently. Inspired by [58,65], who applied and compared the performance
of multiscale GWR models across the United States for incident rates and death rates
to account for the spatial variability of COVID-19, spatial-temporal GWR models are
considered to compare the global OLS model to disclose different change of COVID-19
cumulative case in response to social-economic and environmental variables at county-
level in Texas. To add spatial-temporal variability understanding of empirical COVID-19
analysis, the GWR modeling was considered on space-time detection of an emerging cluster
of COVID-19 MR. Therefore, the result of this study provides new empirical evidence to
support future geographic modeling of the diseases.

Space-time cluster detection, HC&EM clustering analysis, and spatial-temporal geo-
graphical weighted regression modeling of COVID-19 are crucial to improve the surveil-
lance health system and enhancing recognition of emergency preparedness plans for local
hospital. They are beneficial for the government of Texas and CDC to make appropriate
scientific judgments, target vulnerable communities, distribute health care, improve disease
surveillance and response systems [66,67]. Notwithstanding, COVID-19 is like a justice
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scale to measure each country’s execution, COVID-19 vaccine is the best way to eliminate
COVID-19 death.
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