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Abstract: Although advances in machine-learning healthcare applications promise great potential for
innovative medical care, few data are available on the translational status of these new technologies.
We aimed to provide a comprehensive characterization of the development and status quo of clinical
studies in the field of machine learning. For this purpose, we performed a registry-based analysis
of machine-learning-related studies that were published and first available in the ClinicalTrials.gov
database until 2020, using the database’s study classification. In total, n = 358 eligible studies could be
included in the analysis. Of these, 82% were initiated by academic institutions/university (hospitals)
and 18% by industry sponsors. A total of 96% were national and 4% international. About half of
the studies (47%) had at least one recruiting location in a country in North America, followed by
Europe (37%) and Asia (15%). Most of the studies reported were initiated in the medical field of
imaging (12%), followed by cardiology, psychiatry, anesthesia/intensive care medicine (all 11%) and
neurology (10%). Although the majority of the clinical studies were still initiated in an academic
research context, the first industry-financed projects on machine-learning-based algorithms are
becoming visible. The number of clinical studies with machine-learning-related applications and
the variety of medical challenges addressed serve to indicate their increasing importance in future
clinical care. Finally, they also set a time frame for the adjustment of medical device-related regulation
and governance.

Keywords: machine learning; digital health; registry analysis; ClinicalTrials.gov; device regulation

1. Introduction
1.1. Background

Before medical innovations can be implemented in daily clinical routine, it takes more
than a decade from research and development to market approval [1–3]. In this translation
phase, a multitude of challenges and specifications have to be overcome so that a device
can successfully be brought to the market, from patient recruitment, data consolidation
and fragmented infrastructures to regulatory hurdles and (start-up) financing of research
costs [4,5]. Examining the literature, it is noticeable that so far, there are hardly any data on
the specific translation process of medical–digital applications that are increasingly being
developed and that promise great benefits and potentials for health prevention, diagnostics,
and therapy [6–10].

1.2. Research Motivation and Objective

Against this background, it was our aim to explore the development and current
translation status of medical–digital applications in the field of machine learning (ML),
a sub-area of artificial intelligence in which computer algorithms and statistical models
are trained based on large datasets to independently link and predict abnormalities and
correlations in a self-learning manner [11–15]. We focused on ML, as there are already a
wide range of ML-based approaches and innovative developments for health care reported
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in the literature, from image diagnostics and processing [16–20], personalized medicine
and genomics [21–23] to clinical data analysis for decision support and training in surgery,
therapy planning or patient management [24–28].

In view of the research question, we decided to analyze study register data as they
offer a glance into the research pipeline of universities, university clinics and research
institutions as well as pharmaceutical, medical device, and biotech companies, and thus,
provide first insights into the clinical translation process of ML-related applications and
software. This registry-based approach also allows us to cluster and identify fields with
increased research and investment that might be of clinical significance in the next decade.
Considering legislative delays, our results may support health decision- and policymakers
struggling with challenges in the regulation and governance of ML-applications [29–31].

2. Materials and Methods
2.1. Data Acquisition and Processing

For our study, we used datasets from ClinicalTrials.gov, one of the most comprehensive
databases for clinical studies worldwide with over 360,000 planned, ongoing and completed
clinical studies published at the time of access [32–35]. The register is freely accessible
via https://clinicaltrials.gov [36]. For each study, (i) a given set of study characteristics
is compulsory, and (ii) study-specific details are requested, using free text fields, such as
title or individual short description. The ClinicalTrials.gov database and methodological
approach have already been chosen frequently in other research studies to characterize
study populations and trends in clinical care and research [37,38], for example in the areas
of medical imaging [39–41], rare diseases [42] or oncology [43,44].

In view of the research question, the “advanced search function” was used to filter the
register data records for which “Machine Learning” (a MeSH term introduced in 2016, [12])
had been entered in the report form and which were published by the end of 2020 (search
term: “Machine Learning”|First posted on or before 31 December 2020). The dataset
was retrieved on 7 January 2021 and exported in CSV file format [36]. In a second step,
the authors scanned the dataset and included all study entries that clearly focused on the
use or testing of ML-based algorithms, approaches or applications in a clinical setting.
Entries on clinical trials that, according to the reporting party, were “withdrawn” or
“terminated” or clearly did not primarily focus on the use of ML-related approaches or
applications in clinical care were excluded from the study. In order to be able to filter and
subgroup the studies in detail, the authors scanned the free text information of the study
entries. Figure 1 shows the methodical procedure for the selection process of the study
dataset considered for the register data analysis in the form of a flowchart.

https://clinicaltrials.gov
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Figure 1. Flowchart for the selection procedure of the ML-related clinical study entries considered for
the quantitative registry analysis. Source: Own figure based on the evaluation of the ClincalTrials.gov
dataset [36].

2.2. Data Evaluation and Analysis

In order to provide an overview of the development and status quo of ML-related
software approaches and applications in the clinical setting, the study entries were sorted
in ascending order according to the date of which the study record was first available on
ClinicalTrials.gov. Furthermore, common standardized study parameters, such as study
type, recruitment status, age group or funding source, were evaluated [45]. In order to
achieve a more in-depth characterization of the dataset, the authors scanned, evaluated
and subcategorized the study entries according to further parameters, such as recruiting
country, academic/industry sponsor or clinical study-initiating medical specialty/field.
Further free text information, such as intervention arms, inclusion criteria or end points of
the trials, were not part of the study.

In view of the explorative nature of the study objective, we evaluated the registry
dataset descriptively. One-dimensional frequency distributions (absolute, relative) were
determined for the analyzed study characteristics. The development of the published
studies per year over time was shown graphically using a bar chart, and the description of
all other parameters was summarized in tables. The quantitative acquisition, processing
and statistical evaluation of the dataset was carried out, using Microsoft Excel® software
for Microsoft Windows®.

3. Results
3.1. Registration of ML-Related Studies over Time

For our study, n = 358 study entries in the field of ML were included (see Figure 1).
Sorted by year of first publication in the ClinicalTrials.gov register, a continuous rise in
ML-related study entries could be seen since 2015, with a particularly significant increase
between 2019 and 2020, from n = 89 to n = 149 posted studies (see Figure 2).
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Figure 2. Number of clinical studies related to ML by year of publication on ClinicalTrials.gov
(n = 358). Source: Own figure based on the evaluation of the ClincalTrials.gov dataset [36].

3.2. Medical Field of Application

The registered studies focused on a broad spectrum of different topics from a wide
range of medical specialties. The majority of the posted studies in the field of machine
learning was initiated by experts from the field of imaging (diagnostic radiology, nu-
clear medicine, radiation oncology; 12%), followed by cardiology, psychiatry, anesthe-
sia/intensive care medicine (all 11%), neurology (10%), medical oncology (8%) and infec-
tious disease medicine (6%) (see Figure 3). The latter mainly included studies that were
published in 2020 on COVID-19-related issues.
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3.3. Patient Recruitment and Study Organization

About half of the listed clinical studies were open (55%) or closed (45%) for patient
enrollment. A total of 27% of the studies had already completed the recruitment phase.
The vast majority of studies (98%) did not yet have any results. A total of 80% of the studies
in the dataset were single-center, 13% multi-center studies. Seven percent could not be
classified because of missing information (see, for this and the following, Table 1). Of the
studies, 96% were national and 4% international. Of these, by far the most studies had a
last recruiting location in the U.S.A. (40%), followed by China (9%), the United Kingdom
(8%), Canada (6%), France (5%), Switzerland and Germany (each 4%). Across all study
entries, and with a view to the major global regulatory regions, most of the published
studies recruited patients in a country in North America (47%), followed by Europe (37%)
and Asia (15%; other 6%).

Table 1. Recruitment and organizational parameters of the included ML-related trials from the
ClinicalTrials.gov registry (n = 358).

Absolute (n) Relative (%) *

Overall study status *
Patient recruitment

Open 198 55
Not open 160 45

Recruitment status
Not yet recruiting 64 18

Recruiting 134 37
Enrolling by invitation 15 4
Active, not recruiting 22 6

Suspended 5 1
Completed 95 27

Unknown status 23 6
Study results

Studies with results 6 2
Studies without results 352 98

Organization/Cooperation
Number of study locations

Single study location 288 80
Multiple study locations 46 13

Not clear 24 7
National/International

National 345 96
International 13 4

Study location/Recruiting country **
The United States of America 144 40

China 34 9
The United Kingdom 28 8

Canada 23 6
France 18 5

Switzerland 14 4
Germany 13 4

Israel 12 3
Spain 12 3

Netherlands 11 3
All others (Republic of Korea, Italy, Belgium, etc.) 67 19
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Table 1. Cont.

Absolute (n) Relative (%) *

Lead sponsor
University/Hospital 292 82

Industry 66 18
Funding Sources **

Industry 86 24
All others (individuals, universities, organizations) 314 88

Government agencies 19 5
National Institutes of Health (NIH) *** 11 3

Other U.S. Federal Agency *** 8 2
* Sum partly 6= 100 due to rounding; ** More than one choice possible; *** Subcategories in italics; Source: Own
table based on the evaluation of the ClincalTrials.gov dataset [36].

In 82% of the studies, a university (hospital) and/or research institution was named
as the organization/person responsible for the study (so-called “lead sponsor”), and in
18%, an industrial company. The majority of trials (88%) was (co-) funded by individuals,
universities or organizations themselves, 24% of trials were (co-) funded by the industry
and 5% had a public (government) sponsorship.

3.4. Study Type and Design

Of the n = 358 clinical studies categorized, around two thirds (64%) were reported as
observational studies and around one third (36%) as interventional studies (see, for this
and the following, Table 2). Among the observational studies, the majority of the studies
were designed as prospective cohort studies. The majority of the interventional studies
was open label/non-masked and single-armed. Over 90% of the studies planned to enroll
(elderly) patients of both genders.

Table 2. Study type and study design specific parameters of the included ML-related clinical trials
from the ClinicalTrials.gov registry (n = 358).

Absolute (n) Relative (%) *

Population studied
Age group **

Included children 74 21
Included adults 341 95

Included older adults (age > 65 year) 320 89
Gender of participants

Both 333 93
Female only 20 6
Male only 5 1

Study type and design
Observational Studies *** 230 64

Observational Model
Cohort 154 43

Case-Control 26 7
Case-Only 26 7

Other 24 7
Time Perspective

Prospective 140 39
Retrospective 57 16

Cross Sectional 17 5
Other 16 4
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Table 2. Cont.

Absolute (n) Relative (%) *

Interventional Studies *** 128 36
Allocation

Randomized 66 18
Non-Randomized 17 5

N/A 45 13
Intervention Model

Single Group Assignment 48 13
Parallel Assignment 69 19

Other (crossover, sequential, etc.) 11 3
Masking/Blinding

None (Open Label) 77 22
Masked 51 14

Single (Participant or Outcomes Assessor) 19 5
Double or triple 32 9
Primary purpose

Diagnostic 37 10
Treatment 26 7
Prevention 12 3

Supportive Care 11 3
Other 42 12

Intervention/treatment type **
Behavioral 40 11

Device 86 24
Diagnostic Test 77 22

Drug 17 5
Procedure 13 4

Other 155 43
* Sum partly 6= 100 due to rounding; ** More than one choice possible; *** Subcategories in italics; Source: Own
table based on the evaluation of the ClincalTrials.gov dataset [36].

4. Discussion and Conclusions

Recent improvements and innovative approaches in the field of artificial intelligence
promise high potential for the diagnosis and treatment of patients [46–49]. The sub-
area of ML in which self-learning algorithms (such as convolutional neural network,
random forest, support vector machine, etc. [50–52]) are trained on large datasets and
used to make predictions independently when exposed to new data, is particularly ad-
vancing [11,13,14,17,19,20]. More and more research is showing that newly developed
algorithms can process specialized tasks just as well as experienced health professionals or
can increase their efficiency and performance in daily care [53–56]. A crucial factor for the
successful development of ML-based software and assistance systems is—besides medical
and technological expertise—in particular, the testing and use of these applications in daily
clinical routine [57,58]. With this in mind, it was our goal to find out more about the recent
development and status of the clinical translation of ML-related software and applications
into the clinical setting. The translation and market approval of ML-based algorithms
represent a major challenge in terms of legislation and regulation. Using the example of
register data, the results show how dynamically this area is developing across medical
disciplines. As a result, questions about governance and clinical testing will have to be
answered in the near future (cf. for example [29–31]). In the following sections, we will
summarize the main results of the registry data analysis on ML-related clinical studies,
discuss this with reference to the regulatory environment and point out the methodological
limitations of the study.

4.1. Studies in the Field of ML

The study data show that the number of ML-related studies in ClinicalTrials.gov has
increased continuously from year to year since 2015, with a particular increase between
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2019 and 2020 (see Figure 1). From a methodological point of view, it should be noted
that the MeSH term “machine learning”, which was crucial for the study search in the
registry database, was introduced in 2016 by the U.S. National Library of Medicine [12].
This could have influenced the search and selection procedure (especially for the period
before 2015), as this MeSH term was probably only systematically reported and checked
as a quality control review criteria for the clinical study registration from this point in
time [59]. For the last few years, however, a visible increase in the number of published
studies can be determined. This could be an indicator for the growing potential that is
associated with the use and application of ML-related software/algorithms for medical
care and research.

In addition, it was found that the majority of the analyzed studies in the field of ML
were initiated and led by (university) hospitals or academic/research institutions (82%) and
were (co-) financed from university (88%) or public/government funds (5%) (see Table 1).
Among the academic institutions, most of the registered studies were reported by the Mayo
Clinic (U.S.), Maastricht University Medical Center (NL), Sun Yat-Sen University (CN) and
University of California (U.S.). In this context, the authors assume, that the number and
proportion of academically initiated ML-related studies is likely to be underestimated here
since the sponsor or PI in some cases does not necessarily have to register an academic
study in a database such as ClinicalTrials.gov. This is especially the case for studies in the
preclinical development stage or if only retrospective data are used. In comparison, fewer
studies were initiated (18%) or (co-) financed (24%) by an industry sponsor. The proportion
of studies with an industrial study sponsor is (still) relatively low, compared to other
publications on ClinicalTrials.gov study data. For example, a cross-sectional analysis
by Ross et al., published in 2009, showed a proportion of 40% in studies with industry
sponsors [38] and a study by Bell and Smith from 2014 on over 24 thousand clinical studies
on rare and non-rare conditions showed a proportion of more than 30 percent [42].

Among the industry sponsors were several comparatively small companies and start-
ups with a focus on the development of algorithms in medicine (e.g., Dascena® and Eko
Devices®). In general, it can therefore be assumed that the ML-related approaches reported
were still mainly initiated and used in an academic/research context but could gradually
be transferred to clinical translation and early clinical study development phases with
increasing support from the industry, which sees investment potentials in this area.

Moreover, the analyzed studies were initiated from a variety of different medical fields
and disciplines (Figure 3). Looking at the dataset, it could be seen that the ML-related
approaches in the clinical studies used different types of training data. This included
image data (e.g., in radiomics studies), sensor data (e.g., ECG signals), video data, text data
and audio data (e.g., monitor audio signals). Furthermore, the registered studies used a
wide range of different types and approaches of ML algorithms, such as (un-) supervised
or reinforced learning. In order to illustrate this heterogeneity, we show selected study
approaches from different medical application areas and fields. We hereby focus on
advanced clinical studies for which the recruitment phase was reported as completed and
at least one scientific publication was available.

• Blomberg et al. reported to analyze whether a ML-based algorithm could recognize
out-of-hospital cardiac arrests from audio files of calls to the emergency medical
dispatch center (NCT04219306, [60]);

• Jaroszewski et al. wanted to evaluate a ML-Driven Risk Assessment and Intervention
Platform to increase the use of psychiatric crisis services (NCT03633825; [61]);

• Mohr et al. stated to evaluate and compare a smartphone intervention for depression
and anxiety that uses ML to optimize treatment for participants [NCT02801877; [62]);

• Nieman et al. conducted a study to investigate the diagnostic performance of ML-
based, coronary computed, tomography–angiography-derived fractional flow reserve
(NCT02805621; [63–65]);

• Putcha et al. performed a study on a ML-based approach to discover signatures in cell-
free DNA to potentially improve the detection of colorectal cancer (NCT03688906; [66,67].
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In summary, the results of the registry data analysis show that the registered stud-
ies in the field of ML were very heterogeneous, both from an organizational and study
design perspective. Against this background, it would make sense to carry out further
(especially multivariate) sub-evaluations of the dataset for selected study groups, for exam-
ple, with large cohort radiomics studies, etc. Finally, it should be noted that the imaging
disciplines in particular are involved in many studies, both as a study-initiating discipline
and as a clinical partner, for example, for CT, MRI or PET scans. Since only the respective,
study-initiating department was focused on for the register analysis, it can be assumed
that the proportion of ML-related studies in which imaging experts are centrally integrated
is significantly higher than the 12% shown in Figure 3.

4.2. Regulatory Framework and Aspects

With regard to the dataset, it is essential to point out, from a regulatory point of view,
that the posted studies in the field of ML always address software that, in many cases, func-
tions or is used (directly) in connection with a medical device. This is of central importance
since from a regulatory point of view, software is considered a medical product in many
regulatory areas, such as the U.S. or the European Union [68], and is, therefore, subject
to the associated regulatory requirements, such as conformity assessment, registration,
clinical evaluation or post-market surveillance [69]. In the EU, for example, software is
considered a medical device according to the European Medical Device Regulation (MDR),
which will come into force in May 2021, “when specifically intended by the manufacturer
to be used for one or more [ . . . ] medical purposes [ . . . ], independent of the software’s
location or the type of interconnection between the software and a device” [70]. The risk
classification is based on the diagnostic and therapeutic intension of the software from risk
classes I (lowest risk class) to III (highest risk class).

In this context, it should be pointed out that for ML-related software, primarily the
general regulatory requirements for software apply and that there are hardly any laws or
harmonized standards for the specific use of ML-software and applications in healthcare.
With this in mind, it is of great interest that the U.S. Food and Drug Administration (FDA)
has published a discussion paper on “Artificial Intelligence/Machine Learning (AI/ML)-
Based Software as a Medical Device (SaMD) Action Plan”, which is continuously updated
and currently making proposals with regard to the following areas:

• Tailored regulatory framework for AI/ML-based SaMD;
• Good machine-learning practice;
• Patient-centered approach, incorporating transparency to users;
• Regulatory science methods related to algorithm bias and robustness;
• Real-world performance [71].

In view of the increasing amounts of clinical studies in the field of ML (Figure 1), it will
be interesting to see how the regulatory framework will adapt, worldwide, to AI- and
ML-related software and applications as well as the specifics associated with them. Aspects
that have not yet been clarified, such as changes in ML-related software over time due to
changing datasets, should be of particular interest. In the literature, suggestions are increas-
ingly being submitted and discussed [30,72], both on general regulatory aspects [29,73,74]
and on device- or subject-specific features, e.g., in view of medical imaging [75,76].

In addition, it becomes clear how important it will be in the future to pool patient data
for clinical studies in the field of machine learning across multiple locations. The reason for
this is that access to large amounts of data will be essential for the further development of
the approaches in prospective clinical studies. An example of how this could work in view
of strict data protection requirements is shown by the Joint Imaging Platform for Federated
Clinical Data Analytics for the application of medical algorithms across study sites in the
field of medical imaging [77].
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4.3. Methodological Notes

The evaluation of registry data from ClinicalTrials.gov enables a broad and detailed
analysis of a multitude of systematically collected, study-specific entries of high quality
over a period of time. However, a number of limitations to this study approach need to
be noted. Firstly, a method-inherent error of this approach is that the register dataset only
represents a subset of all initiated ML-related studies around the globe. The reasons for this
are that in some cases, the PI or sponsor does not necessarily have to register the study (see
Section 4.2) or may as well choose a different registry to list the study accordingly [78–80].
In this context, it should also be pointed out that data and information specifically relating
to research in the field of machine learning are also published in other digital archives
or specific registers and research platforms, such as the platform of the Association for
Computing Machinery (ACM) or the Institute of Electrical and Electronics Engineers (IEEE).
This both illustrates the importance of harmonizing the fairly large number of registries
and archives to prospectively create (also linguistically) more uniform data, a process
that is focused on by projects such as the “Research Data Alliance” or the “Open Data
Institute”. Secondly, the registry search only took into account register entries in which
the search term “machine learning” was explicitly specified in the study title or free text.
Since the use of study-specific MeSH terms when registering studies in ClinicalTrials.gov
is recommended but not mandatory, it can be assumed that studies that used other MeSH
terms or were registered with terms related in taxonomy were not taken into account
for the dataset. This may well lead to the fact that the actual number of ML-related
clinical studies published, and thus the clinical development in this field, is probably
underestimated. Thirdly, common limitations of clinical registry (meta-) data analyses
apply, which can lead to inaccuracy and inconsistencies, and thus may impair the data
quality. This includes, in particular, incorrect or not-at-all answered sections of the registry
form. In addition, the study text information (some of which vary in scope and content) can
be interpreted differently, which could reduce the validity of the results [37,39–45]. Fourthly,
the subgrouping of studies into medical specialties was not always clear; for example,
when experts from two or more medical specialties were involved. In order to avoid
this methodological problem, the medical specialty of the PI responsible for the trial and
named in the study entry was used for subgrouping in case of doubt. As a result, medical
specialties that are often involved in ML-related studies but tend to initiate fewer studies
as the lead medical specialty were probably counted less (e.g., (neuro-) pathology [81]).
Fifthly, it has to be assumed that since ClinicalTrials.gov is an American registry, there is a
disproportionately high number of registered clinical trials conducted in North America.
Our study results strongly support this hypothesis, seeing that the vast majority of studies
included those recruited in the U.S.A. and Canada (see Table 1). This may possibly lead
to distortions in comparison to the status and characteristics of ML-related trials in other
regions, such as Europe or Asia.

In view of the limitations, the present study cannot represent a complete, detailed
picture of the status quo. However, since ClinicalTrials.gov is by far the biggest and
most renowned registry for clinical trials, the authors conclude that this approach allows
a good first overview on the current status of clinical development and translation of
ML-based approaches and applications in health care. This could provide an impetus for
decisionmakers in healthcare facilities and policy as well as regulatory discussions.

5. Summary for Decisionmakers

• In recent years, an increasing number of ML algorithms have been developed for the
health care sector that offer tremendous potential for the improvement of medical
diagnostics and treatment. With a quantitative analysis of register data, the present
study aims to give an overview of the recent development and current status of clinical
studies in the field of ML.

• Based on an analysis of data from the registry platform ClinicalTrials.gov, we show
that the number of registered clinical studies in the field of ML has continuously
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increased from year to year since 2015, with a particularly significant increase in the
last two years.

• The studies analyzed were initiated by a variety of medical specialties, addressed a
wide range of medical issues and used different types of data.

• Although academic institutions and (university) hospitals initiated most studies, more
and more ML-related algorithms are finding their way into clinical translation with
increasing industry funding.

• The increase in the number of studies analyzed shows how important it is to further
develop current medical device regulations, specifically in view of the ML-based
software product category. The recommendations recently presented by the FDA can
provide an important impetus for this.

• Future research with trial registry data might address sub-evaluations on individual
study groups.
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