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Abstract: Lactiplantibacillus plantarum is one of the lactic acid bacteria species most used as probiotics
and starter cultures in food production. Bacteriocin-producers Lpb. plantarum are also promising
natural food preservatives. This study aimed to characterize Lpb. plantarum R23 and its bacteriocins
(R23 bacteriocins). The genome sequence of Lpb. plantarum R23 was obtained by whole-genome
sequencing (WGS) in an Illumina NovaSeq platform. The activity of Lpb. plantarum R23-produced
bacteriocin against two Listeria monocytogenes strains (L7946 and L7947) was evaluated, and its
molecular size was determined by tricine-SDS-PAGE. No virulence or antibiotic resistance genes
were detected. Four 100% identical proteins to the class II bacteriocins (Plantaricin E, Plantaricin F,
Pediocin PA-1 (Pediocin AcH), and Coagulin A) were found by WGS analysis. The small (<6.5 kDa)
R23 bacteriocins were stable at different pH values (ranging from 2 to 8), temperatures (between
4 and 100 °C), detergents (all, except Triton X-100 and Triton X-114 at 0.01 g/mL), and enzymes
(catalase and x-amylase), did not adsorb to the producer cells, had a bacteriostatic mode of action and
their maximum activity (AU/mL = 12,800) against two L. monocytogenes strains occurred between 15
and 21 h of Lpb. plantarum R23 growth. Lactiplantibacillus plantarum R23 showed to be a promising
bio-preservative culture because, besides being safe, it produces a stable bacteriocin or bacteriocins
(harbors genes encoding for the production of four) inhibiting pathogens as L. monocytogenes. Further
studies in different food matrices are required to confirm this hypothesis and its suitability as a future
starter culture.

Keywords: bio-preservation; Coagulin A; food safety; pediocin; plantaricin; starter culture

1. Introduction

Adequate amounts of ready-to-eat vegetables should be consumed daily as part of
a diversified and healthy diet because they are an essential source of vitamins, minerals,
dietary fiber, and phytonutrients [1]. Additionally, fresh vegetable consumption also
improves gut bacteria diversity, contributing to improved metabolisms [1].

Despite the constant considerable contamination of ready-to-eat vegetables with
important foodborne pathogens [2—4], bacteria with benefits for the food industry, such as
lactic acid bacteria (LAB), have also been found in these products [5,6]. Lactiplantibacillus
plantarum (previously Lactobacillus plantarum) [7] is one of the main promising species of
LAB widely used in food production as a probiotic and starter culture [8,9]. Due to their
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long history of safe human use, most of the LAB genera, particularly the Lactiplantibacillus
genus, are included in the qualified presumption of safety (QPS) recommendation of the
European Food Safety Authority [10]. Their ingestion has been suggested to confer various
health benefits, including modulating the immune system, and increasing and improving
resistance to malignant and infectious diseases [11,12].

Several LAB were reported to produce a wide range of antimicrobial substances that
comprise organic acids, diacetyl, hydrogen peroxide, and bacteriocins [13-15]. The most
studied bacteriocins are those produced by LAB, and many of these have shown consider-
able potential as food preservatives [16] or as therapeutic or bio-controlling agents [17-20].
The added value of their use is due to their non-toxic nature, specific action, physical
stability, and high antimicrobial activity [21-24].

In recent years, many bacteriocins have been characterized, but nisin (NisaplinTM) is
the only commercially available bacteriocin approved by the Food and Drug Administra-
tion [25]. This can be circumvented, because to exert their bioprotective role, bacteriocins
can be incorporated into food by using bacteriocin-producing LAB in situ rather than as an
ingredient [26].

This study aimed to complement the characterization of a previously isolated bacteriocin-
producing Lactiplantibacillus plantarum R23 [15] and its bacteriocins by whole-genome se-
quencing analysis. This is a useful process to predict the virulent and resistant phenotypes
of bacterial strains. Besides its safety and bacteriocin gene identification, the in vitro
characterization, mode of action, and stability in different environments of its produced
bacteriocin(s) were also evaluated to determine the potential applicability of Lpb. plantarum
R23 in the bio-preservation of foods. Despite the long history of several Lpb. plantarum
strains as probiotics and starter cultures in the food industry, the continuous isolation
and study of new potential strains by the scientific community are significant for the
improvement of food safety and, at the same time, to continuously track the interests of the
consumers.

2. Materials and Methods
2.1. Origin, Growth, and Storage Conditions of Lactiplantibacillus plantarum R23

Lactiplantibacillus plantarum R23 was isolated from pre-washed bagged arugula, screened
for antimicrobial activity and bacteriocin production, and identified by whole-genome
sequencing in our previous publication [15].

This strain was grown aerobically on de Man, Rogosa and Sharpe (MRS) agar and/or
broth (Lab M, Bury, UK) at 30 °C for 24 h and stored at —80 °C in MRS broth (Lab M)
containing 30% (v/v) of glycerol (Sigma, Steinheim, Germany) and sub-cultured twice
before use in assays.

2.2. Whole-Genome Sequencing and Bioinformatic Analyses

The genome sequence of Lpb. plantarum R23 was performed by using whole-genome
sequencing (2 x 150 bp) in an Illumina NovaSeq platform. The paired-end fastq files
were used to assemble the bacterial genome with the SPAdes genome assembler (version
SPAdes-3.12.0-Linux) in a Linux environment [27].

2.2.1. Virulence and Resistance Profiles of Lpb. plantarum R23

The ResFinder 4.1 server (accessed on 13 November 2020, at https:/ /cge.cbs.dtu.dk/
services/ResFinder/) [28] was used for predictions of resistance phenotypes from the
assembled genome.

A search for the presence of virulence factor determinants was performed by blastx
alignment of the sequence contigs against the protein sequences of the core dataset
VFDB_setA_pro.fas of the Virulence Factors of Pathogenic Bacteria Database VFDB (ac-
cessed on 13 November 2020, at http:/ /www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi) [29] in
a Linux environment, using a filter for E-Values < 10~1.
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2.2.2. Identification of Lpb. plantarum R23-Produced Bacteriocin

To identify the bacteriocin produced by Lpb. plantarum R23, the fasta file with the
generated contigs was used to search for bacteriocins in the core peptide database of
bacteriocin classes I, II, and III, on the webserver BAGEL4 (accessed on 13 November 2020,
at http:/ /bagel4.molgenrug.nl) [30].

They were also aligned with the BACTIBASE protein fasta file (downloaded on 13
November 2020, at http:/ /bactibase.hammamilab.org/downloads.php), a data reposi-
tory of natural antimicrobial bacteriocin peptides [31]. The alignment was performed
using the blastx tool from the blast (basic local alignment search tool) ncbi-blast-2.10.1 +
-1.x86_64.rpm version [32] in a Linux environment, using a filter for E-Values < 10~1°.

2.3. Characterization of Lpb. plantarum R23-Produced Bacteriocin
2.3.1. Kinetics of Growth and Bacteriocin Production

An overnight culture was inoculated (1% v/v into 150 mL of MRS broth) and incubated
at 30 °C, without shaking. Samples were taken at regular intervals during 24 h of incubation.
Changes in pH and optical density (600 nm) were recorded every hour, and bacteriocin
activity (arbitrary unit (AU)/mL) and viable counts were calculated every 3 h, as described
by Van Reenen et al. [33]. Listeria monocytogenes strains L7946 and L7947 [34] were used as
target organisms. Two independent replicates were performed.

2.3.2. Effect of Enzymes, Temperature, pH, and Surfactants on Bacteriocin Activity

Lactiplantibacillus plantarum R23 was grown in MRS broth overnight at 30 °C. Cells
were harvested (8000 g, 10 min, 4 °C), and the cell-free supernatant (CFS) was adjusted to
pH 6.5 with 1 M NaOH. One milliliter sterile CFS was incubated for 2 h in the presence
of proteinase K, trypsin, papain, pepsin, «-amylase and catalase (all from Boehringer
Mannheim GmbH, Mannheim, Germany) at both 1 mg/mL and 0.1 mg/mL (final con-
centrations). The remaining antimicrobial activity was monitored by the agar spot test
method. In a separate experiment, 1% (w/v) sodium dodecyl sulphate (SDS), ethylene-
diaminetetraacetic (EDTA), Tween 20, Tween 80, urea, Triton X-100, Triton X-114, ox-bile,
urea, and NaCl were added to bacteriocin-containing CFS. EDTA was added to CFS in
final concentrations of 1.0, 2.0 and 5.0 mM. Untreated CFS and detergents, at the respective
concentrations in water, were used as controls. All samples were incubated at 30 °C for
5 h and then tested for antimicrobial activity. The effect of pH on bacteriocin activity was
tested by adjusting the pH of sterile CFS from 2.0 to 12.0 (at increments of two pH units)
with sterile 1M NaOH or 1M HCI. After 1 h of incubation at room temperature (25 °C),
samples were readjusted to pH 6.5 with sterile 1 M NaOH or 1 M HCl, heated to 80 °C
for 10 min, and tested for antimicrobial activity. The effect of temperature on bacteriocin
activity was tested by incubating CFS at 4, 25, 30, 37, 45, 60, 80, and 100 °C for 120 min.
Bacteriocin activity was also tested after 15 min at 121 °C. The agar spot test method for
the antimicrobial activity [33] was used in all experiments. Listeria monocytogenes strains
L7946 and L7947 served as target strains.

2.3.3. Cell Lysis

Twenty milliliters of the bacteriocin-containing cell-free supernatant (12,800 AU/mL,
pH 6.0 assayed on L. monocytogenes L7946 and L. monocytogenes L7947) was filter-sterilized
and added to 100 mL early exponential phase (5 h old; OD = 0.6) cultures of L. monocytogenes
L7946 and L7947. Optical density readings at 600 nm were taken every hour for 13 h. Both
L. monocytogenes cultures without added bacteriocins were used as controls, and two
independent replicates were performed.
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2.3.4. Adsorption Studies

Adsorption of bacteriocin to producer cells was studied according to the method
described by Yang et al. [35]. Lactiplantibacillus plantarum R23 was cultured for 18 h at 30 °C.
The pH of the culture was adjusted to 6.0 with 1 M NaOH to allow maximal adsorption of
the bacteriocin to the producer cells. The cells were then harvested (12,000 g, 15 min, 4 °C)
and washed with sterile 0.1 M phosphate buffer (pH 6.5). The pellet was re-suspended
in 10 mL 100 mM NaCl (pH 2.0) and agitated for 1 h at 4 °C to allow delaminating
bacteriocin from the cells. The cells were then harvested (12,000 x g, 15 min, 4 °C), the
cell-free supernatant neutralized to pH 7.0 with sterile 1 M NaOH, and was then tested for
bacteriocin activity, as described by Van Reenen et al. [33].

2.3.5. Partial Purification and Molecular Size

After 18 h growth of the Lpb. plantarum R23 culture, the supernatant resulting from
the first centrifugation (12,000 x g, 20 min, 4 °C) was kept at 4 °C for partial purification.
Ammonium sulphate was added gradually to the stored supernatant to reach 40%, 60%,
and 80% of saturation, in independent experiments, and each solution was kept at slow
stirring for 4 h at 4 °C. After centrifugation (12,000 rpm, 20 min, 4 °C), precipitated proteins
in the pellet and floating on the surface were collected and dissolved in 25 mM ammonium
acetate buffer (pH 6.5), following the method described by Sambrook et al. [36]. All samples
were stored at —20 °C.

To determine the bacteriocin molecular size, samples were separated by tricine-SDS-
PAGE according to Schiagger and Von Jagow [37]. A low molecular weight marker with
sizes ranging from 6.5 kDa to 270 kDa (GRS Protein Marker MultiColour PLUS; Grisp,
Porto, Portugal) was used. After running, the gel was split in two. One half was fixed
with 20% isopropanol and 10% acetic acid, and the other half was stained with Coomassie
Brilliant Blue R250 (Bio-Rad, Hercules, CA, USA) to visualize the position of the peptide
band. The position of the active bacteriocin was determined by overlaying the half of the
unstained-gel, and extensively pre-washed with the sterile distilled water, with cells of
L. monocytogenes L7946 (106 colony-forming units (CFU)/mL), firstly embedded in brain
heart infusion (BHI; Biokar, Beauvais, France) soft agar (0.7% agar w/v).

3. Results
3.1. Characterization of Lpb. plantarum R23 by Whole-Genome Sequencing
3.1.1. Presence of Antibiotic Resistances

No antibiotic resistance phenotype could be predicted from the analysis of the contigs
of Lpb. plantarum R23, because the ResFinder 4.1 software could not detect any homologue
of genes encoding antibiotic resistance.

3.1.2. Presence of Virulence Factors

No significant blastx alignments (E value < 10712 and 60% of alignment coverage) were
detected between the translated DNA sequences of the assembled contigs and the database
of pathogenic bacteria virulence factors, such as proteins engaged in adhesion and invasion,
secretion systems and its effectors, toxins, and iron acquisition by the bacterial cell.

3.2. Identification of Lpb. plantarum R23 Bacteriocin by Whole-Genome Sequencing

The BAGEL4 software showed that a contig of the assembled bacterial genome encodes
two proteins that are 100% identical to the class II bacteriocins, Plantaricin E and Plantaricin
F, both from the bacterium Lpb. plantarum (Figure 1A). Upstream of the genes encoding
plantaricins, and in the same operon, two lanT gene homologues encoded the bacteriocin
ABC transporter, the ATP binding protein, and the permease protein PInG.
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The sequence of another contig showed 100% identity with the pediocin proteins
(Figure 1B) of the Pediococcus acidilactici organism. In the same operon, located downstream
was the LanT gene that encoded the transport-processing Pediocin PA-1 of the ATP-binding
protein PedD and an open reading frame (ORF) that encoded the pediocin biosynthesis
protein PA-1 P. This operon also included a gene encoding a Leucocin A homologue.

These results were confirmed by the alignment of blastx against BACTIBASE, a
database of bacterial antimicrobial peptides. Significant alignments confirmed the presence
of the following protein homologues: Plantaricin F in a contig; Pediocin PA-1 (Pediocin
ACH), and Coagulin A in the other.

[0 No function determined
O Blast hit with UniRef90
@ Core Peptide
W Gene names B Modification
: I':rcdlg‘lcd pmmn?crs B Immunity / Transport
Predicted terminators O Regulation
A @« [0 Transport & Leader cleavage
-;&i;;é\/ E Protease
. g ° A 5 &
l ¢ £ 7/ 2 &
< < < < < Q§ *I\:\ \’;
|f <
o A &
§ ¢ A §
S S S J

Figure 1. Genetic organization map of the plantaricins (A) and pediocin (B) gene clusters of the Lpb. plantarum R23 strain.

3.3. Characterization of Lpb. plantarum R23-Produced Bacteriocin

Based on WGS, Lpb. plantarum R23 may produce more than one bacteriocin. All the
experiments characterizing R23 bacteriocin were performed using the crude supernatant;
therefore, the results presented in the following sections may refer to one or more bacteri-
ocins.

3.3.1. Kinetics of Growth and Bacteriocin Production

The bacteriocin(s) activity in AU/mL produced by Lpb. plantarum R23 against the
two Listeria strains over time is shown in Figure 2. It is possible to conclude that the
bacteriocin(s) showed maximum activity between 15 and 21 h (AU/mL = 12,800). The pH
value started to decrease from 6 h and stabilized after 15 h.
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Figure 2. Production of bacteriocin(s) by Lpb. plantarum R23 in MRS broth (pH 6.4) at 30 °C. The antimicrobial activity of
cell-free supernatants is presented as AU/mL (bars) for L. monocytogenes L7946 and L7947 strains.

3.3.2. Effect of Enzymes, Temperature, pH, and Surfactants on Bacteriocin(s) Activity

The impact of certain detergents, enzymes, pH, and temperature values on bacteri-
ocin(s) activity against L. monocytogenes L7946 and L7947 are shown in Table 1.

The bacteriocin(s) was resistant to most detergents because the reduction in its activity
was negligible. For the enzymes tested, only papain and catalase did not decrease bacteri-
ocin(s) activity, while trypsin and proteinase K reduced bacteriocinogenic activity by 100%.
As for the pH values, it was possible to verify that the bacteriocin(s) was quite resistant
to a wide range of values (between 2 and 8). The same was verified regarding the tested
temperatures, with a marked decrease in bacteriocin(s) activity only at 121 °C.

Table 1. Effect of different treatments on bacteriocin(s) activity against the target organisms L.
monocytogenes L7946 and L. monocytogenes L7947, expressed in corresponding percentage values (%)
of reduction.

L. monocytogenes L7946 L. monocytogenes L7947

2 1.6% 1.6%
4 0.0% 0.0%
H 6 0.0% 0.0%
P 8 1.6% 1.6%
10 12.5% 12.5%
12 100.0% 100.0%
4 3.1% 3.1%
25 1.6% 1.6%
30 and 37 0.0% 0.0%
Temperature 45 3.1% 6.3%
°Q) 60 3.1% 6.3%
80 6.3% 6.3%
100 12.5% 12.5%

121 100.0% 100.0%
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Table 1. Cont.

L. monocytogenes L7946 L. monocytogenes L7947

Proteinase Kq gando.1 100.0% 100.0%
Papain o 50.0% 50.0%
Papaing 50.0% 50.0%
Enzymes Pepsing o 100.0% 100.0%
(mg/mL) Pepsing 1 50.0% 25.0%
Trypsinwando'l 100.0% 100.0%
x-amylase; o 6.3% 25.0%
a-amylase | 0.0% 0.0%
Catalasemando_l 0.0% 0.0%
Tween 20 and Tween 800 91g/mL 3.1% 3.1%
Triton X-114 and Triton 50.0% 50.0%
X-1000.01/mL
Detergents SDSq.01g/mL 0.0% 1.6%
EDTAq 1mm 3.1% 3.1%
EDTA7 0mm 3.1% 3.1%
EDTA5 0mm 6.3% 6.3%
OX-bﬂeOng/mL 1.6% 1.6%
Urea and Naclo_(]]g/mL 0.0% 0.0%

Note: Without treatment, the maximum activity of R23 bacteriocin(s) for each L. monocytogenes strain was
12,800 AU/mL. The percentage values of inhibition are represented according to this maximum activity.

3.3.3. Cell Lysis

The inhibitory effect of Lpb. plantarum R23 bacteriocin(s) produced over time and
the type of pathogen used is shown in Figure 3. It was found that after the addition of
the bacteriocin-containing cell-free supernatant to the pathogen at the beginning of the
exponential phase (after 5 h of growth), its growth was inhibited.

12

Log (CFU/mL)

2
0
0 1 2 3 4 5 6 7 8 9 10 11 12
time (hours)
—e— L. monocytogenes L7946 - @ = L. monocytogenes L7946 B L. monocytogenes L7947 L. monocytogenes L7947 B

Figure 3. Effect of R23 bacteriocin(s) on the growth of L. monocytogenes 1.9746 (dotted black lines) and L. monocytogenes L7947
(dotted grey lines) presented as log (CFU/mL). The continuous line represents target cultures without added bacteriocins.
The arrow indicates the point at which the bacteriocin-containing CFS was added.

3.3.4. Adsorption Studies and Molecular Size

The bacteriocin(s) did not adhere to the surface of the producer cells, because its
activity was not detected (0 AU/mL) after the treatment of Lpb. plantarum R23 with
100 mM NaCl at pH 2.0.

The approximate molecular size of this bacteriocin was below 6.5 kDa (data not shown).
When the gel with the peptide band was overlaid with cells of L. monocytogenes L7946
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already embedded in BHI soft agar, the position of the active bacteriocin was observed by a
zone of growth inhibition, which was coincident with the position of the active bacteriocin
in the molecular mass marker.

4. Discussion

Lactiplantibacillus plantarum R23 was isolated from arugula and was first screened for
bacteriocin production and probiotic potential in one of our previous studies [15]. In the
absence of a protector food matrix, this strain could not survive through the simulated
digestion, making its probiotic potential unfeasible. However, this strain’s ability to
produce a bacteriocin with activity against deteriorating and pathogenic microorganisms
(Bacillus subtilis, Enterococcus faecalis, Listeria innocua, and L. monocytogenes) is a great
advantage that should not be ignored. Thus, this study arose intending to study the
characteristics of the Lpb. plantarum R23 strain and its produced bacteriocin(s) to ascertain
its potential to be used in the food industry as a bio-preservative or starter culture.

The results from the analysis of Lpb. plantarum R23 contigs may suggest that this
genome does not contain any antibiotic resistance genes. However, because the assembled
genome is not closed, the presence of any antibiotic-resistant gene encoded in any uncov-
ered region of the bacterial genome cannot be excluded. On the other hand, resistance may
also result from changes/mutations in some genes codifying proteins involved in resis-
tance, an aspect that was not addressed during this study. Nevertheless, in our previous
study [15], it had already been proven that the Lpb. plantarum R23 was inhibited by the
established antibiotics at concentrations equal to or lower than the cut-off values defined
by the Panel on Additives and Products or Substances in Animal Feed (FEEDAP) of the
EFSA [38]. Both phenotypic susceptibility and the absence of transferable antimicrobial
resistance genes suggest that Lpb. plantarum R23 is considered acceptable to be used as a
feed additive [38].

Despite some genes encoding virulence factors possibly being located in an un-
sequenced region of the genome, the absence of detectable virulence factors from the
assembled contigs suggests that Lpb. plantarum R23 does not have classical virulence
factors. This is also corroborated by its phenotypic and genotypic characterization in our
previous study; biogenic amines, hemolysis, gelatinase, and DNase were not produced by
this strain, and virulence determinants screened by PCR assays were not detected [15].

Several authors have reported the isolation of other Lpb. plantarum strains from various
foods and their safety due to the absence of acquired antibiotic resistance genes [39,40]
and virulence factors [39,41]. The identification and characterization of Lpb. plantarum
R23 by whole-genome sequencing confirms the results previously obtained during the
characterization of this bacterium [15]. These characteristics indicate that Lpb. plantarum
R23 may be considered a safe culture to be used in the food industry. According to a report
published by the EFSA [42], the whole-genome sequencing analysis should be performed
for all the strains intentionally used in the food chain, because it can provide unequivocal
information regarding their taxonomic identification and their potential virulence factors
and resistance to antibiotics of clinical relevance.

As previously mentioned, Lpb. plantarum R23 demonstrated antimicrobial activity due
to its bacteriocinogenic activity against Gram-positive pathogens and spoilage bacteria [15].
From the whole-genome sequencing analysis, two 100% identical proteins to the class II
bacteriocins—Plantaricin E and Plantaricin F—were found (Figure 1A). Plantaricin E is
a bacteriocin precursor of the PInE peptide [43], and the other ORFs of this operon share
homology with plnD, pinG, plnH and plnS, suggesting that they belong to a pln operon,
such as the one involved in the production of bacteriocin from Lpb. plantarum [44]. Besides
plantaricin, the other contigs Pediocin PA-1 (Pediocin AcH) and Coagulin A (Figure 1B)
were also found to share 100% identity with the Pediocin proteins. Coagulins are anti-listeria
bacteriocins belonging to the Pediocin family [45].

Plantaricins and Pediocins belong to a class II bacteriocins, a large group of small
(<10 kDa), heat-stable, and non-lantibiotic peptides [46]. Pediocin PA-/AcH is one of the
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most studied class II bacteriocin and its production by different Lpb. plantarum strains has
already been reported [47,48]. Additionally, several plantaricins produced by several Lpb.
plantarum strains have been found and characterized [49-52].

The bacteriocin(s) produced by Lpb. plantarum R23 was semi-purified and character-
ized in this study. It is important to highlight that the R23 bacteriocin(s) characterization
was performed using the crude supernatant, thus it will be necessary to further purify and
identify the peptide(s).

To elucidate the time of incubation at which Lpb. plantarum R23 exhibited the max-
imum bacteriocin(s) production, the profiles of the growth kinetics and bacteriocin(s)
activity in AU/mL against two Listeria strains over time were determined (Figure 2). The
decrease in pH values over time (after 6 h and stabilization after 15 h) is due to the lactic acid
produced by Lpb. plantarum R23. The maximum bacteriocin(s) activity (AU/mL = 12,800)
occurred between 15 and 21 h of Lpb. plantarum R23 growth, which is in accordance with
what has been reported by other authors [53,54]. The supernatant of the Lpb. plantarum
R23 cultured for 18 h was therefore used for subsequent experiments. The bacteriocin(s)
production in the early stages of Lpb. plantarum R23 growth cycle is a considerable advan-
tage when competitive growth is desired or for the inhibition of pathogens before reaching
their exponential growth phase.

The stability of the bacteriocin(s) against two L. monocytogenes strains when exposed to
different treatments with enzymes, temperatures, pH values, and surfactants was evaluated
(Table 1).

The antimicrobial activity of the bacteriocin(s) produced by Lpb. plantarum R23 was
affected (12.5-100% reduction) at pH values above 8. At pH values of 2 and 8, the reduc-
tions were very low (1.56%). This suggests that this bacteriocin(s) is sensitive to alkaline
environments, as already verified for other Lpb. plantarum-produced bacteriocins [55,56].

The bacteriocin(s) activity was maintained at temperatures between 4 and 100 °C,
which corroborates its thermo-stability, one of the characteristics of bacteriocins belonging
to class II bacteriocins. Negligible reductions were observed below 30 °C and above 37 °C,
and no activity (100% of reduction) was only observed at 121 °C. Similar results were also
obtained for other bacteriocins produced by different Lpb. plantarum strains [56,57].

A slight reduction in bacteriocin activity(s) was observed for most detergents tested,
except for Triton X-100 and Triton X-114 at 0.01 g/mL (50% reduction). Only for catalase
and x-amylase enzymes was the bacteriocin activity not fully reduced, confirming its
proteinaceous nature. Other authors have already reported similar bacteriocin stabilities
after the treatment of the same detergents and/or enzymes [53,56,58].

Another important feature is the effect of the bacteriocin on the target microorganism'’s
growth, evaluating their potential cell lysis. When the supernatant of Lpb. plantarum R23
was added to a 5 h old culture of L. monocytogenes (early exponential phase), decreases
of about two log cycles were observed for both target strains (Figure 3). However, after
9 h and until 12 h of incubation, a slow growth of both L. monocytogenes strains was
observed. Apparently, the bacteriocin(s) had an effect on the pathogen viability at the
moment of addition, but were reduced over time. This means that bacteriocin(s) produced
by Lpb. plantarum R23 had a bacteriostatic mode of action. Although a vast number of Lpb.
plantarum produced bacteriocins with bactericidal effect [56,59,60], a similar bacteriostatic
effect has been reported for other bacteriocins [61-63].

Bacteriocin(s) produced by Lpb. plantarum R23 did not adsorb to the producer cells,
because its activity was not detected after treatment of Lpb. plantarum R23 with 100 mM
NaCl at pH 2.0. Similar observations were also recorded for Plantaricin ST31 [64] and
Pediocin ST194BZ [65].

Finally, as expected, the molecular size of the Lpb. plantarum R23 bacteriocin(s) was be-
low 6.5 kDa, as determined by tricine-SDS-PAGE (Figure S1). This is in agreement with the
identification obtained by whole-genome sequencing because plantaricins and pediocins
are small peptides (<10 kDa) belonging to class II bacteriocins. This molecular size is also
within the range of most bacteriocins reported for other Lpb. plantarum strains [53,66,67].



Int. J. Environ. Res. Public Health 2021, 18, 5515 10 of 13

5. Conclusions

From both phenotypic characterization and whole-genome sequencing analysis, Lpb.
plantarum R23 may be considered a safe culture to be used in the food industry. Additionally,
this bacterium produces a stable bacteriocin which, besides being safe, makes it a potential
bio-preservative culture inhibiting pathogens such as L. monocytogenes and spoilage bacteria
to guarantee the safety and the extension of food shelf life. Once Lpb. plantarum R23 harbors
genes encoding for the production of Plantaricin E, Plantaricin F, Pediocin PA-1 (Pediocin
AcH), and Coagulin A, recognition of the conditions in which more than one bacteriocin,
or even all, are produced is mandatory to increase knowledge about Lpb. plantarum R23
applicability.

After the preliminary characterization of Lpb. plantarum R23, it is possible to conclude
that it is a relevant strain with promising characteristics, which should be studied more
deeply to evaluate its potential future use in the food industry as a bio-protective or
starter culture.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ijerph18115515/s1. Figure S1: Tricine-SDS Page of Bacteriocin(s) produced by Lpb. plantarum
R23. Legend: Lanes 1 to 3: peptide bands stained with Coomassie Blue R250 with 40% saturated
ammonium sulfate (lane 1); 60% saturated ammonium sulfate (lane 2); 80% saturated ammonium
sulfate (lane 3); lane 4: molecular mass marker; lane 5: zone of growth inhibition, corresponding to
the position of the peptide bands in lane 1; lane 6: zone of growth inhibition, corresponding to the
position of the peptide bands in lane 2 and lane 7: zone of growth inhibition, corresponding to the
position of the peptide bands in lane 3.
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