
International  Journal  of

Environmental Research

and Public Health

Article

Particulate Matter Exposure across Latino Ethnicities

Kerry Ard * , Dax Fisher-Garibay and Daphney Bonner

����������
�������

Citation: Ard, K.; Fisher-Garibay, D.;

Bonner, D. Particulate Matter

Exposure across Latino Ethnicities.

Int. J. Environ. Res. Public Health 2021,

18, 5186. https://doi.org/10.3390/

ijerph18105186

Academic Editor: Paul B. Tchounwou

Received: 3 April 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

School of Environment and Natural Resources, Ohio State University, Columbus, OH 43210, USA;
fisher-garibay.1@osu.edu (D.F.-G.); bonner.190@osu.edu (D.B.)
* Correspondence: ard.7@osu.edu

Abstract: The Hispanic/Latino health paradox is the well-known health advantage seen across the
Hispanic/Latino racial category in the US. However, this racial category collapses several distinct eth-
nic groups with varying spatial distributions. Certain populations, such as Dominicans and Cubans,
are concentrated in specific areas, compared to more dispersed groups such as Mexicans. Historical
peculiarities have brought these populations into contact with specific types of environmental expo-
sures. This paper takes a first step towards unraveling these diverse exposure profiles by estimating
how exposure to particulate matter varies across demographic groups and narrows down which
types of industries and chemicals are contributing the most to air toxins. Exposure to particulate
matter is estimated for 72,271 census tracts in the continental US to evaluate how these exposures
correlate with the proportion of the population classified within the four largest groups that make
up the Hispanic population in the US: Mexican, Puerto Rican, Cuban, and Dominican. Using linear
mixed models, with the state nested within US Environmental Protection Agency regulatory region,
and controls for population density, we find that the Dominican population is significantly less
exposed to PM2.5 and PM10 compared to non-Hispanic Whites. Moreover, those tracts with a higher
proportion of Cuban residents are significantly less exposed to PM2.5. However, those tracts with a
higher proportion of foreign-born, Mexicans, and Puerto Ricans had significantly higher levels of
exposure to all sizes of particulate matter. We discuss the need to consider the chemical components
of these particles to better understand the risk of exposure to air pollution.

Keywords: particulate matter; industrial; air pollution; Hispanic; chemicals

1. Introduction

The Hispanic health paradox is the well-documented health advantage held by His-
panic Americans (herein referred to as Latino) compared to non-Hispanic white Ameri-
cans [1]. Previous work has shown that Latino individuals have better self-rated health,
lower morbidity, and mortality than their socioeconomic status would predict [2]. However,
this health advantage is not uniform across all Hispanic groups and varies by the health
outcome being measured [1]. For example, Dominicans have lower asthma prevalence than
Puerto Ricans (5.3% and 13.2%, respectively) [3]; favorable mortality outcomes apply most
strikingly to Mexican Americans [2], yet infant mortality is lowest amongst Cubans [4]. A
study examining 17 years of data from the National Health Interview Survey, found Puerto
Ricans were the most likely to have reported a chronic illness, and have a lower self-rated
health, compared to Mexican, Cuban, and Dominican respondents [5]. Scholars have
attempted to explain the diversity of these health outcomes across the Latino subgroups
by examining differences in access and use of health care [6], acculturation [7], health
behaviors [8], and skin color [9]. This work has provided a great deal of understanding of
the mechanisms underlying these patterns. However, exposure to environmental toxins
likely varies along ethnic lines and there has yet to be an examination of these relationships
at a national level.

Different land uses, such as industrial activity or transportation lines, cluster together
in space due to zoning, as well as the ability to utilize similar resources (e.g., landscape
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features, employment base, tax exemptions). Therefore, the types of toxins resulting from
these activities will vary in space as well. Moreover, we can expect that because different
ethnic groups have differential representation in these activities, such as the Mexican
population in the agricultural industry [10], and historically distinct settlement areas, such
as Dominicans in the Northeast, we can expect the average health risk from these exposures
to also vary by ethnic group. The handful of research investigating these patterns supports
this argument. For example, in a study of Miami metro-area residents, the cancer risk from
on-road sources was higher for Cuban neighborhoods compared to Mexican areas [11].
Another study of air-pollution-associated hospitalizations in El Paso, Texas, found that,
compared to whites, Hispanics were at a lower risk for NO2 associated admissions from
2005 to 2010, yet at a greater risk for PM2.5 admissions. Variations in exposure to particulate
matter are a useful starting place to better understand these ethnic patterns of exposure as
both long-term and short-term exposure to particulate matter have been associated with
all-cause and cause-specific mortality [12].

PM2.5 and PM10 measure different sizes of inhalable particles, or particulate matter,
with PM2.5 referring to particles that are 2.5 micrometers, and PM10 referring to particles
that are 10 micrometers, or smaller. Both PM2.5 and PM10 can occur from a variety of
sources depending on the geography of where they are being measured. For example, in a
study done in Berlin, Germany in 1990 and 1998, it was found that the urban background of
PM10 consisted of soil, ash, inorganic secondary aerosols, and carbonaceous material [13].
However, on a busy street, the PM10 pollution was 40% higher than these background levels,
with a little over half of that increase due to exhaust emissions and tire abrasion [13]. The
World Health Organization notes the importance of considering the geographic distribution
of possible sources, noting the most common components of PM10 are from industrial
activities as well as mechanical processes and road dust suspension, while PM2.5 is noted
to come primarily from combustion sources [14]. Due to their smaller size, PM2.5 can go
deeper in the lungs than PM10, and there is increasing evidence that the smaller particulate
size the stronger the health insult on the cardiovascular system [15,16]. Yet, even coarser
particulate matter, such as PM10, has been associated with negative health outcomes.
A metanalysis of over a million participants found that both long-term and short-term
exposure to PM10 was associated with a risk of depression and suicide [17].

While the size of the particle tells us how deeply it is likely to be inhaled into the
lungs, it tells us nothing about its chemical components. Researchers have raised concerns
about the thousands of chemicals that are on the market without adequate testing [18].
With the National Academies of Sciences noting, prior to the passage of the 2016 Frank R.
Lautenberg Chemical Safety Act, the US EPA, “allowed approximately 82,000 potentially
unsafe chemicals to remain in the US [19].” Moreover, scholars worry that traditional
approaches to risk assessment will never allow us to catch up to evaluate related health
risks, and instead advocate moving towards predictive models [20]. The vast number
of chemicals that individuals are exposed to makes it difficult for public health scholars
to sufficiently measure one’s exposome—the totality of health insults over a complete
lifetime [21]. Exposome models are developed to understand how one’s biography be-
comes their biology [21]. To achieve this understanding also requires consideration of the
geography of one’s life and the chemical risks within these spaces.

To gain a more complete understanding of how environmental risks cluster in space
we can first look towards industrial air toxins. Industries that use similar types of manu-
facturing processes and methods often cluster together in space [22]. Specific geographic
locations likely provide the same benefits to facilities within the same industry, such as
necessary infrastructure (e.g., waterways and highways) and access to markets and labor
that companies need to effectively do business. This process creates a “zone of industry” in
which we would expect chemical combinations from the predominant industry to be more
prevalent in the environment. For example, steel industries use manganese and chromium
to enhance durability and corrosion resistance. Thus, we would expect these two chemicals
to be found together in the environment more often and have a higher chance of interacting
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with one another. Those interested in understanding environmental health risks need to
work towards disentangling how industries, chemicals, and demographic groups cluster
in space, and how these patterns might influence susceptibility to different environmental
hazards. To begin this process, we look towards where different demographic groups
within the Latino population have historically settled in the US.

Spatial Patterns of the Latino Population

The subpopulations that make up the Hispanic racial category in the US have been
relatively geographically distinct [23]. Mexicans are, and historically have been, the largest
Hispanic subgroup living in the US, making up roughly 11 percent of the total population
in 2019 [24,25]. Today, most Mexican Americans continue to reside largely in southwest
states often taking advantage of employment opportunities in farming, ranching, and min-
ing [19]. In 2014, roughly a quarter of the US agriculture industry’s employment base were
Latino [26]. This would make this group particularly exposed to particulate-matter that
arises from dust particles and pesticide residue, as well as food and wholesale industrial
pollution. After testing the blood serum of 26 Mexican migrant farmworkers in Texas,
scholars found that participants who had worked for longer in the agriculture industry
had higher levels of organochlorine pesticides in their blood [27]. Nevertheless, newer
waves of Mexican Americans are beginning to migrate to secondary cities in Colorado,
Florida, Georgia, Indiana, and Illinois, largely due to a switch from seasonal work to more
permanent, year-round jobs in service industries, and construction, where the Mexican
immigrants now make up over one-third of workers, putting them at a greater risk of
exposure to diesel exhaust [28].

Puerto Ricans are the second-largest Latino group in the US, making up about
1.7 percent of the population in 2019 [18]. Though US citizens, islanders did not travel
to the continental US in large numbers until the end of World War II where they settled
largely in New York, and currently make up 5.4 percent of the state population [18]. They
have also settled in other East Coast and midwestern states such as Connecticut, where
they make up 8.2 percent of the state population, Massachusetts (4.8% of the population),
New Jersey (5.4% of the population), New York (5.6% of the population), and Florida (3.4%
of the population) [18]. Due to the economic poverty on the island, those migrating from
Puerto Rico likely have lower incomes compared to the mainland neighborhoods where
they settle. A recent study of allostatic load amongst the Latino ethnic groups showed
that Puerto Rican men are at increased risk of biological dysregulation due to chronic
stress [29]. Unlike the Mexican population, only a very small percentage of the mainland
Puerto Rican population is employed in the agriculture industry, instead, over a quarter
are in the management, professional, technical, sales, and service industries [30]. Such
employment positions would likely make this group more exposed to emissions from
transportation exhaust due to the more urbanized locations of these industries.

Cubans and Dominicans are the third and fourth-largest Hispanic subgroups and
the most geographically isolated. For example, although the Cuban population composes
1.7 percent of the US population, they make up 7.3 percent of Florida’s population [18].
Prior to 1959, tens of thousands of Cubans immigrated freely between Florida and Cuba for
work [31]. In the early 1960s when Castro took over the island nation, more than 200,000,
mostly wealthy, white, professional immigrants fled to the US. Soon after this, the US
passed the Cuban American Adjustment Act of 1966 which allowed any Cuban who lived
in the US for more than a year the ability to become a permanent resident; this led to more
than 300,000 Cubans immigrating to the US [24]. Currently, Cubans are highly represented
in the suburbs [32]. Overall, Cuban Americans typically have higher economic, social,
and political power than other Latino subgroups [33] and higher levels of neighborhood
social capital [34]. A study of over 15,000 immigrants found that Cubans have the lowest
self-reported depression amongst all the Latino ethnic groups [35], supporting prior work
with similar findings [36].
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Dominicans are as spatially isolated as the Cuban subgroup, with 60% of the entire
Dominican population in the US residing in NYC, consisting of 4.4 percent of New York
state’s population [18,19]. Dominicans also make up 5% of the small, and largely urban
state, Rhode Island. Since the 1970s, Dominicans are highly concentrated within New York
City in Washington Heights and Corona neighborhoods; despite having relatively higher
rates of poverty, Dominicans have been less likely than other Hispanic subgroups to be
living in public housing due to more recent immigrant groups being largely shut out of this
program due to long waitlists [23]. Today, Dominicans are most “likely to be employed in
service occupations or production, transportation, and material moving occupations [19].”
A recent study of the health data of Dominicans located in New York City found that the
prevalence of obesity was lower for Dominicans compared to Mexicans and Puerto Ricans.
In a national-level study of roughly 7500 US adults, Dominicans and Cubans had the lowest
prevalence of diabetes (19.3%) compared to Mexicans and Puerto Ricans (24.6% and 20.5%,
respectively) [37].

Latino subgroups have diverse spatial patterns that vary across gradients of urban-
ization, labor, and other economic factors. Understanding how these diverse settlement
histories relate to environmental risk is currently under-explored. The following analyses
contribute to this literature by examining how the ethnicities that make up the Latino
population are related to particulate matter exposure and the most prevalent industrial air
toxins. We focus on the four largest ethnic subgroups of the Hispanic racial classification in
the US census: Mexican, Puerto Rican, Cuban, and Dominican.

2. Materials and Methods

Demographic data were obtained for all census tracts within the continental US
from the American Community Survey (ACS) 2015 5-Year estimates via Social Explorer.
Population data were obtained at the tract level for non-Hispanic whites and blacks
(herein referred to as whites and African Americans). For those individuals who classified
themselves as: “Hispanic”, “Latino”, or “Spanish”, information was collected on whether
they considered themselves as “white-Hispanic” or “black-Hispanic”. These data were
utilized in the analyses below. In addition, the ACS 2015 also gathered ethnic origin
information for those census respondents that classified themselves as “Hispanic”, “Latino”,
or “Spanish”. Individuals who chose that option could also record which ethnic group
they associated themselves with. The following analyses were based on those whose ethnic
origin was from one of the largest four groups: Cuban, Dominican, Mexican, and Puerto
Rican. Data were also obtained on the proportion of the tract population that was foreign-
born and unemployment by race (i.e., white, African American, and Latino). Twenty-four
tracts were dropped for not having demographic data and 519 for not having estimated
pollution exposure estimates for a total of 72,562 census tracts.

Census tract-level pollution estimates for particulate matter the size of 2.5 micrograms
(PM2.5) and 10 micrograms (PM10) micrograms per cubic meter were obtained from the Center
for Air, Climate, and Energy Solutions database based out of Carnegie Mellon University for
the most recently available year, 2015, for the continental US. Estimates of exposure for outdoor
concentrations of PM2.5 and PM10 are based on models using publicly available data from the
US EPA, land use, and satellite-derived estimates of exposure [38]. While the size of particulate
matter tells us the propensity for the particulate to be inhaled more deeply into the lung, it
does not tell us anything about the chemical components of these particles. To better elucidate
what types of air toxins the different demographic groups experience, we begin our analysis
with an examination of the types of chemicals and industries that contribute the most to the
health risk across US Environmental Protection Agency’s (USEPA) enforcement regions. These
data were obtained from the USEPA Toxic Release Inventory program. The EPA provides these
data in a program called EasyRSEI [39], which allows users to download information about
pollution emissions by industry categorized by their primary 3-digit 2012 North American
Industry Classification System (NAICS) code. These data were summarized across the US
EPA Region and the health risk estimated for each chemical type regulated was noted [40].
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The EPA region was chosen rather than the census region because it is at this level of analysis
that environmental policies related to the outcome variable are decided [41]. In addition, the
locations of the 57,120 TRI facilities in the continental US were overlaid with census tracts and
categorized by their primary three-digit NAICS code, of these, 7445 were located in census
tracts that the ACS did not have information for and were dropped. All data utilized are
publicly available.

3. Results

This paper aims to shine more light on the variation in exposure to air pollution
across the US and how these risks relate to the Latino population. We can first look at
Figure 1 to see the geographic distribution of the four largest Latino ethnic groups. The
proportion of a census tract population that fell within the four demographic groups
examined was broken down into deciles within each group, with those census tracts falling
in the highest decile being denoted as red, and the lowest as green. Figure 1 shows the
average percentile of each demographic group broken down by the EPA region. We can
see that the Mexican population is distributed largely in the Southwest, EPA regions 6, 9,
and 10. While the Cuban population is largely in Florida, region 4, with Puerto Ricans in
region 4, as well as regions 1 and 2, with Dominicans located mainly in region 2. These
population distributions are largely as expected. We next turn to how pollution exposure
varies across these landscapes.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW  5  of  16 
 

 

emissions by industry categorized by their primary 3‐digit 2012 North American Industry 

Classification System (NAICS) code. These data were summarized across the US EPA Re‐

gion and the health risk estimated for each chemical type regulated was noted [40]. The 

EPA region was chosen rather than the census region because it is at this level of analysis 

that environmental policies related to the outcome variable are decided [41]. In addition, 

the locations of the 57,120 TRI facilities in the continental US were overlaid with census 

tracts and categorized by their primary three‐digit NAICS code, of these, 7445 were lo‐

cated in census tracts that the ACS did not have information for and were dropped. All 

data utilized are publicly available. 

3. Results 

This paper aims  to  shine more  light on  the variation  in exposure  to air pollution 

across the US and how these risks relate to the Latino population. We can first  look at 

Figure 1 to see the geographic distribution of the four largest Latino ethnic groups. The 

proportion of a census tract population that fell within the four demographic groups ex‐

amined was broken down into deciles within each group, with those census tracts falling 

in the highest decile being denoted as red, and the lowest as green. Figure 1 shows the 

average percentile of each demographic group broken down by the EPA region. We can 

see that the Mexican population is distributed largely in the Southwest, EPA regions 6, 9, 

and 10. While the Cuban population is largely in Florida, region 4, with Puerto Ricans in 

region 4, as well as regions 1 and 2, with Dominicans located mainly in region 2. These 

population distributions are largely as expected. We next turn to how pollution exposure 

varies across these landscapes. 

 

Figure 1. Map of proportion of census tract for four Latino ethnic groups, broken down by decile; (A) Proportion of Cuban 

population; (B) Proportion of Puerto Rican population; (C) Proportion of Dominican population; (D) Proportion of Mexi‐

can population. 

We can look at Figure 2 to see a map of the distribution of PM2.5 and PM10. Recall, the 

census tract level estimates of particulate matter, measured in micrograms per cubic me‐

ter, were utilized. These estimates were then broken down into deciles within each particle 

Figure 1. Map of proportion of census tract for four Latino ethnic groups, broken down by decile; (A) Proportion of
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We can look at Figure 2 to see a map of the distribution of PM2.5 and PM10. Recall, the
census tract level estimates of particulate matter, measured in micrograms per cubic meter,
were utilized. These estimates were then broken down into deciles within each particle size,
ranging from 0.0 to 15.9 micrograms per cubic meter for PM2.5, and 0.0 to 40.8 micrograms
per cubic meter for PM10. We see hotspots in the central valley of California for both sizes
of particulate matter. The central US and Texas have high levels of PM10, while the higher
deciles of PM2.5 are seen in the Midwest, as well as parts of Texas and the south. To try to
understand possible source chemicals, we moved on to examining how industrial types
and chemicals vary across this landscape.
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To better understand the spatial distribution of EPA-regulated industrial facilities by
their primary three-digit North American Industry Classification System code, we can look
to Table 1. There were 420 different types of industry represented in these data. Table 1 lays
out the top ten for each region, demonstrating that there are eight categories that fall into the
top three types of facilities in each region. The chemical manufacturing industry makes up
the largest portion of facilities in this dataset, followed by fabricated metal, food industry,
computer and electronic manufacturing, primary metal manufacturing, plastics and rubber,
wood products, and transportation equipment manufacturing. Regions where the Mexican
population is most highly represented are distinct in their high number of food and wood
product manufacturing industries. Region 4, where the Cuban population is most highly
represented is unique in its density of plastics and rubber industry facilities. Whereas
computer and electronic manufacturing is most likely to take place in regions 1 and 2,
where the Puerto Rican and Dominican populations cluster.
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Table 1. Location of USEPA regulated facilities organized by their primary three-digit North American industry classification system for each of the ten US EPA regions.

EPA Region 1 EPA Region 2 EPA Region 3 EPA Region 4 EPA Region 5

NAICS 3
Digit Code % NAICS 3

Digit Code % NAICS 3
Digit Code % NAICS 3

Digit Code % NAICS 3
Digit Code %

Fabricated Metal 18.36 Chemical 23.32 Chemical 14.18 Chemical 15.18 Fabricated Metal 18.46
Computer and

Electronic 10.94 Fabricated Metal 13.17 Fabricated Metal 13.49 Fabricated Metal 9.89 Chemical 13.27

Chemical 10.75 Computer and
Electronic 6.60 Primary Metal 8.25 Plastics and Rubber 7.84 Transportation

Equipment 8.89

Miscellaneous
Manufacturing 6.24 Primary Metal 6.12 Food 6.41 Transportation

Equipment 7.63 Primary Metal 8.50

Primary Metal 5.93 Food 5.45 Plastics and Rubber 6.26 Food 6.73 Plastics and Rubber 7.78

Plastics and Rubber 5.47 Plastics and Rubber 4.48 Nonmetallic
Mineral Product 5.73 Wood Product 5.85 Food 6.66

Elec. Equip.,
Appliance,

Component
4.94

Merchant
Wholesaler,
Nondurable

4.03 Machinery 4.91 Primary Metal 4.90 Machinery 5.99

Machinery 4.91 Machinery 4.00 Computer and
Electronic 4.91 Nonmetallic

Mineral Product 4.77 Computer and
Electronic 4.62

Paper 4.54 Nonmetallic
Mineral Product 3.91 Transportation

Equipment 4.25 Machinery 4.29 Nonmetallic
Mineral Product 3.42

Nonmetallic
Mineral Product 4.22 Paper 3.69 Wood Product 3.49 Textile Mills 3.97

Elec. Equip.,
Appliance,

Component
3.08

Total Region 1 TRI
Facilities 3129

Total Region 2 TRI
Facilities 3302

Total Region 3 TRI
Facilities 4521

Total Region 4 TRI
Facilities 9896

Total Region 5 TRI
Facilities 12,590
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Table 1. Cont.

EPA Region 6 EPA Region 7 EPA Region 8 EPA Region 9 EPA Region 10

NAICS 3
Digit Code % NAICS 3

Digit Code % NAICS 3
Digit Code % NAICS 3

Digit Code % NAICS 3
Digit Code %

Chemical 19.13 Food 16.47 Chemical 11.60 Chemical 14.57 Wood Product 12.72

Fabricated Metal 12.39 Chemical 14.80 Fabricated Metal 10.99 Computer and
Electronic 14.04 Food 11.90

Food 8.06 Fabricated Metal 11.09 Food 9.64 Fabricated Metal 13.40 Chemical 10.65
Transportation

Equipment 6.11 Transportation
Equipment 7.61 Nonmetallic

Mineral Product 9.19 Nonmetallic
Mineral Product 6.55 Fabricated Metal 9.15

Plastics and Rubber 6.09 Machinery 7.22 Computer and
Electronic 8.13 Food 6.18 Computer and

Electronic 7.96

Merchant
Wholesale,

Nondurable
5.79 Plastics and Rubber 6.23 Machinery 4.97 Plastics and Rubber 5.47 Transportation

Equipment 7.89

Machinery 5.50 Nonmetallic
Mineral Product 5.51 Plastics and Rubber 4.82 Transportation

Equipment 5.22 Nonmetallic
Mineral Product 6.39

Primary Metal 5.14 Primary Metal 4.43 Transportation
Equipment 4.52 Primary Metal 4.22 Primary Metal 5.45

Nonmetallic
Mineral Product 4.81

Elec. Equip.,
Appliance,

Component
2.95 Miscellaneous

Manufacturing 4.29 Machinery 3.45 Plastics and Rubber 5.26

Computer and
Electronic 4.41 Computer and

Electronic 2.89 Petroleum and Coal
Products 4.07

Merchant
Wholesale,

Nondurable
3.22 Machinery 3.57

Total Region 6 TRI
Facilities 5077

Total Region 7 TRI
Facilities 3048

Total Region 8 TRI
Facilities 1328

Total Region 9 TRI
Facilities 5098

Total Region 10
TRI Facilities 1596
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Table 2 displays the Pearson correlations between the proportion of census tract
residents in one of the four demographic groups examined, and the density of facilities
in that tract that fall into one of the NAICS codes that made up the largest number of
industrial facilities. These relationships demonstrate that no matter the industry type, the
proportion of the white population is negatively related to the density of facility type. In
general, the relationships between density of industrial facility, no matter the type, was
positively related to the proportion of those within the Latino groups examined, with
fabricated metal manufacturing being the most strongly related across all groups, and
Puerto Ricans having the largest correlations across all industry types.

Table 2. Pearson correlations between census tract population of Latine groups, and the density of USEPA regulated
facilities organized by their primary three-digit North American industry classification system.

Census Tract Density of Industrial Facilities by Primary 3-Digit NAICS Code

Wholesale Machinery Primary
Metal

Computer
& Electronics Mineral Plastics

& Rubber Transport. Food Fab.
Metal Chemical

Proportion of
Tract

Population

Dominican 0.08 0.03 0.08 0.07 0.06 0.03 0.05 0.05 0.11 0.20

Cuban 0.01 0.01 0.00 0.03 0.02 0.03 0.04 0.00 0.01 0.03

Puerto
Rican 0.07 0.05 0.12 0.08 0.06 0.06 0.04 0.05 0.17 0.16

Mexican 0.06 0.06 0.05 0.05 0.06 0.05 0.05 0.08 0.10 0.07

White −0.11 −0.08 −0.11 −0.10 −0.12 −0.08 −0.11 −0.12 −0.19 −0.20

Bolded numbers are the comparably stronger correlations.

Table 3 breaks down the air toxins that contribute the most to the estimated health
risk of the EPA region. These data demonstrate many similarities in exposure risk across
regions 2 and 4, where the Puerto Rican/Dominican and Cuban populations are more
likely to reside, respectively. For example, chromium, and its compounds, contribute the
greatest to the overall health risk across regions and has been related to asthma as well as
noncancer respiratory deaths [42]. Cobalt, and its compounds, are high in these regions as
well, and have been related to lung cancer and systemic tumors in rats [43]. Ethylene oxide
is also a major contributor to risk and has been linked to lymphoid and breast cancers [44].
However, region 4 is comparatively distinct in its high exposure to arsenic compounds,
which is associated with lung cancer [45], while region 2 is comparatively distinct in its
higher exposure to nickel air toxins, associated with respiratory tract cancers [46]. EPA
region 6, where the Mexican populations are likely to reside, has the most diverse chemical
profile with chemicals like 1,3-butadiene, which is associated with leukemia [47], a similar
chemical chloroprene which is associated with multiple cancers in animal studies [48].

Table 4 lays out the result of mixed models predicting tract PM10 exposure. Model
1 limits the predictor variables to the common racial categories in the US census, non-
Hispanic whites, African Americans, and Hispanics. Model 1 demonstrates a one propor-
tion increase of Hispanic residents in a tract was associated with an increase of almost
six micrograms per cubic meter of estimated particulate matter. However, the follow-
ing models break this racial category down into its component parts where we see more
variation. For example, model 2 breaks down the Hispanic racial group into Hispanic
whites and Hispanic Blacks, with Hispanic whites being strongly related to higher rates of
exposure compared to Hispanic blacks. Further analysis shows that those ethnic groups
that largely make up each of these categories were Mexicans and Dominicans, respec-
tively. Even when including a proportion of foreign-born people in this model (model 3),
these patterns remain.
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Table 3. The top five chemicals contributing to an EPA region’s health risk from industrial air toxins.

EPA REGION 1 EPA REGION 2 EPA REGION 3 EPA REGION 4 EPA REGION 5

Chemical Percent
Contribution Chemical Percent

Contribution Chemical Percent
Contribution Chemical Percent

Contribution Chemical Percent
Contribution

Chromium 34% Ethylene oxide 53% Ethylene oxide 38% Ethylene oxide 26% Chromium 27%
Cobalt

compounds 18% Cobalt 12% Chromium
compounds 33% Chromium 22% Ethylene oxide 22%

Cobalt 10% Chromium 10% Chromium 10% Chromium
compounds 16% Cobalt 19%

Nickel
compounds 9% Nickel 5% Nitroglycerin 3% Arsenic

compounds 6% Chromium
compounds 13%

Ethylene oxide 6% Chromium
compounds 4% Nickel 3% Cobalt

compounds 4% Cobalt
compounds 4%

77% 83% 87% 74% 86%

EPA REGION 6 EPA REGION 7 EPA REGION 8 EPA REGION 9 EPA REGION 10

Chemical Percent
Contribution Chemical Percent

Contribution Chemical Percent
Contribution Chemical Percent

Contribution Chemical Percent
Contribution

Ethylene oxide 59% Chromium 39% Ethylene oxide 61% Chromium 24% Chromium
compounds 49%

Chromium 8% Ethylene oxide 22% Chromium 14% Ethylene oxide 20% Cobalt 20%

1,3-Butadiene 7% Chromium
compounds 18% Arsenic

compounds 12% Chromium
compounds 17% Chromium 9%

Chloroprene 5% Nickel 5% Chromium
compounds 2% Cobalt 8% Nickel 7%

Propyleneimine 4% Nitroglycerin 3% Hydrogen
sulfide 2% Arsenic

compounds 7% Formaldehyde 5%

84% 87% 91% 76% 89%
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Table 4. Results from the linear mixed model predicting tract-level PM10 exposure.

Percent Tract:
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

coeff. SE coeff. SE coeff. SE coeff. SE coeff. SE coeff. SE

White ref. ref. ref. ref. ref. ref.
Hispanic 5.48 ** 0.08
African

American 2.23 ** 0.07 2.42 ** 0.07 2.40 ** 0.07 2.26 ** 0.07 2.25 ** 0.07 2.01 ** 2.01

Hispanic White 6.83 ** 0.11 3.74 ** 0.13
Hispanic Black −5.19 ** 1.55 −7.82 ** 1.52
Foreign-Born 7.74 ** 0.15 7.71 ** 0.15 6.52 ** 0.16

Cuban 9.65 ** 0.41 2.84 ** 0.42 3.98 ** 0.44
Dominican −7.98 ** 0.61 −10.51 ** 0.60 −8.23 ** 0.61

Mexican 6.35 ** 0.10 4.15 ** 0.11 4.01 ** 0.12
Puerto Rican 2.53 ** 0.38 2.63 ** 0.37 0.61 ** 0.38

Unemp. (White) −0.28 0.20
Unemp.
(African

American)
−0.60 ** 0.08

Unemp.
(Hispanic) −0.48 ** 0.10

Intercept 16.15 ** 0.42 16.21 ** 0.42 15.88 ** 0.42 16.23 ** 0.41 15.84 ** 0.41 16.35 ** 0.41

State (EPA
Region) 8.58 8.60 8.51 8.25 8.25 8.27

Residual 13.47 13.62 13.15 13.44 12.97 12.30
AIC 391,403.10 392,154.30 389,632.00 391,220.40 388,675.10 304,573.10
BIC 391,406.90 392,158.10 389,635.80 391,224.20 388,678.90 304,576.80

N (tracts) 71,905 71,905 71,905 71,905 71,905 71,905

Note: All models included population density as a control. ** Significant at a p-value of <0.01.
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The remaining models work to disentangle the different subgroups that make up
the broader Hispanic population. Model 4 demonstrates that, on average, the Cuban
population is most strongly exposed to PM10 while the Dominican population is protected
from PM10 compared to the white reference group. Including the proportion of foreign-
born (model 5), most of the patterns remain with some of the variation associated with the
Cuban population now being explained by the population of foreign-born. Consistently,
the proportion of African Americans was associated with a significant increase in exposure
to particulate matter in these models, this relationship varied relatively little across models.
Interestingly the economic variables were negatively related to exposure, possibly due to
increases in particulate matter associated with economic activity in these areas. However,
this model had the lowest BIC suggesting the best fit compared to the other models. Notably,
the relationship between estimated PM10 exposure was not significantly related to the
proportion of unemployed whites in that census tract, unlike the other groups examined.

Table 5 examines if these relationships change when predicting PM2.5. In fact, we see
the correlations are smaller, possibly because this particle size can be transported farther
by wind patterns due to its small size, and therefore, local characteristics are less predictive
than if we were measuring pollutants closer to their source, such as PM10. Nevertheless,
it provides an interesting comparison. Overall, we see similar patterns in Table 5 that we
saw in Table 4. Such as the relatively consistent patterns between the proportion of African
American and PM2.5 exposure, with a higher proportion of African American associated
with roughly one and a half times greater amounts of PM2.5. compared to whites. Again,
Hispanic whites were related to greater exposure, and Hispanic blacks were related to
significantly less exposure to PM2.5, compared to non-Hispanic whites. In model 5, we
observe the biggest difference between the PM2.5 and the PM10 results. While Table 4
showed that Cubans were significantly more exposed to PM10 compared to whites, they
are shown in Table 5 to be significantly less exposed to PM2.5 (model 5). This relationship
held when including the proportion of those who were unemployed by racial group in
model 6. Again, we see when controlling for the percentage of unemployed that we have
the best fitting model, as determined by the lowest BIC.
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Table 5. Results from the linear mixed model predicting tract level PM2.5 exposure.

Percent Tract:
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

coeff. SE coeff. SE coeff. SE coeff. SE coeff. SE coeff. SE

White ref. ref. ref. ref. ref. ref.
Hispanic 1.69 ** 0.02
African

American 1.58 ** 0.02 1.64 ** 0.02 1.63 ** 0.02 1.57 ** 0.02 1.56 ** 0.02 1.33 ** 0.02

Hispanic White 1.97 ** 0.03 1.20 ** 0.04
Hispanic Black −2.16 ** 0.44 −2.81 ** 0.43
Foreign-Born 1.92 ** 0.04 1.97 ** 0.04 1.70 ** 0.04

Cuban 0.86 ** 0.11 −0.88 ** 0.12 −0.80 ** 0.12
Dominican −1.76 ** 0.17 −2.41 ** 0.17 −1.85 ** 0.17

Mexican 2.04 ** 0.03 1.48 ** 0.03 1.45 ** 0.03
Puerto Rican 1.73 ** 0.11 1.75 ** 0.10 1.61 ** 0.11

Unemp. (White) 0.16 0.06
Unemp.
(African

American)
−0.04 * 0.02

Unemp.
(Hispanic) −0.08 * 0.03

Intercept 6.96 ** 0.18 6.99 ** 0.18 6.91 ** 0.18 6.98 ** 0.18 6.88 ** 0.18 7.03 ** 0.18

State (EPA
Region) 1.67 1.64 1.62 1.64 1.63 1.65

Residual 1.07 1.09 1.06 1.06 1.03 0.9705
AIC 209,072.70 210,537.00 208,614.40 208,866.60 206,769.90 160,182.00
BIC 209,076.50 210,540.80 208,618.20 208,870.40 206,773.60 160,185.80

N (tracts) 71,905 71,905 71,905 71,905 71,905 71,905

Note: All models included population density as a control. ** Significant at a p-value of <0.01. * Significant at a p-value of <0.05.



Int. J. Environ. Res. Public Health 2021, 18, 5186 14 of 17

4. Discussion

Having a better understanding of how types of environmental risk vary across space
can help health scholars develop more accurate health risk models. The analyses presented
here provide patterns of exposure to environmental toxins which might be helpful as
public health scholars begin to disentangle the various health insults which influence one’s
exposome, an individual’s lifetime exposure to health risk. While the analyses presented
here only offer us a first step, they do demonstrate that there is a distinct variation in
environmental risk by demographic group and location that should be considered in future
work. For example, in our examination of how industry type and air toxin risk varied by
EPA region, we found that, for those industries regulated under the Toxic Release Inventory
program, regions where the Mexican population is most highly represented have more food
and wood product manufacturing industries. Moreover, these regions have a higher risk of
exposure to a chemical related to leukemia compared to other EPA regions. On the other
hand, the region where Cuban populations are most located has a higher density of plastics
and rubber industry facilities, as well as a relatively greater risk from chemicals linked to
lung cancer. Finally, areas with the largest proportion of the Puerto Rican and Dominican
population in the US are located around more computer and electronic manufacturing
facilities and associated with chemicals that have been related to respiratory tract cancers.

While this study cannot provide us information on actual exposures of individuals to air
toxins, it can help to move our thinking towards considering how environmental risk covaries
with demographics in the US. Health practitioners are increasingly recognizing the importance
of one’s social and physical environment in their patients’ health outcomes. Concepts such
as the social determinants of health [49], and the exposome [50] require new thinking and
operationalization of riskscapes. Scholars working in this area have derived algorithms to
parse out relationships between socio-demographic variables and highlight those which are
the most meaningful [51]. Such work needs to be done for air toxins. Research on the size
of the particulate matter is important, however health researchers need to recognize that the
possible chemical variation in the particle make-up could vary spatially.

In addition to the variation in the chemical makeup of particulate matter, exposure to
particulate matter also varies spatially and in a way that interacts with demography. In this
paper, we present results from linear mixed models that control for population density, and
nesting of states with EPA region, that estimate the relationships between ethnicity and
census tract exposure to PM10 and PM2.5. We look specifically at the four largest subgroups
that make up the Latino population in the US. We find that while overall, the Hispanic
population in the US is more exposed to air pollution, this exposure varies by subgroup.
Specifically, we find that compared to whites at a national level, Dominicans and Cubans
are less exposed to PM2.5 than whites, while Mexicans and Puerto Ricans are more exposed.
Patterns were similar when estimating exposure to PM10, apart from the Cuban population
being significantly more exposed to PM10. Looking at the maps of PM10 and PM2.5 we can
see that PM10 is relatively higher in Florida, where the majority of Cubans live, than PM2.5,
which are the smaller particles that disperse over a wider geography.

One of the most striking relationships in these analyses was the relatively strong,
and negative, relationship between the proportion of Dominicans living in a tract and
exposure to particulate matter. This relationship held even when including population
density, measures of unemployment, and percent foreign-born. The strong negative rela-
tionship between Dominicans and particulate matter likely explains the similarly negative
relationship between Hispanic blacks and exposure, as Dominicans make up the majority
of this racial category. This is an interesting finding considering that black immigrants
likely experience greater discrimination as they enter into a highly racialized structure
in the US [52]. Nevertheless, research on the spatial distribution of these populations
in the US from 1990 to 2010 shows the Dominican population is the most isolated of all
the ethnicities, and importantly, the most spatially segregated from the ethnicity with the
highest estimated exposure, the Mexicans [53].
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Future work should expand upon this study and endeavor to overcome our limitations.
The Center for Air, Climate, and Energy Solutions database based out of Carnegie Mellon
University is a wonderful new resource for particulate matter estimates. Their methods
have allowed for methodologically sound and easily accessible data on particulate matter.
However, these data are limited in that they do not have the chemical makeup of the
particles being inhaled. We encourage greater problematizing of the complexities of the
components of particulate matter and its role in health outcomes. Such questions are
important if we are to understand how and why exposure to particulate matter is related
to other factors such as COVID-19 infection [54]. While this study was limited to the year
2015 for particulate matter exposure estimates, future work should examine how such
patterns changed during quarantines across the US. Finally, linking these patterns to the
health outcomes of individuals is an important step future work should attempt to take.
Having a complete understanding of the complexity of environmental health insults on
individuals across their lifetime could lead to the better targeting of health interventions.

5. Conclusions

In this paper, we consider the spatial distribution of the four largest subgroups of
the Latino population: Mexican, Puerto Rican, Cuban, and Dominican, and estimate how
these spatial distributions relate to pollution exposure. We find important variation across
subgroups. For example, Dominicans and Cubans were observed to be significantly less
exposed to PM2.5 compared to whites, Mexicans, and Puerto Ricans were significantly
more exposed. In addition, we work to characterize the spatial distribution of the types of
industry and air toxins that affect the US. Having a better understanding of the chemical
components of particulate matter could help to better understand health risks from envi-
ronmental toxins. These analyses help to take a first step towards incorporating estimates
of how geographic histories relate to variation in exposure to toxins in our environment.
Future work should investigate how exposure levels and chemical combinations affect de-
mographic groups differently. Having a better understanding of how differential exposure
to environmental toxins varies by demographic group could be the key to understanding
certain public health patterns.
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