
International  Journal  of

Environmental Research

and Public Health

Article

Regression Tree Analysis for Stream Biological Indicators
Considering Spatial Autocorrelation

Mi-Young Kim 1 and Sang-Woo Lee 2,*

����������
�������

Citation: Kim, M.-Y.; Lee, S.-W.

Regression Tree Analysis for Stream

Biological Indicators Considering

Spatial Autocorrelation. Int. J.

Environ. Res. Public Health 2021, 18,

5150. https://doi.org/10.3390/

ijerph18105150

Academic Editor: Peter Goethals

Received: 20 March 2021

Accepted: 10 May 2021

Published: 13 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate Program, Department of Environmental Science, Konkuk University, Gwangjin-Gu,
Seoul 05029, Korea; kmy91321@konkuk.ac.kr

2 Department of Forestry and Landscape Architecture, Konkuk University, Gwangjin-Gu, Seoul 05029, Korea
* Correspondence: swl7311@konkuk.ac.kr; Tel.: +82-2-450-4120

Abstract: Multiple studies have been conducted to identify the complex and diverse relationships
between stream ecosystems and land cover. However, these studies did not consider spatial de-
pendency inherent from the systemic structure of streams. Therefore, the present study aimed to
analyze the relationship between green/urban areas and topographical variables with biological
indicators using regression tree analysis, which considered spatial autocorrelation at two different
scales. The results of the principal components analysis suggested that the topographical variables
exhibited the highest weights among all components, including biological indicators. Moran′s I
values verified spatial autocorrelation of biological indicators; additionally, trophic diatom index,
benthic macroinvertebrate index, and fish assessment index values were greater than 0.7. The results
of spatial autocorrelation analysis suggested that a significant spatial dependency existed between
environmental and biological indicators. Regression tree analysis was conducted for each indicator
to compensate for the occurrence of autocorrelation; subsequently, the slope in riparian areas was the
first criterion of differentiation for biological condition datasets in all regression trees. These findings
suggest that considering spatial autocorrelation for statistical analyses of stream ecosystems, riparian
proximity, and topographical characteristics for land use planning around the streams is essential to
maintain the healthy biological conditions of streams.

Keywords: regression tree analysis; biological indicators; spatial autocorrelation; land use; principal
component analysis

1. Introduction

Streams and rivers are complex lotic systems witnessing continuous changes. Inter-
actions among multiple factors, such as topography, physiochemistry, and hydraulics in
watersheds directly and indirectly affect the stream condition [1,2]. Previous studies have
examined the relationship between instream habitat quality and aquatic organisms [3–5].
As instream habitat quality is determined by watershed and riparian ecosystem conditions,
landcover, topography, physical habitats, and organisms of these systems are critical factors
that determine the stream water quality and biological condition [6,7]. In particular, the
surrounding land use strongly influences the biological integrity of streams, and thus,
multiple studies have been conducted to identify the relationship between watershed land
use and biological condition [5,8–15]. Recently, watershed topography has significantly
changed due to the increasing population and high concentration of industries in urban
areas. Buildings, roads, and parking spaces in urbanized areas along with anthropogenic
uses of watersheds for urbanization, cultivation, and other activities have altered surface
water characteristics, hydraulic and hydrologic systems, and the amount of pollutant emis-
sions and pollutant loads in watersheds. Consequently, these alterations have degraded
physiochemical and ecological conditions of streams [16–18]. Additionally, previous stud-
ies reported that riparian forests adjacent to streams directly influence the flow mechanisms
of sediments, organic matter, and nutrients from watersheds [19,20]. Riparian forests have
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various functions, such as preventing bank erosion, reducing organic matter and nutrients,
controlling water temperature, providing habitats for aquatic and terrestrial organisms,
increasing ecological health and diversity, and mitigating the negative effects of land use
on rivers [19–33]. Therefore, the relationships between land cover (particularly, green
and urban areas) and stream conditions need to be studied in detail to develop programs
for improving the stream health and implementing stream restoration and management
strategies [34].

As reported previously, the extent of forested areas and the width of riparian areas
strongly influence biological communities [35,36]. However, specifying buffer widths is
challenging because the buffer scale typically used varies depending on topography, geol-
ogy, hydrology, rainfall intensity, and vegetation type [37]. Additionally, the responses of
stream ecosystems to anthropogenic modification (e.g., land use, subsurface modification,
groundwater abstraction, stream channelization, and damming) depends on the modifica-
tion types and scales [38,39]. Thus, buffer widths might need to be determined based on
the specific response (e.g., water availability, productivity, water quality, the composition of
species, microclimate regulation, habitat loss, flow regime) and scale (e.g., catchment scale,
landscape scale, segment scale) of the stream ecosystem. Damanik-Ambarita et al. [38]
conducted an extensive review about the various riparian and catchment scales used in
previous studies as a part of a study in exploring the quantitative relationship between
land use and the aquatic macroinvertebrate community in previous studies. According to
their study, the scale of the riparian buffer used in previous studies is ranging from 30 to
5000 m width (or radius) [40–42]. Other researchers have proposed multiple spatial scales
and extents to identify the relationship between land use and stream ecosystem [43,44].
For example, Burdon et al. [31] used 5 m buffer scale in testing the relationships between
riparian integrity with ecological status in European streams. Furthermore, in another
study, the buffer width differed according to the study purpose, for example, 30 m for
water quality conservation, 150 m for protection from flood, and more than 500 m for
riparian habitats and biological communities [45]. Yirigui et al. [37] reported that a buffer
width greater than 500 m is necessary for nutrient control, bank stabilization, aquatic and
terrestrial wildlife habitat, and microclimate change mitigation. The Korean Ministry of
Environment (MOE) has adopted two buffer widths, 500 m and 1 km, to preserve riparian
areas and conserve drinking water quality [46]. Kim et al. [47] studied the relationship
between fish and land use using multiple spatial scales in a 5 km buffer zone and reported
that the effects of forest areas were higher at a high spatial scale.

Studies conducted to identify the relationship between landscape variables and bio-
logical integrity of streams have used conventional correlation and regression analyses,
which statistically assume that all variables are independent [48]. However, the impacts
of landscape variables on the biological communities in streams are not completely inde-
pendent and instead, exhibit spatial autocorrelation [49–51]. Spatial autocorrelation is a
phenomenon in which a variable at one point correlates with the same variable around
it in a two-dimensional space [48,52,53]. Lee et al. [54] indicated that spatial autocorre-
lation of landscape characteristics can occur because of the continuity and hierarchical
structure of environmental conditions. Therefore, spatial autocorrelation is critical because
the measured environmental variables are not random but have a common structural
variance [55]. As conventional statistical methods assume randomness of the measured
data, using a new approach to address spatial autocorrelation is necessary [56]. However, it
is noteworthy that some studies argued that local conditions and sampling methods, such
as watershed-based sampling [57], and multi-distance sampling can overrule the effects of
spatial autocorrelation in some cases [58].

This study aims to analyze the relationships between green spaces, urban areas,
and biological integrity of streams at two different scales in Nam-Han River Basin. The
objectives were (i) to identify spatial autocorrelation of biological indicators represented by
diatoms, macroinvertebrates, and fish, (ii) to analyze the relationship for each biological
indicator with land cover (green and urban areas) and topographical variables using two
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different riparian scales (5 km and 500 m), and (iii) to suggest scientific strategies for the
restoration and management of green spaces and streams in the basin. The findings would
thus, provide insights for improving water quality and the biological condition of streams
in aquatic ecosystems.

2. Materials and Methods
2.1. Study Area and Sampling Site

The Nam-Han River Basin is located centrally in the Korean Peninsula and is a part
of the major streams of the Han River, the largest water system in Korea (Figure 1). The
Nam-Han River is a major river that forms the Han River System along with the Buk-Han
River. It covers approximately one-third (12,577 km2) of the total area of the Han River
System (34,473 km2), and its total length is 375 km [59]. The average annual rainfall in
Korea is 1159 mm and that in the Nam-Han Basin is 1409 mm. Approximately 65% of the
total annual precipitation occurs from June to September and the rivers are parched from
March to May and October to November. The Nam-Han River Basin is located at a high
elevation (more than 1000 m above sea level) [60]. Urbanized areas, including cultivation
areas in the Nam-Han River Basin are concentrated downstream, and cover approximately
24% of the total area. Furthermore, forests cover approximately 70% of the total area of the
basin [61].
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Figure 1. Sampling sites in the Nam-Han River Basin in Korea selected by the National Aquatic
Ecological Monitoring Program.

Since 2007, the Korean MOE has been conducting a National Aquatic Ecological
Monitoring Program (NAEMP) to monitor the water quality and ecological condition of
streams and rivers across the country. NAEMP is significant for stream ecosystem research
because it investigates and evaluates various aquatic ecosystem characteristics, such as
structure, vegetation, water quality, and ecological health of rivers [62]. Additionally, the
MOE has been monitoring aquatic properties, such as physiochemical water quality index,
including total nitrogen (TN), total phosphorous (TP), biochemical oxygen demand (BOD),
chemical oxygen demand (COD), dissolved oxygen (DO), chlorophyll a (Chl-a), and pH;
biological indicators, including trophic diatom index (TDI), benthic macroinvertebrate
index (BMI), and fish assessment index (FAI); and topographical characteristics, including
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width, depth, and velocity of the five major rivers through 800 monitoring sites [63]. In
this study, we sampled 107 sites mentioned in the tributary datasets of the Nam-Han Basin
in 2018 (excluding the main stream because it has complex and diverse effects apart from
effects of land cover) to investigate the relationship between stream biological conditions,
green and urban areas, and topographic variables.

2.2. Biological Indicators of Streams

In this study, scores of three biological indexes developed by NAEMP were used
as indicators of stream biological conditions in the Nam-Han River Basin. A score of 0
to 100 was assigned for each biological indicator, which were later classified into Class
A (Excellent), Class B (Good), Class C (Fair), or Class D (Poor). The classification is
relative to the biological state of streams having similar observations based on the national
distribution and therefore, it is not considered to be an absolute outcome. Table 1 provides
the equations for computing the biological indicators (TDI, BMI, and FAI) developed by
NAEMP [64].

Table 1. Equations for computing the biological indicators developed by National Aquatic Ecological
Monitoring Program (NAEMP).

Biological Indicators Equations

TDI
(Trophic Diatom Index)

TDI = 100 − {(WMS × 25) − 25}
WMS: weighted mean sensitivity

WMS = ∑ Aj·Sj·
Vj

∑ Aj ·Vj

Where, j = species
Aj = abundance (proportion) of species j in the sample

(%)
Sj = pollution sensitivity (1 ≤ S ≤ 5) of species j

Vj = indicator value (1 ≤ V ≤ 3)

BMI
(Benthic Macroinvertebrates Index)

BMI =

{
4−

n
∑

j=1
Kj HjGj/

n
∑

j=1
HjGj

}
× 25

where, j = number assigned to species
n = number of species

Kj = unit saprobic value of species j
Hj = frequency of species j

Gj = indicators weight value of species j

FAI
(Fish Assessment Index)

FAI = sum of 8 metrics
Metric 1 (M1): number of Korean native species
Metric 2 (M2): number of rifle benthic species

Metric 3 (M3): number of sensitive species
Metric 4 (M4): percentage of tolerant species

Metric 5 (M5): percentage of omnivores
Metric 6 (M6): percentage of insectivores

Metric 7 (M7): the amount of collection native species
Metric 8 (M8): percentage of fish abnormalities

Algae are important indicators of water quality change or water pollution and are
widely used to evaluate the health of rivers [65]. TDI estimates diatom conditions based
on species abundance and sensitivity and evaluates the nutritional conditions of stream
ecosystems [66]. It is computed by calculating the composition using weighted mean
sensitivity (WMS) measurements and proportion of benthic diatom taxa (Table 1).

Benthic macroinvertebrates are important biotic components of the river ecosystem
and a food source for fish. Since they are extremely sensitive to habitat disturbances,
they serve as an important biological indicator [67]. They exhibit distinct differences in
the cluster structure, such as the number of species and distribution of populations [68].
BMI represents the condition of macroinvertebrate communities in stream ecosystems and
describes the state of the communities based on habitat and environmental changes. The
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number assigned to each species, unit saprobic values, and frequencies are used as weight
indicators for the species [69].

Fish as a biological indicator reflect the long-term environmental impacts within an
aquatic ecosystem [70]. NAEMP developed the FAI using eight evaluation metric models
(M1–M8) by analyzing the ecological characteristics of Korean fish communities. These
metrics can be divided into four categories: composition of species, nutritional composition,
fish abundance, and individual health [62,71].

2.3. Measurements and Selection of Scale

To measure the area of green and urban areas in the Nam-Han River Basin, we used
land use land cover (LULC) data provided by the Korean MOE. The urbanized class was
represented by “Urban,” while the forest and grass classes were represented by “Green.”
The respective areas of each class were extracted using ArcMap software version 10.1.
The areas were transformed into grids using the buffer features; additionally, the ratio of
areas in each buffer was calculated as PLAND using the spatial pattern metric computing
program Fragstats version 4.2 (The University of Massachusetts, Amherst, US) [72]. PLAND
quantifies the area (in percentage) of each patch to the entire buffer and ranges between 0
and 100. It is a measure of landscaping composition that indicates the range of landscape
with certain patches [73,74]. In addition, the DEM (digital elevation model) acquired from
the Han River Flood Control Office and the National Geographic Information Institute was
used to extract data on topographical variables in the Nam-Han River Basin for calculating
the average elevation and slope for each buffer area.

In this study, two buffer scales were selected based on the sampling points to in-
vestigate the impact of green and urban areas and topographical variables on biological
indicators. Multiple different scales have been used in previous studies [38,75]. Generally,
the effectiveness of the riparian buffer improves with an increase in the buffer width, but
various landscaping indicators have been reported to have different effects at different
scales [76]. Furthermore, different maximum buffer sizes have been proposed based on
previous research [77]. Accordingly, we selected (i) circle buffers with a 5 km radius from
the sampling points and (ii) linear buffers of 500 m from the riparian areas to compare the
large-scale effects of variables near the river (Figure 2).
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2.4. Spatial Autocorrelation and Data Analysis

Spatial autocorrelation is commonly measured by methods that use a single expo-
nent, such as Moran’s I (MI, Equation (1); where n is the number of data, X is the pixel
value, X is the mean of pixel values within the neighborhood range, and Wij is the spatial
weight matrix) and Geary′s C, and methods that use variograms [78]. The single exponent
method is useful for measuring the overall spatial autocorrelation of the study site, whereas
variograms are useful for understanding the spatial distribution and structure of the au-
tocorrelation [54,79]. In this study, we used MI to verify the spatial autocorrelation of the
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biological indicators of the Nam-Han River watershed. The MI values for the entire region
were calculated using GeoDa version. 1.18 designed by Luc Anselin [80]. The theoretical
range of correlation coefficients for MI is between −1 and 1, where coefficient values closer
to 1 or −1 indicate a higher spatial autocorrelation, while a value closer to 0 indicates low
spatial autocorrelation [81]. Spatial autocorrelation in the observed data can be corrected
by separate sampling at a certain effective distance or by performing statistical correc-
tions [82,83]. However, sampling at effective distances is practically difficult. Therefore, in
this study, we conducted an analysis that allowed us to consider spatial autocorrelation as
a statistical correction.

I =
n ∑n

i=1 ∑n
j=1 Wij

(
Xj − X

)
S0 ∑i=n

i=1
(
Xi − X

)2 (1)

Principal component analysis (PCA) was performed to identify the correlation be-
tween the variables. PCA is frequently used as a preliminary test prior to performing
other statistical analyses, and not as a final analysis method. Furthermore, the relation-
ship between the variables can be graphically visualized, facilitating the identification of
correlation. Moreover, normalization can rescale the data to identify the weights of the
principal components (PCs), thus allowing the reduction of the variable dimensions based
on the accumulation of the explanatory ability for critical variables [84]. In this study, we
conducted PCA to estimate the relationship between the biological indicators, topograph-
ical variables, and PLAND of green/urban areas in the Nam-Han River Basin using the
“prcomp” and “PCA” packages in R statistical language. PCA biplots provide a graphical
visualization, describing the interrelationships between multiple datasets using vectors.
The angle and direction of vectors indicate correlations between the original dataset and
PCs; if the vector is highly parallel to the PCs, the impact (i.e., correlation) on the particular
PC is high. PCA analysis is often used because it provides excellent visualization of the
variables from multiple perspectives in the form of two-dimensional graphs [85].

Thus, since MI values extracted from biological indicators have a strong spatial
autocorrelation, we conducted regression tree analysis, which is a statistical correction
method for dependent samples. It is useful to acquire a sufficient number of samples
devoid of spatial autocorrelation to facilitate easy interpretation [86,87]. Compared to
usual linear models, the regression tree provides better prediction because it is appropriate
for analysis of complex ecological data that can include nonlinear relationships between
various variables, missing values, and more complicated interactions [83,88]. Regression
trees with having hierarchical structures explain variations of responding variables by
splitting predictor variables at certain thresholds minimizing the variance of responding
variables. Regression tree analysis has been widely used in ecological studies [83,89–93].
The tree of the model grows repeating binary splitting of the data, and each split that is
defined based on a single explanatory variable forms two nodes [94,95]. Selecting the size
of the tree is performed through cross-validation, and the selected tree has the smallest
predicted mean square error [96]. Therefore, in addition to PCA, we used regression
tree analysis to maintain the maximum number of observations and solve the spatial
autocorrelation problem inherent in the dataset. Additionally, the regression tree can
provide a foundation for step-by-step examination of the effects of variables and assist
decision making, unlike previous studies that used regression or simply correlation analysis.
We used the “rpart” package along with ANOVA (analysis of variance) in R statistical
language and generated one tree for each of the three biological indicators to identify
its specific relationship with the variables of the Nam-Han River Basin. According to
Everaert et al. [95], different parameterizations (e.g., the number of cross-validations,
pruning, and the minimum number of observations per leaf) in regression tree analysis
can result in considerably different outcomes. However, parameters were not specified
in regression tree analysis. We selected the models that minimize ‘rel error’ (i.e., error on
the observations used to estimate the model) and ‘xerror” (i.e., error on the observations
from cross validation data) without overfit issue (i.e., simplest model) [97] (see Everaert
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et al. [95], for a more detailed description on how regression trees can vary due to different
parameter settings in regression tree analysis).

3. Results
3.1. Descriptive Statistics

Table 2 provides a summary of descriptive statistics for the biological indicators,
including the mean values of topographical variables, such as slope and elevation, and
green/urban areas in the riparian areas within the 5 km circle buffer and 500 m linear buffer.
The minimum values of TDI, BMI, and FAI were 11.20, 22.60, and 21.90, whereas their
maximum values were 95.20, 94.70, and 100.0, respectively, suggesting that the biological
conditions of the Nam-Han River show variability based on different sites within the basin.
The standard deviation of FAI was 18.57, which was slightly lower than that of TDI and
BMI, indicating marginal changes in FAI at the sampling sites. Furthermore, the standard
deviation of TDI (19.78) was the highest among the three indicators, thus, suggesting
relatively substantial changes in the diatom status.

Table 2. Descriptive statistics of biological indicators, topographical features, and green/urban areas
in the Nam-Han River Basin.

Classification Variables Min. Max. Mean S.D.

Biological
indicators

TDI 11.20 95.20 56.08 19.78
BMI 22.60 94.70 65.52 19.19
FAI 21.90 100.0 55.44 18.56

Topographical
features

5 km Mean elevation (m) 48.85 764.73 212.00 139.73
500 m Mean elevation (m) 38.90 589.63 158.91 109.00

5 km Mean slope (%) 1.99 23.29 10.06 4.91
500 m Mean slope (%) 1.64 21.54 7.85 4.87

Green spaces 5 km Forest and Grass area (%) 4.58 90.91 50.10 23.87
500 m Forest and Grass area (%) 4.82 78.21 41.06 19.73

Urban areas
5 km Urban area (%) 0.98 91.74 14.56 19.48
500 m Urban area (%) 2.33 66.06 13.85 12.52

The health score of the three biological indicators was defined by NAEMP as shown
in Table 3 [64]. The mean values of TDI, BMI, and FAI indicated that the health score of the
biological indicators in the Nam-Han River basin, were 56.08, 65.53, and 55.45, respectively
(Table 2). Thus, according to the classification criteria defined by NAEMP, the condition of
diatoms, macroinvertebrates, and fish in the Nam-Han River basin was “Fair,” “Fair,” and
“Poor.” FAI showed the lowest mean value, whereas the mean value of BMI was the highest.

Table 3. Classification of biological indicators according to NAEMP.

Biological Conditions Class TDI BMI FAI

Good A 60 ≤ TDI ≤ 100 80 ≤ BMI ≤ 100 87.5 ≤ FAI ≤ 100
Fair B 45 ≤ TDI < 60 60 ≤ BMI < 80 56.2 ≤ FAI < 87.5
Poor C 30 ≤ TDI < 45 45 ≤ BMI < 60 25 ≤ FAI < 56.2

Very Poor D 0 ≤ TDI < 30 0 ≤ BMI < 45 0 ≤ FAI < 25

Moreover, the mean value of urban areas (14.56) in the 5 km circle buffer was signifi-
cantly lower than that of green areas (50.10), suggesting a higher proportion of forests and
grasslands than urban areas in the Nam-Han River Basin. The mean values of urban and
green areas for 500 m linear buffers were 13.85 and 41.07, respectively, although the mean
value of urban areas did not differ significantly depending on buffer scale. The proportion
of green areas was higher than that of riparian areas since the mean value of the 5 km buffer
was greater than that of the 500 m buffer. The mean values of topographical variables for
5 km and 500 m buffer zones were 212.00 and 158.92, respectively, for elevation and 10.07
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and 7.85, respectively, for slope, indicating higher elevation and steeper slope of the terrain
in the wide range buffers than in the riparian area.

3.2. Principal Component Analysis

PCA was conducted to examine and describe the degree of variation of the variables
by the newly developed PCs (Table 4). Additionally, PCA presents the variables that have
the greatest influence on each PC. Positive and negative signs denote direction, and the
influence of variables is dependent upon the absolute value of the coefficient (Table 5).
For example, PC1 represents the first PC, which can be expressed as a linear combined
equation of the following variables:

PC1 = (TDI × 0.70) + (BMI × 0.83) + . . . + (Elev_50 m × 0.85) + (Slope_500 m × 0.93). (2)

Table 4. Proportion of variance and cumulative proportion for each principal component.

Variable PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 PC11

Proportion of
Variance 0.50 0.15 0.09 0.07 0.06 0.03 0.02 0.02 0.02 0.00 0.00

Cumulative
Proportion 0.50 0.65 0.75 0.82 0.88 0.92 0.95 0.97 0.99 0.99 1.00

Table 5. Rotated factor matrix extracted from principal component analysis. The underline values
are the largest weighs on that PCs.

Variable
Principal Component

PC1 PC2 PC3 PC4 PC5

TDI 0.70 −0.02 0.11 0.48 −0.28
BMI 0.83 −0.11 0.14 0.16 −0.21
FAI 0.81 0.03 0.01 −0.07 −0.35

Urban_5 km 0.25 0.82 −0.21 0.17 0.18
Green_5 km 0.20 −0.79 0.39 −0.12 0.19
Elev_5 km 0.88 0.07 −0.15 −0.32 0.16
Slope_5 km 0.92 0.09 0.14 −0.02 0.10

Urban_500 m −0.12 0.50 0.78 0.05 0.24
Green_500 m 0.52 -0.37 −0.28 0.49 0.47
Elev_500 m 0.85 0.05 −0.15 −0.39 0.13
Slope_500 m 0.93 0.10 0.14 −0.03 0.01

PC1, which represented topographical variables, such as elevation and slope, ac-
counted for 50% of the total variation, whereas PC2, which represented the proportion
of urban and green areas at a 5 km buffer, accounted for 15.87% of the total variation.
Thus, the cumulative explanatory power of the dataset by PC1 was 65.87% (Table 4). If
the weight of a PC is highly directed to the positive direction, it indicates good biological
condition. Conversely, if weight is highly directed to the negative direction, it represents
poor condition. In PC1, all topographical variables a high weight. However, in PC2, the
proportion of urban and green areas within the 5 km buffer exhibited the highest weight in
the opposite direction. Furthermore, the proportion of urban and green areas within the
500 m buffer represented the highest weight in PC3 (9% of the total variance) and PC4 (7%
of the total variance), and 82% of the dataset were explained by PC1–PC4.

Figure 3 is a biplot of the PCA that presents an effective visualization of the PCs. The x-
axis of the biplot denotes Dim1 (primary PC), and the y-axis denotes Dim2 (secondary PC).
Variables in the same direction are seen to be corresponding variables. The graph briefly
represents the weights of the variables that affect PC1 or PC2, and their corresponding
spatial locations indicate similarities between them. Thus, the figures show that the
biological indicators (TDI, BMI, and FAI) and topographical variables (elevation and slope)
represent similar trends, and urban and green areas represent perpendicular (high and



Int. J. Environ. Res. Public Health 2021, 18, 5150 9 of 19

low) trends. In particular, except for the topographical variables, the green area in the
500 m buffer was the closest related variable to biological indicators because the vectors
were parallel to the PC axis as a closer distance indicates a stronger impact. Meanwhile,
differences in the buffer scale were observed to be perpendicular to the vertical axis. Green
and urban areas in the 5 km buffers had a stronger effect than 500 m buffer areas in
PC2. Additionally, green areas exhibited a positive relationship with the three biological
indicators, whereas urban areas were negatively associated in the 500 m buffer. However,
the directionality of the 5 km and 500 m scales in urban areas differed as the urban areas
did not have a significant impact on the biological indicators at a wider range. Therefore,
the analysis focused on identifying the effect of the impact of the relationship on biological
indicators at each scale and type of area.Int. J. Environ. Res. Public Health 2021, 18, x 10 of 21 
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Figure 3. Principal component analysis biplot for the first two principal component scores.

3.3. Spatial Autocorrelation Verification of Biological Indicators

Analysis of the spatial autocorrelation of TDI, BMI, and FAI in the Nam-Han River
Basin using GeoDa indicated high spatial autocorrelation of the biological indicators
(Figure 4). In particular, the spatial autocorrelation coefficient (MI) for BMI was the highest
(0.834), which was followed by that of FAI (0.785) and TDI (0.779). The topographical
and land use variables and biological indicators showed MI values of 0.5 or higher, indi-
cating a significant spatial dependency of the variables (p < 0.01) [98]. The high spatial
autocorrelation of the biological indicators indicates that the spatial distribution of stream
biological conditions depends on the hierarchical structure of environmental conditions [54].
Thus, the stream biological condition at any point is not entirely independent and instead,
depends on the biological health around specific locations. These results suggest that
conducting sampling and statistical analyses without considering spatial autocorrelation
of stream biological indicators can cause potential errors.

Furthermore, the MI values estimated in this study do not only represent the spatial
autocorrelation or dependency of the measurements across the variables but also clustering
or dispersibility of the variables. The values represent a random distribution close to zero,
strong clustering close to +1, and strong dispersion of uniform close to −1; therefore, the
high MI values of the three biological indicators of the Nam-Han River Basin indicate that
their conditions are clustered [81].



Int. J. Environ. Res. Public Health 2021, 18, 5150 10 of 19
Int. J. Environ. Res. Public Health 2021, 18, x 11 of 21 
 

 

 
Figure 4. Moran’s I values of the three biological indicators. 

3.4. Regression Tree Analysis 
The slope of the 500 m buffer was the first variable to determine the differentiation 

for the biological indicators of the Nam-Han River Basin. This was consistent with the 
PCA results, which indicated that the slope of the 500 m buffer had the highest weight 
among the first PCs (0.93). However, the biological indicator results differed after Node1. 

The TDI regression tree indicates that the slope within the 500 m linear buffer in the 
riparian areas is the most significant variable to describe TDI (Figure 5). The observations 
were divided into two groups according to the slope, wherein groups with a slope less 
than 7.6% denoted a poor TDI condition, while groups with slopes more than 7.6% 
indicated a good TDI condition. The elevation of the 5 km circle buffer was the second 
most important variable to describe the TDI score in the group with a slope less than 7.6% 
(left side of the tree). A high elevation increased the mean TDI value by 21% and was 
associated with a good status of diatoms. In areas with slopes of 7.6% or higher (right side 
of tree), the proportion of green areas in the 500 m linear buffer was the second most 
important variable to explain the TDI status. In areas with relatively high slopes, a high 
proportion of green areas near the riparian system indicated better biological conditions 
of diatoms. After the mean elevation of the 5 km buffer, the green area in the 500 m buffer 
and 5 km buffer represented the third important variable on the left and right sides of the 
tree, respectively. The R2 value of the regression tree for TDI was 0.67, and the relative 
importance of the variables was 20% (500 m slope), 18% (5 km slope), 16% (5 km 
elevation), 15% (500 m elevation), 13% (500 m green area), 12% (5 km green area), 3% (500 
m urban area), and 2% (5 km urban area). Other than the topographical variables of the 
stream, an increased proportion of the forest and grass area near the riparian area, 
represented by the 500 m buffer green rate, improved the condition of diatoms. 

Figure 4. Moran’s I values of the three biological indicators.

3.4. Regression Tree Analysis

The slope of the 500 m buffer was the first variable to determine the differentiation for
the biological indicators of the Nam-Han River Basin. This was consistent with the PCA
results, which indicated that the slope of the 500 m buffer had the highest weight among
the first PCs (0.93). However, the biological indicator results differed after Node1.

The TDI regression tree indicates that the slope within the 500 m linear buffer in the
riparian areas is the most significant variable to describe TDI (Figure 5). The observations
were divided into two groups according to the slope, wherein groups with a slope less than
7.6% denoted a poor TDI condition, while groups with slopes more than 7.6% indicated a
good TDI condition. The elevation of the 5 km circle buffer was the second most important
variable to describe the TDI score in the group with a slope less than 7.6% (left side of the
tree). A high elevation increased the mean TDI value by 21% and was associated with
a good status of diatoms. In areas with slopes of 7.6% or higher (right side of tree), the
proportion of green areas in the 500 m linear buffer was the second most important variable
to explain the TDI status. In areas with relatively high slopes, a high proportion of green
areas near the riparian system indicated better biological conditions of diatoms. After
the mean elevation of the 5 km buffer, the green area in the 500 m buffer and 5 km buffer
represented the third important variable on the left and right sides of the tree, respectively.
The R2 value of the regression tree for TDI was 0.67, and the relative importance of the
variables was 20% (500 m slope), 18% (5 km slope), 16% (5 km elevation), 15% (500 m
elevation), 13% (500 m green area), 12% (5 km green area), 3% (500 m urban area), and
2% (5 km urban area). Other than the topographical variables of the stream, an increased
proportion of the forest and grass area near the riparian area, represented by the 500 m
buffer green rate, improved the condition of diatoms.

The first differentiation in the BMI regression tree was also the slope within 500 m
of the riparian area (Figure 6). In the lower slope group (left of the tree), the second most
important variable was the green area in the 5 km circle buffer, which was again classified
as the urban area of the 500 m buffer at the divided node. However, the second most
important variable in the high slope group (right side of the tree) was elevation. Low
values of elevation in the 5 km buffer were affected by the BMI condition in the green area
of the 500 m buffer. Furthermore, the wide range of green areas with lower slopes (i.e.,
relatively less fluid flow) had a significant impact on the condition of macroinvertebrates,
suggesting that the green area near the stream was comparatively more important among
the areas with high slopes (i.e., areas with more fluid flow). The R2 value of the BMI
regression tree was 0.78, and the relative importance of the variables was 20% (500 m slope),
15% (5 km elevation), 14% (500 m elevation), 14% (5 km green area), 13% (500 m green
area), 3% (500 m urban area), and 2% (5 km urban area). Similar to the TDI results, the
proportion of the green areas at wide ranges, represented by the proportion of green areas
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within the 5 km buffer, influenced the improvement of macroinvertebrate conditions along
with the stream topographical variables.
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In the FAI regression tree, fish condition scores were divided first by the 500 m slope
(Figure 7). Observations with slope less than 9.3% formed a second node at the urbanization
rate of the 5 km circle buffer. For FAI values classified in high urbanization areas (left
of the tree), the third most important variable was the slope of the 500 m buffer, which
was then split into the elevation and urbanization rates of the 500 m buffer at the next
node. In groups with a high slope of 9.3% or more (right side of the tree), the second
most important variable that determined fish condition was elevation of the 500 m buffer,
which indicated the mean elevation of the riparian area from the sampling point. Unlike
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the TDI and BMI regression trees, the FAI regression tree indicated that along with the
topographical variables, the fish condition was more likely affected by the urban areas
rather than green areas. In the low slope areas, the urban area within the 5 km buffer
determined the biological status of fish. Additionally, in the high slope areas, the impact
on the surrounding land use and fish condition was determined only by the elevation near
the streams. This suggests that the biological conditions of fish in the Nam-Han River
Basin were more likely affected by pollutants from urban areas around the stream than by
the surrounding forests. The R2 of the regression tree for FAI was 0.72, and the relative
importance of the variables was 21% (500 m slope), 17% (5 km elevation), 17% (5 km slope),
13% (5 km urban rate), 10% (5 km green rate), 4% (500 m urban rate), and 1% (500 m green
rate). Along with the stream topographical variables, the proportion of urban areas in a
wide area, represented by the 5 km buffer urbanization rate, influenced the improvement
of the fish condition.
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4. Discussion
4.1. Spatial Autocorrelation of Stream Biological Indicators

Previous studies investigated the biological indicators of stream condition without
considering the spatial dependency inherent from the systemic structure of stream ecosys-
tems [99–101]. Such inherent spatial dependency of variables violates the basic assumption
of the conventional statistical analyses and may under/over-estimate the LULC in water-
shed and riparian areas based on the physiochemical properties and ecological condition
of streams [48]. In this study, the three biological indicators (i.e., TDI, BMI, and FAI) in the
Nam-Han River showed significant spatial autocorrelation.

Spatial dependence in stream biological communities can occur due to multiple rea-
sons. By the definition, streams are a fluid ecosystem in which water continuously flows
from headwater in mountainous areas to the estuary in lowlands which is the heart of river
continuum concept [102]. Thus, polluted or ecologically impaired headwater can directly
affect conditions downstream, despite the concentration of pollutants and the degree of
impairments can be mediated or more deteriorated by other tributaries. Therefore, the
physiochemical and biological conditions of streams are dependent on the condition of the
headwater and the feeding streams resulting in spatial autocorrelations between upstream
and downstream at various spatial scales [103–105]. Beside the nature of stream itself, the
most common probable cause of spatial dependency in stream properties is topographic
characteristics (e.g., elevation, and slope) in watersheds. Topographic features are not
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randomly distributed and have structural patterns in space. Thus, the topographic char-
acteristics of a certain location are dependent on surroundings [106,107]. In our study
areas, we were able to observe significant spatial autocorrelations of elevation and slope.
In literature, topographic characteristics have been shown to determine the hydrologic
and hydraulics systems, the amount of pollutant loading, run-off process, and pollutant
delivering mechanisms [108,109]. Topographic characteristics even affect the availability,
types, and intensity of land uses in watersheds and riparian areas [110]. Thus, it is evident
that stream systems in the watershed are strongly tied with topographic characteristics in
various ways. We also observed strong correlations of elevation and slope with the amounts
of forests and biological indicators including TDI, BMI, and FAI through PCA. Besides,
slope and elevation appeared as the first and the second splitter in our estimated regression
tree models for TDI (Figure 5), BMI (Figure 6), and FAI (Figure 7), which emphasize the im-
portance in explaining the variances of TDI, BMI, and FAI across the study areas. Since the
topographic characteristics are structured systems over space (i.e., spatially autocorrelated),
and stream systems are strongly tied with topographic systems, the spatial dependency of
physiochemical attributes and biological communities of streams are inevitably inherent
from spatial autocorrelation of topographic properties. Numerous studies argued the
problems using conventional statistical methods (e.g., Spearman’s rank correlation and
ordinary least square regression) assuming independency among observations [111,112].
Our findings suggest that spatial autocorrelation should be considered while assessing the
relationship between environmental variables and stream quality.

4.2. Land Use and Topographical Effects on Biological Indicators of Stream

Diatoms, macroinvertebrates, and fish, as indicators of stream condition, exhibit
different characteristics and complex mechanisms that interact with environmental and
topographical variables [113,114]. According to the PCA and regression tree analyses
results, topographic variables, including elevation and slope, had the strongest relationship
with biological indicators, and the relationships between urban areas, green areas, and
biological indicators at the 5 km scale were stronger at those at the 500 m scale. However,
the variables that determined the second differentiation differed on the regression trees
of the three biological indicators. The regression trees showed that slope at the 500 m
scale had the greatest effect on the biological indicators. In the case of the TDI regression
tree, the percentage of green areas at the 500 m scale was the most important factor after
topographical characteristics. However, the BMI regression tree indicated that the green
area at the 5 km scale had strong effects on the biological indicators at low slopes, while
the green area at the 500 m scale had strong effects on the biological indicators at steep
slopes. Moreover, the urban area at the 5 km scale had greater effects on FAI than at the
500 m scale.

The results of this study can be discussed in two aspects. First, the reason why the ini-
tial split was estimated as a topographical variable is that because of most of the tributaries
in the Nam-Han River Basin are in forests. Furthermore, topographical factors, including
elevation and slope are important variables for determining the biological indexes [17]. The
forests are at high elevation and have a steep terrain; therefore, elevations and slopes are
critical for determining the spatial characteristics of the stream ecosystem because they rep-
resent structural determinants of the amount and speed of water flow [115]. Subsequently,
the amount and speed of stream water can significantly change the biological condition in
the stream. In addition, elevation and slopes may restrict land use around streams. Urban
and agricultural areas that are majorly built downstream at low elevation and slope, greatly
influence the stream biological indicators [116]. Therefore, the highest elevation and slope
variables affect the biological condition of the tributaries in the Nam-Han River Basin
since forests comprise 70% of the total basin area. Second, the biological characteristics
of each biological indicator are different. Diatoms are largely affected by the surround-
ing regions [117]. They are sensitive to light and water temperature, and that is greatly
influenced by its conductivity. Urbanized rivers generally have a higher conductivity than
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the rivers that flow through forested landscapes. This increases the intensity of light and
increases the water temperature, making it a habitat disadvantage to the species [118].
Consistent with the results of this study, topographical variables and green areas in the
riparian areas were critical for diatoms. Furthermore, macroinvertebrates and fish respond
distinctly to changes in their physical habitats. This is more evident for fish, which directly
represent stream conditions since they are the top predator in the food chain of the stream
ecosystem [119,120]. According to studies by B. Schmalz et al. [121], macroinvertebrates
have the strongest correlation with dominant substrates, and fish have a stronger corre-
lation with flow variability and immediate land use. Additionally, another prior study
of this ascribed greater predictive power to land use by comparison the covered a larger
area, providing greater contrast among sub-catchments [122]. The results concluded that
the importance of local habitat conditions is best revealed by comparing at the within
sub-catchment scale. Thus, it is assumed that macroinvertebrates were most affected by
proportion of green areas on a wide-area scale, which is the largest land use in this study.
And except for the topographical variables, the proportion of urbanized area is acting as
the biggest factor in the species status change of fish because the changes in land use are
relatively immediate. Since the detailed life cycle, food chain and movement mechanisms
of the three biological indicators are different, they have different environmental variables
that are most affected by each of them, even in the same site [123,124].

5. Conclusions

This study examined the relationship between land cover (represented as green and
urban areas) and biological indicators according to two buffer scales. Subsequently, differ-
ent variables were the first differentiation criterion for the regression tree of each biological
indicator, thus indicating that the effect of green and urban areas differed and depended on
the condition of each biota in the stream. Additionally, the effect of the riparian proximity
difference was compared by comparing the proportion of areas in the 5 km circle and 500 m
linear buffers. Our findings indicate that these effects can vary significantly depending on
the topographical variables of the watershed. Furthermore, as the topography of the study
area was influenced by the characteristics of the forest terrain in the Nam-Han River Basin,
considering the river topography during land use planning is essential in the basin.

This study provides several implications for planning and managing LULC in water-
shed and riparian areas. First, the study emphasizes that spatial autocorrelation originating
from the spatial characteristics of river ecosystems along with their relationships with land
use and topographical characteristics should be considered while analyzing the biological
condition of the stream. Subsequently, this could provide additional information, such as
the criteria of node splitting, and correlation of various effects on river ecosystems. Second,
our results provide a basis for considering the impact of locations of green and urban areas
on each biological index through a comparison on two different scales. Positive effects
of green areas are commonly known, but sufficient literature on the effect of the spatial
extent of different types of areas on each biological indicator at the same study site does
not exist. Therefore, this study verified and compared the difference in the impact of the
location of green and urban areas on each species. However, the present study was limited
to green areas (including forests and grasslands) and urban areas (including cities, roads,
and buildings) in the Nam-Han River Basin. Thus, future research should include other
environmental characteristics of the basin. Third, the regression trees that were constructed
for the biological indicators can assist in establishing and prioritizing stream restoration
strategies by determining the significance of topography and land cover variables for
the condition of each biological indicator in the basin. Different land cover types and
topographical characteristics affect different biological indicators, which in turn indicate
the biological condition of the basin by determining the unhealthy indicators. Thus, the
results of this study can serve as a baseline for supplementing efficient management of the
basin. However, arguably the most significant limitation of regression tree analysis is that
it is a nonparametric approach which makes it hard to generalize the analysis results based
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on the observed data. The estimated regression tree model is a black-box model simply
describing the relationship between predictors and responses [95] and is built based on the
observed datasets without inference about the underlying probability distribution [125].
Another limit of the regression tree analysis is the complexity of the estimated regression
tree when it has many nodes, and, in such cases, interpretation of the estimated tree can be
challenging [95,126,127]. Therefore, additional studies should be conducted to investigate
these limitations further and to develop reliable tools for moderating these issues.

Author Contributions: M.-Y.K. designed the research, performed the data analysis, and wrote the
manuscript, interpreted the results of the analysis and edited the manuscript; S.-W.L. performed the
additional statistical analysis and finalized the manuscript. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This paper was supported by the National Research Foundation of Korea (NRF)
grant funded by the Korean government (MSIT) (No. 2019R1F1A1063823) and the environmental
basic investigates projects by Han River Watershed Environmental Management Office. This work
was also supported by the National Institute of Environmental Research (NIER), funded by the
Ministry of Environment (MOE) of the Republic of Korea (grant no. NIER-2018-04-02-017).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The River Continuum Concept. Can. J. Fish. Aquat. Sci.

1980, 37, 130–137. [CrossRef]
2. Yang, B.; Li, S. Design with Nature: Ian McHarg’s Ecological Wisdom as Actionable and Practical Knowledge. Landsc. Urban Plan.

2016, 155, 21–32. [CrossRef]
3. Stone, M.L.; Whiles, M.R.; Webber, J.A.; Williard, K.W.; Reeve, J.D. Macroinvertebrate Communities in Agriculturally Impacted

Southern Illinois Streams: Patterns with Riparian Vegetation, Water Quality, and In-stream Habitat Quality. J. Environ. Qual. 2005,
34, 907–917. [CrossRef]

4. Rankin, E.T. Habitat Indices in Water Resource Quality Assessments. In Biological Assessment and Criteria: Tools for Water Resource
Planning and Decision Making; CRC Press: Boca Raton, FL, USA, 1995; Volume 1995, pp. 181–208.

5. Wang, L.; Lyons, J.; Kanehl, P.; Gatti, R. Influences of Watershed Land use on Habitat Quality and Biotic Integrity in Wisconsin
Streams. Fisheries 1997, 22, 6–12. [CrossRef]

6. Lamberti, G.A. Grazing Experiments in Artificial Streams. J. N. Am. Benthol. Soc. 1993, 12, 337–342.
7. Leland, H.V.; Porter, S.D. Distribution of Benthic Algae in the Upper Illinois River Basin in Relation to Geology and Land Use.

Freshwat. Biol. 2000, 44, 279–301. [CrossRef]
8. Lee, S.; Hwang, S. Investigation on the Relationship between Land use and Water Quality with Spatial Dimension, Reservoir

Type and Shape Complexity. J. Korean Inst. Landsc. Archit. 2007, 34, 1–9.
9. Lee, S. Testing Non-Stationary Relationship between the Proportion of Green Areas in Watersheds and Water Quality using

Geographically Weighted Regression Model. J. Korean Inst. Landsc. Archit. 2013, 41, 43. [CrossRef]
10. Meador, M.R.; Coles, J.F.; Zappia, H. American Fisheries Society Symposium; Fish Assemblage Responses to Urban Intensity

Gradients in Contrasting Metropolitan Areas: Birmingham, AL, USA, 2005; pp. 409–423.
11. Mehaffey, M.H.; Nash, M.S.; Wade, T.G.; Ebert, D.W.; Jones, K.B.; Rager, A. Linking Land Cover and Water Quality in New York

City’s Water Supply Watersheds. Environ. Monit. Assess. 2005, 107, 29–44. [CrossRef]
12. Tong, S.T.; Chen, W. Modeling the Relationship between Land use and Surface Water Quality. J. Environ. Manag. 2002, 66,

377–393. [CrossRef]
13. Tu, J.; Xia, Z. Examining Spatially Varying Relationships between Land use and Water Quality using Geographically Weighted

Regression I: Model Design and Evaluation. Sci. Total Environ. 2008, 407, 358–378. [CrossRef]
14. Weaver, L.A.; Garman, G.C. Urbanization of a Watershed and Historical Changes in a Stream Fish Assemblage. Trans. Am. Fish.

Soc. 1994, 123, 162–172. [CrossRef]
15. Park, S.; Lee, H.; Lee, S.; Hwang, S.; Byeon, M.; Joo, G.; Jeong, K.; Kong, D.; Kim, M. Relationships between Land use and Multi-

Dimensional Characteristics of Streams and Rivers at Two Different Scales. Ann. Limnol. Int. J. Limnol. 2011, 47, 107–116. [CrossRef]

http://doi.org/10.1139/f80-017
http://doi.org/10.1016/j.landurbplan.2016.04.010
http://doi.org/10.2134/jeq2004.0305
http://doi.org/10.1577/1548-8446(1997)022&lt;0006:IOWLUO&gt;2.0.CO;2
http://doi.org/10.1046/j.1365-2427.2000.00536.x
http://doi.org/10.9715/KILA.2013.41.6.043
http://doi.org/10.1007/s10661-005-2018-5
http://doi.org/10.1006/jema.2002.0593
http://doi.org/10.1016/j.scitotenv.2008.09.031
http://doi.org/10.1577/1548-8659(1994)123&lt;0162:UOAWAH&gt;2.3.CO;2
http://doi.org/10.1051/limn/2011023


Int. J. Environ. Res. Public Health 2021, 18, 5150 16 of 19

16. Chelsea Nagy, R.; Graeme Lockaby, B.; Kalin, L.; Anderson, C. Effects of Urbanization on Stream Hydrology and Water Quality:
The Florida Gulf Coast. Hydrol. Process. 2012, 26, 2019–2030. [CrossRef]

17. An, K.; Lee, S.; Hwang, S.; Park, S.; Hwang, S. Exploring the Non-Stationary Effects of Forests and Developed Land within
Watersheds on Biological Indicators of Streams using Geographically-Weighted Regression. Water 2016, 8, 120. [CrossRef]

18. Hwang, S.; Hwang, S.; Park, S.; Lee, S. Examining the Relationships between Watershed Urban Land use and Stream Water
Quality using Linear and Generalized Additive Models. Water 2016, 8, 155. [CrossRef]

19. Casotti, C.G.; Kiffer Jr, W.P.; Costa, L.C.; Rangel, J.V.; Casagrande, L.C.; Moretti, M.S. Assessing the Importance of Riparian Zones
Conservation for Leaf Decomposition in Streams. Nat. Conserv. 2015, 13, 178–182. [CrossRef]

20. Chellaiah, D.; Yule, C.M. Effect of Riparian Management on Stream Morphometry and Water Quality in Oil Palm Plantations in
Borneo. Limnologica 2018, 69, 72–80. [CrossRef]

21. Pusey, B.J.; Arthington, A.H. Importance of the Riparian Zone to the Conservation and Management of Freshwater Fish: A
Review. Mar. Freshw. Res. 2003, 54, 1–16. [CrossRef]

22. Popov, V.H.; Cornish, P.S.; Sun, H. Vegetated Biofilters: The Relative Importance of Infiltration and Adsorption in Reducing
Loads of Water-Soluble Herbicides in Agricultural Runoff. Agric. Ecosyst. Environ. 2006, 114, 351–359. [CrossRef]

23. Meek, C.S.; Richardson, D.M.; Mucina, L. A River Runs through it: Land-use and the Composition of Vegetation Along a Riparian
Corridor in the Cape Floristic Region, South Africa. Biol. Conserv. 2010, 143, 156–164. [CrossRef]

24. Scott, M.L.; Nagler, P.L.; Glenn, E.P.; Valdes-Casillas, C.; Erker, J.A.; Reynolds, E.W.; Shafroth, P.B.; Gomez-Limon, E.; Jones, C.L.
Assessing the Extent and Diversity of Riparian Ecosystems in Sonora, Mexico. Biodivers. Conserv. 2009, 18, 247–269. [CrossRef]

25. Broadmeadow, S.; Nisbet, T.R. The Effects of Riparian Forest Management on the Freshwater Environment: A Literature Review
of Best Management Practice. Hydrol. Earth Syst. Sci. 2004, 8, 286–305. [CrossRef]

26. Li, M.; Huang, C.; Zhu, Z.; Shi, H.; Lu, H.; Peng, S. Assessing Rates of Forest Change and Fragmentation in Alabama, USA, using
the Vegetation Change Tracker Model. For. Ecol. Manag. 2009, 257, 1480–1488. [CrossRef]

27. Taniwaki, R.H.; Cassiano, C.C.; Filoso, S.; de Barros, F.; Silvio, F.; de Camargo, P.B.; Martinelli, L.A. Impacts of Converting
Low-Intensity Pastureland to High-Intensity Bioenergy Cropland on the Water Quality of Tropical Streams in Brazil. Sci. Total
Environ. 2017, 584, 339–347. [CrossRef]

28. Popescu, C.; Oprina-Pavelescu, M.; Dinu, V.; Cazacu, C.; Burdon, F.J.; Forio, M.A.E.; Kupilas, B.; Friberg, N.; Goethals, P.;
McKie, B.G. Riparian Vegetation Structure Influences Terrestrial Invertebrate Communities in an Agricultural Landscape. Water
2021, 13, 188. [CrossRef]

29. Forio, M.A.E.; De Troyer, N.; Lock, K.; Witing, F.; Baert, L.; Saeyer, N.D.; Rîs, noveanu, G.; Popescu, C.; Burdon, F.J.; Kupilas, B.
Small Patches of Riparian Woody Vegetation Enhance Biodiversity of Invertebrates. Water 2020, 12, 3070. [CrossRef]

30. Mutinova, P.T.; Kahlert, M.; Kupilas, B.; McKie, B.G.; Friberg, N.; Burdon, F.J. Benthic Diatom Communities in Urban Streams and
the Role of Riparian Buffers. Water 2020, 12, 2799. [CrossRef]

31. Burdon, F.J.; Ramberg, E.; Sargac, J.; Forio, M.A.E.; De Saeyer, N.; Mutinova, P.T.; Moe, T.F.; Pavelescu, M.O.; Dinu, V.; Cazacu, C.
Assessing the Benefits of Forested Riparian Zones: A Qualitative Index of Riparian Integrity is Positively Associated with
Ecological Status in European Streams. Water 2020, 12, 1178. [CrossRef]
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