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Abstract: While air pollution levels in India are amongst the highest in the world, the link between
exposure to air pollution and social disadvantages has not been systematically examined. Using a
distributive environmental justice framework, this study connects fine particulate matter (PM2.5)
concentration data derived from satellite observations, a global chemical transport model, and
ground-based measurements to district level socio-demographic information from the 2011 Census
of India. The research objectives are to determine if annual average PM2.5 concentrations (2010)
and recent increases in average PM2.5 concentrations (2010–2016) are unequally distributed with
respect to socially disadvantaged population and household groups, after controlling for relevant
contextual factors and spatial clustering. Overall, more than 85% of people and households in India
reside in districts where international air quality standards for PM2.5 are exceeded. Although PM2.5

concentration levels are significantly higher in more urbanized districts located predominantly in
northern India, recent increases have occurred in less urbanized areas located mainly in southern
and central India. Multivariable statistical analysis indicated: (1) higher PM2.5 concentration in
districts with higher percentages of Scheduled Castes (SCs), young children, and households in poor
condition residence and without toilets; and (2) higher PM2.5 increases in less urbanized districts
with higher percentages of SCs, females, children, people with disabilities, and households with no
toilets. These findings thus highlight the need to consider the role of air pollution in exacerbating the
consequences of social disadvantages in India.

Keywords: air pollution; environmental justice; economic development; social inequalities;
urbanization; India

1. Introduction

While outdoor air pollution is a major environmental problem across the world, India
is estimated to have some of the worst levels globally, especially in terms of fine particulate
matter (PM2.5) pollution. According to the 2019 Global Burden of Disease, air pollution
in India was linked to 1.67 million deaths (17.8% of total deaths), out of which 10.4%
were due to ambient PM2.5 pollution [1]. This study also calculated that economic losses
associated with air pollution-related premature death and morbidity corresponded to
1.36% of India’s Gross Domestic Product (GDP), so that the adverse health implications
of air pollution could potentially affect India’s long-term economic targets [1]. A study
conducted by the World Health Organization (WHO) covering 100 countries between
2011 to 2016 showed that 14 of the 15 leading cities in terms of PM2.5 pollution were
located in India [2]. The main contributors to India’s particulate air pollution include
industrial and vehicular emissions, construction dust and debris, dependence on thermal
power for electricity, waste burning, and use of wood and dung by low-income and rural
households for cooking and heating [3]. While shifts to alternative energy sources can
potentially address the problem [4], simultaneously occurring upsurges in affluence and
intensifications of poverty, as well as lack of effective policies and investment, are likely to
ensure the persistence of air pollution [5].
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Previous studies of PM2.5 pollution have focused on mapping country level distri-
bution patterns and linking them to global burden of disease estimates [6], and have not
considered how these patterns relate to demographic characteristics and socioeconomic
disadvantages [7]. In the case of India, such studies have examined state and national
level patterns of PM2.5 pollution [1,8]. Alongside, India’s air pollution has most often
been critically analyzed in terms of negative health outcomes or policy pathways that
need to be followed to reduce pollution [3,9–12]. These studies seemingly imply that air
pollution is ubiquitous in terms of its social impacts, and thus need to be extended through
a consideration of how air pollution’s consequences may unevenly affect specific places
and population groups. Distributive environmental justice (EJ), which focuses on analyzing
environmental risk burdens faced by socially disadvantaged communities, thus becomes a
useful framework for further analysis of socio-spatial patterns of air pollution in India.

This article follows the distributive EJ framework to determine if socially disadvan-
taged and marginalized communities are disproportionately located in areas burdened by
higher particulate air pollution. We measure air pollution on the basis of annual average
PM2.5 concentration data derived from a combination of satellite observations, a global
chemical transport model, and available ground-based measurements [13,14]. Information
on population and household characteristics are obtained from the 2011 Census of India.
Our unit of analysis is the district since it enables a finer-scale study than the level of the
state, while also allowing the use of Census data related to district level characteristics in
India. Our key research objectives are to determine if: (a) average PM2.5 concentrations in
2010, and (b) increases in average PM2.5 concentrations from 2010 to 2016, are distributed
inequitably with respect to socially disadvantaged population and household groups, after
controlling for relevant contextual factors and clustering in the data. Statistical analyses
comprise descriptive comparisons of air quality thresholds established by international and
national guidelines, bivariate linear correlations, and multivariable generalized estimating
equation (GEE) models.

The aim of this article is to extend research on the distribution and impacts of air
pollution in India in three main ways. First, by examining associations between particulate
air pollution and social inequalities in India, this study seeks to demonstrate the significance
of incorporating environmental injustice into social and environmental policy-making,
especially in contexts which combine rising economic growth with persistent and widening
social inequities. Second, most international air pollution studies, including WHO and
IHME (Institute for Health Metrics and Evaluation) reports, highlight data pertinent to the
national scale [15,16]. In the case of India, the focus is on the level of the state or on the most
polluted cities [1,2,8]. Our district level analysis thus adds a new spatial dimension to the
study of air pollution in India. Third, it is important to consider that while urban growth
in India is concentrated in major metropolises, cities just below metropolitan level are also
expanding in terms of population and economic growth [2]. A district level study enables a
focus on emerging patterns of air pollution in newly urbanizing areas. Overall, this article
seeks to address the growing need to examine air pollution in India given its rapid urban
growth and major contributions to global economic and environmental outcomes.

2. Methods

The two dependent variables for this study—PM2.5 pollution in 2010, and change
in PM2.5 pollution between 2010 and 2016—were estimated using data provided by
Van Donkelaar et al. [14]. Explanatory variables were extracted from the 2011 Census
of India and included variables that have been widely used in prior distributive EJ studies
as well as those relevant to India.

2.1. Dependent Variables

Ambient particulate matter pollution was defined for this study as the population-
weighted annual average mass concentration of particles with an aerodynamic diameter less
than 2.5 micrometers (PM2.5) in a cubic meter of air, at a spatial resolution of 0.01◦ × 0.01◦
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over the globe (approximately 11 × 11 km at the equator). Specifically, we utilized surface
PM2.5 concentrations estimated by Van Donkelaar et al. [14] using a combination of aerosol
optical depth data from multiple satellite products and a global chemical transport model
using global emission inventories, subsequently calibrated to ground-based observations
of PM2.5 using geographically weighted regression (GWR). This methodology and data
have been used in several other studies focusing on PM2.5 pollution in India [1,3,8,9].

For our analysis, annual mean global GWR-adjusted PM2.5 estimates were down-
loaded from the Atmospheric Composition Analysis Group website [13] as an ArcGIS-
compatible NetCDF file. A digital map of districts delineated for the 2011 Census of India
was obtained from ML InfoMap/Lead Dog Consulting [17,18] in ArcGIS shapefile format.
To calculate our dependent variables for analyzing the distributive EJ implications of
PM2.5 exposure, the 0.01◦ × 0.01◦ resolution grid containing modeled estimates of surface
PM2.5 concentrations was overlaid on the district boundaries using ArcGIS 10.6.1 software
(Environmental Systems Research Institute, Redlands, USA). We then applied the zonal
statistics function to determine via areal interpolation the annual average PM2.5 concen-
tration for each individual district in 2010 and 2016, based on pixel values from the PM2.5
concentration grid.

Our first dependent variable was a district level measure of annual average surface
PM2.5 concentration in 2010, the year during which our data on population and housing
variables were collected for the 2011 Census of India. The second variable represented
district level changes in annual average PM2.5 concentrations between 2010 and 2016,
calculated as a ratio of these two PM2.5 concentration values (2016/2010). Our statistical
analysis of this second variable includes districts where this ratio exceeded 1.0, following
our research focus on increases in PM2.5 concentrations in this time-period. We used 2016
values to remain temporally proximate to the 2011 Census of India data while still being
able to measure observable change, and also because 2016 was the latest year for which
modeled estimates of surface PM2.5 concentrations were available in the 0.01◦ × 0.01◦

resolution dataset at the time of our analysis [13]. Measurements for our dependent
variables are reported in µg/m3 and their district level summary statistics are provided in
Table 1.

Table 1. Summary statistics for variables analyzed (unit of analysis: district).

Variables N Min. Max. Mean SD

Dependent:
Surface annual average PM2.5 2010 (µg/m3) 640 3.60 121.70 45.03 24.38
Increase: PM2.5 2016 (µg/m3) / PM2.5 2010 (µg/m3) 601 1.00 1.65 1.22 0.13

Independent:
Population density (persons per square km) 640 1 47,311 1009 3697
% Urban population 640 0.00 100.00 26.40 21.12
% Illiterate population (more than 6 years) 640 12.25 89.37 43.92 13.58
% Scheduled Caste population 640 0.00 50.17 14.86 9.13
% Scheduled Tribe population 640 0.00 98.58 17.63 26.87
% Female population 601 40.84 54.22 48.53 1.52
% Children (6 years or less) 640 5.47 23.01 13.89 2.95
% People with disabilities 640 0.76 4.51 2.15 0.57
% Households (HHs) with no assets * 640 1.00 64.90 20.38 12.93
% HHs in poor condition residence 640 13.30 87.20 50.69 14.30
% HHs with drinking water source outside premises 640 6.10 97.60 57.65 22.95
% HHs with no toilet 640 1.10 94.40 53.63 26.30

* HH assets include television, computer/laptop, telephone/mobile phone, and/or car/scooter.

2.2. Explanatory Variables

For our distributive EJ analysis of exposure to PM2.5 pollution, we used a set of socio-
demographic variables from the 2011 Census of India that are available at the district
level. Our choice of independent variables to represent socially disadvantaged groups was
guided, in part, by previous studies on distributive EJ and social vulnerability to environ-



Int. J. Environ. Res. Public Health 2021, 18, 304 4 of 14

mental hazards in India [19–22]. Independent variables were derived from two sources:
the 2011 Census of India Primary Census Enumeration data and the Houselisting and
Housing Census data [23,24]. District level summary statistics for independent variables
are provided in Table 1.

Variables measuring socioeconomic disadvantage included illiteracy rate and caste and
tribal status, and these have also been utilized in previous distributive EJ studies [19,21,22].
Literacy rate, the proportion of population seven years of age or above that can undertake
basic reading and writing, has often been used as a proxy for socioeconomic status, and
was utilized to ascertain the level of development at the district level. Literacy can shape
the ability of a population to either accept the presence of pollution as a corollary to
their own economic development, or challenge the presence of pollution due to access to
effective political power. To reflect disadvantage, we used illiteracy rates as the independent
variable in our study. The proportion of population belonging to Scheduled Caste (SC) and
Scheduled Tribe (ST) groups were used to represent the two main socially marginalized
groups in India who are formally listed in the Indian Constitution. The marginalization
of SC groups reflects discrimination against lower castes in India due to their traditional
means of livelihood and their exclusion from sources of ritual power. The designation
ST refers to social groups that have maintained a distinctive culture, often through forest
or natural resources-dependent livelihoods. While SCs belong to Hindu, Buddhist, and
Sikh religious communities, STs can belong to any religious group. Previous national
level research indicates that SC percentages are significantly higher in Indian districts
that generate industrial hazardous waste, compared to those that do not produce such
waste [21].

The percentages of the district population who are female, aged six years or less,
and with a disability were included to examine the exposure of demographically and
biologically vulnerable groups to PM2.5 pollution. Although gender has been relatively less
utilized in the distributive EJ research literature, the prevalence of a masculine sex ratio
in northern India makes gender a useful component of social exposure to pollution here.
Children’s exposure to hazards has also been relatively understudied in India, but has
been an important area of focus in U.S. EJ studies [25–27]. Children are considered to be
more vulnerable to air pollution than adults due to their higher breathing rate to body size
ratio, and the still developing nature of their lungs [28]. Distributive EJ studies in the U.S.
have found neighborhoods with higher proportions of children to have significantly higher
levels of exposure to industrial hazards [25,26,29,30]. The proportion of population with
disabilities was selected as an additional explanatory variable. Although the relationship
between disability and air pollution exposure has not yet been investigated in India,
recent studies in the U.S. have found people with disabilities to reside in neighborhoods
facing significantly higher exposure to various pollution sources than people without
disabilities [31,32]. Our study seeks to examine whether these patterns also emerge in the
case of India.

In addition to the aforementioned variables from the Primary Census Enumeration,
we utilized four indicators of socioeconomic disadvantage from the 2011 Houselisting and
Housing Census. These were the proportion of households without availability of any
assets such as a television, computer/laptop, telephone/mobile phone, or a scooter/car;
residing in a house whose condition was not ‘good’ (either ‘dilapidated’ or ‘livable’);
whose drinking water source is not located within their premises (‘near premises’ or ‘away
from house’); and with no toilet or latrine facility within their premises. These variables
have been used to represent social and economic disadvantage in previous scholarship on
environmental hazards in India [20] and are likely to be linked to increased intensity of
exposure to air pollution (due to poor housing quality and amenities) and reduced ability
to cope with air pollution (due to lower economic status).

Finally, population density and the proportion of urban population in the district
were used as control variables for our analysis, following previous EJ studies that have
used both these variables [21,22]. The proportion of urban population in India is calculated
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based on the population residing in census towns or statutory towns. Census towns have
a population of at least 5000 people, a density of population of at least 400 people per
square kilometer, and at least 75% of main male workers engaged in non-agricultural
occupations. Statutory towns are administered by a municipality, corporation, cantonment
board, or notified area committee. Previous studies have shown that pollution-generating
activities in India often locate in low-density or sparsely populated areas adjacent to densely
populated urban centers, so that they can take advantage of higher availability of vacant
land that remains accessible and proximate to large urban areas [21,22]. Overall, our set of
independent variables represents social and economic characteristics that are most relevant
for understanding the injustices associated with exposure to particulate air pollution.

2.3. Statistical Analyses

Our study began by identifying districts where the annual average PM2.5 concentration
in 2010 exceeded air quality standards or thresholds recommended by the World Health
Organization (WHO), U.S. Environmental Protection Agency (USEPA), European Union
(EU), and India’s National Ambient Air Quality Standards (NAAQS). We then estimated
the overall proportions of population and households, as well as the proportions of socially
disadvantaged population and households (as a percentage of their total numbers in India),
residing in districts where ambient PM2.5 pollution levels exceeded these thresholds.

Bivariate correlation analysis was conducted for an initial exploration of statistical
relationships between each explanatory variable and the two dependent variables: annual
average PM2.5 concentrations (2010) based on all 640 districts in India; and ratio of PM2.5
concentrations (2016/2010) based on 601 districts that experienced an increase in PM2.5
concentrations (i.e., ratio of 2016/2010 PM2.5 concentrations > 1.0).

We then used generalized estimating equations (GEEs), a multivariable modeling
technique appropriate for analyzing clustered data, to examine the EJ implications of both
PM2.5 (2010) concentrations and increase in PM2.5 concentration ratio (2016/2010). GEEs
relax several assumptions of traditional regression models and impose no strict distribu-
tional assumptions for the included variables, in addition to accounting for clustering of
variables across units of analysis. In the case of India, districts are clustered within 35 states
or union territories (UTs). Our clustering definition was thus based on the state or UT
within which each district was located, which led to the assignment of 1 to 71 districts
within each state/UT cluster.

A separate GEE was estimated for each of our two dependent variables: annual
average PM2.5 concentration in 2010 (640 districts), and ratio of PM2.5 concentrations:
2016/2010 (601 districts where ratio > 1.0). Although the second GEE utilizes both 2010 and
2016 PM2.5 data, the explanatory variables are based on data from 2010, or the beginning
of the period over which PM2.5 increase is calculated. Potential endogeneity among
explanatory variables in a multivariable model can be reduced by measuring these variables
at the beginning of the time-period over which change is calculated [33] and this approach
has been recommended in prior econometric studies on modeling temporal change [34–36].

For each GEE, three different correlation structure specifications were considered [37]:
‘independent’, which assumes the nonexistence of dependency so that all off-diagonal ele-
ments of the working correlation matrix are zero; ‘exchangeable’, which assumes constant
intra-cluster dependency so that all the off-diagonal elements of the correlation matrix are
equal; and ‘unstructured’, which assumes a completely general correlation matrix that
is estimated without constraints. All GEEs were modeled with the three matrices, using
the QIC (quasi-likelihood under the independence model criterion) to determine the most
appropriate specification. Using this model fit criterion, we chose the ‘independent’ corre-
lation matrix for the GEE using the average PM2.5 concentration (2010) as the dependent
variable, and ‘unstructured’ for the GEE using the PM2.5 concentration ratio (2016/2010) as
the dependent variable.

To select the best-fitting models, we tested the normal, gamma, and inverse Gaussian
distributions with logarithmic and identity link functions [37]. An identity link function
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assumes the dependent variable is directly predicted, while a logarithmic link function
estimates the natural logarithm of the dependent variable. We selected the gamma distri-
bution with logarithmic link function for the GEE using the average PM2.5 concentration
(2010) as the dependent variable, and the normal distribution with an identity link function
for the GEE where the PM2.5 concentration ratio (2016/2010) was used as the dependent
variable. Both these model specifications yielded the lowest value of the QIC.

All independent variables were standardized before inclusion in the GEEs. We also
checked for potential multicollinearity among these variables using variance inflation factor,
tolerance, and condition index criteria, and confirmed that the GEEs are not affected by
multicollinearity. Two-tailed p-values from the Wald chi-square test were used to evaluate
the statistical significance of each individual variable coefficient.

3. Results

To provide a geographic context for comparing and understanding the spatial patterns
of our air pollution-related dependent variables, the district level distribution of population
density is first presented in Figure 1. On this map, districts in India are classified into
five quintiles based on the number of people per square km. Districts with the highest
population density values are located primarily in a multi-state region across northwest to
eastern India known as the Indo-Gangetic Plain (IGP). One of the most densely populated
regions of the world, the IGP is also India’s major agricultural belt due to the Ganges and
Yamuna rivers. Additionally, 12 of the 14 Indian cities that are among the world’s 20 most
polluted in terms of PM2.5 levels are located in the IGP [2].
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The geographic distribution of ambient surface PM2.5 pollution in 2010 is depicted
in Figure 2, where districts are classified into five quintiles based on annual average
PM2.5 concentrations. The district level distribution of PM2.5 pollution suggests a strong
spatial correspondence with the distribution of population density shown in Figure 1,
with districts in the highest quintile (top 20%) concentrated mainly in the IGP. Six of the
top ten districts are located in the National Capital Territory (NCT) of Delhi, with the
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remaining in its surrounding states of Uttar Pradesh (three districts) and Haryana (one
district). If Delhi’s districts are excluded, eight of the top ten districts are located in the state
of Uttar Pradesh and two in Haryana, again revealing the high levels of air pollution in the
IGP. In contrast, districts in the lowest quintile (bottom 20%) of PM2.5 concentration can be
found primarily in southern India, northeast India, and northern India. Higher population
density, prevalence of coal mines, brick kilns, and power plants, as well as meteorological
factors have been used to explain the disparities in air pollution levels between the land
locked IGP and southern India [3]. Lower particulate pollution levels in northeast and
northern India can be linked to lower levels of industrialization in these regions.
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Figure 2. Distribution of 2010 surface annual average PM2.5 concentrations (µg/m3) by district in India.

The district level distribution of average PM2.5 concentration ratio (2016/2010) is
shown in Figure 3. The geography of recent changes in PM2.5 pollution differs substantially
from the overall pattern of PM2.5 pollution in 2010 and suggests a more dispersed spatial
pattern compared to Figure 2. The district level distribution of PM2.5 increase also does
not indicate a strong spatial correspondence with the distribution of population density
depicted in Figure 1. Although several districts in the highest quintile of PM2.5 concentra-
tion ratio (2016/2010) can be observed in the IGP, other districts in this quintile are located
in southern, central, and northern India. Figure 3 suggests substantially high increases
in PM2.5 pollution in several southern districts, especially along a belt containing large
cities such as Bengaluru and Hyderabad, both major hubs for information technology
industries. The increase in air pollution at India’s northern border could also be associated
with increasing urbanization. In central India, increases coincide spatially with a belt
of coal mining and associated industrial activities. Districts where PM2.5 concentrations
have declined since 2010 are located mainly in the states of Rajasthan in the northwest,
Manipur and Mizoram in the northeast, and Kerala in the south because of lower levels
of industrialization.
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Figure 3. Distribution of 2016/2010 ratio of annual average PM2.5 concentrations (µg/m3) by district in India.

We began our statistical analysis by estimating the population and household charac-
teristics of districts where the average PM2.5 pollution levels in 2010 exceeded international
and national air quality standards. These results are summarized in Table 2.

Table 2. Percentages of population and household subgroups in India where 2010 annual average PM2.5 concentrations
exceeded standards established by the World Health Organization (WHO), U.S. Environmental Protection Agency (USEPA),
European Union (EU), and India.

Variables WHO:
>10 µg/m3

USEPA:
>12 µg/m3

EU:
>25 µg/m3

India:
>40 µg/m3

Districts (640 total) 632 627 510 291
Total population 99.96% 99.92% 87.04% 55.59%
Urban population 99.96% 99.92% 82.74% 51.60%
Illiterate population 99.96% 99.92% 90.28% 60.08%
Scheduled Caste population 99.99% 99.99% 88.63% 61.98%
Scheduled Tribe population 99.62% 99.39% 89.98% 32.95%
Female population 99.96% 99.92% 86.62% 54.82%
Children (6 years or less) 99.96% 99.92% 89.68% 60.47%
People with disabilities 99.95% 99.91% 88.39% 54.48%
Total households (HHs) 99.97% 99.92% 84.99% 51.28%
% HHs with no assets 99.97% 99.92% 91.58% 49.92%
% HHs in poor condition residence 99.97% 99.93% 88.80% 57.26%
% HHs with drinking water sourceoutside premises 99.96% 99.92% 85.08% 48.01%
% HHs with no toilet 99.99% 99.96% 88.89% 55.67%

Only about 0.04% of India’s population and 0.03% of households reside in districts
where PM2.5 concentrations recommended by the WHO (10 µg/m3) are not exceeded, and
0.08% of population and households where USEPA standards (12 µg/m3) are not exceeded.
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These percentages increase to around 13% of population and 15% of households when
the EU standards (25 µg/m3) are used. Districts where PM2.5 pollution exceeds all these
international standards were found to contain at least 85% of the population and house-
holds associated with the socially disadvantaged categories we examined. However, about
56% of the population and 51% of households can still be found in districts where average
PM2.5 concentration exceed the higher national threshold (40 µg/m3) used in India. The
percentages of illiterates, SCs, and children in these districts exceed the overall population
percentage (55.6%), while the percentages of households in poor condition houses and
households without toilets exceed the overall percentage of households (51.3%). However,
the percentages of STs, females, and people with disabilities, as well as households without
assets and households with drinking water source outside their premises are lower than the
overall population and household percentages in districts where India’s PM2.5 standards
are exceeded.

To analyze the statistical effects of our explanatory variables on 2010 PM2.5 concentra-
tions and 2016/2010 PM2.5 concentration ratios, we first utilized bivariate linear correlations.
Pearson’s product-moment correlation coefficients associated with each pair of variables
are presented in Table 3. PM2.5 concentration (2010) is significantly and positively corre-
lated with population density and percentages of urban population, illiterates, SCs and
children, as well as households in poor condition residence and without toilets. Variables
showing a significant negative correlation with PM2.5 pollution include the percentages of
female and ST population, as well as households with no assets and outside drinking water
source. PM2.5 concentration ratio (2016/2010) in districts with increase is significantly and
positively associated with the percentages of SCs, children, and households without toilets,
and negatively associated with the percentages of STs and households with no assets; these
results align with PM2.5 pollution correlations. Population density, female percentage, and
percentage of households in poor condition residence and with outside drinking water
source indicate a non-significant correlation with PM2.5 increase, despite their significant
negative associations with PM2.5 pollution levels. Although the percentage of people with
disabilities showed a non-significant association with PM2.5 pollution, it is significantly
and positively correlated with PM2.5 increase.

Table 3. Bivariate linear correlations of average PM2.5 concentration (2010) and PM2.5 concentration ratio (2016/2010) with
district level characteristics.

Variables
PM2.5: 2010 PM2.5: 2016/2010

Pearson’s r p-Value Pearson’s r p-Value

Population density 0.251 <0.01 −0.078 0.057
% Urban population 0.103 <0.01 −0.169 <0.01
% Illiterate population 0.190 <0.01 0.155 <0.01
% Scheduled Caste population 0.407 <0.01 0.323 <0.01
% Scheduled Tribe population −0.399 <0.01 −0.295 <0.01
% Female population −0.473 <0.01 0.071 0.083
% Children (6 years or less) 0.255 <0.01 0.095 <0.05
% People with disabilities −0.072 0.068 0.179 <0.01
% HHs with no assets −0.257 <0.01 −0.214 <0.01
% HHs in poor condition residence 0.227 <0.01 0.024 0.556
% HHs with drinking water source outside premises −0.336 <0.01 0.029 0.481
% HHs with no toilet 0.081 <0.05 0.347 <0.01
N (districts) 640 601

The results of our multivariable GEE models are summarized in Tables 4 and 5. Table 4
indicates that, after controlling for the effects of clustering and other relevant factors, av-
erage PM2.5 concentrations (2010) are significantly greater in densely populated districts
with higher percentages of urban, SC population, and children, as well as higher propor-
tions of households residing in poor condition residences and those without toilets. The
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percentages of female population and households with outside drinking water source are
the only variables to indicate a significantly negative association with PM2.5 concentration.

Table 4. Generalized Estimating Equation (GEE) for predicting average PM2.5 concentration in 2010 (N = 640).

Variables Standardized
Beta

Standard
Error

Lower
95% CI

Upper
95% CI

Wald
chi-square p-Value

Population density 0.052 0.017 0.019 0.085 9.644 <0.01
% Urban population 0.066 0.039 −0.010 0.142 2.908 <0.05
% Illiterate population −0.063 0.046 −0.154 0.028 1.865 0.172
% Scheduled Caste population 0.169 0.035 0.099 0.238 22.648 <0.01
% Scheduled Tribe population −0.059 0.038 −0.132 0.015 2.468 0.116
% Female population −0.129 0.040 −0.208 −0.050 10.197 <0.01
% Children (6 years or less) 0.232 0.053 0.128 0.337 18.974 <0.01
% People with disabilities −0.025 0.030 −0.085 0.034 0.696 0.404
% HHs with no assets −0.047 0.043 −0.132 0.037 1.198 0.274
% HHs in poor condition residence 0.091 0.038 0.016 0.165 5.735 <0.05
% HHs with drinking water source
outside premises −0.143 0.044 −0.228 −0.058 10.812 <0.01

% HHs with no toilet 0.112 0.043 0.028 0.196 6.889 <0.01
Intercept 3.722 0.045 3.633 3.810 6833.022 <0.01
Scale 0.103
Model fit (QIC) 213.831

Note: GEE is based on a gamma distribution with log link function and independent correlation matrix.

Table 5. GEE for predicting 2016/2010 PM2.5 concentration ratio (N = 601).

Variables Std.
Beta Std. Error Lower

95% CI
Upper
95% CI

Wald
chi-square p-Value

Population density 0.001 0.005 −0.008 0.011 0.087 0.768
% Urban population −0.023 0.007 −0.037 −0.010 11.121 <0.01
% Illiterate population −0.040 0.014 −0.067 −0.014 8.800 <0.01
% Scheduled Caste population 0.023 0.010 0.003 0.043 5.105 <0.05
% Scheduled Tribe population 0.014 0.009 −0.003 0.031 2.780 0.095
% Female population 0.016 0.008 0.000 0.033 3.865 <0.05
% Children (6 years or less) 0.063 0.011 0.041 0.086 31.137 <0.01
% People with disabilities 0.028 0.007 0.014 0.042 15.509 <0.01
% HHs with no assets −0.071 0.013 −0.096 −0.046 29.919 <0.01
% HHs in poor condition residence −0.035 0.012 −0.058 −0.011 8.248 <0.01
% HHs with drinking water source
outside premises −0.010 0.012 −0.034 0.014 0.675 0.411

% HHs with no toilet 0.075 0.012 0.051 0.098 38.350 <0.01
Intercept 1.228 0.010 1.207 1.248 13,920.182 <0.01
Scale 0.011
Model fit (QIC) 88.625

Note: GEE is based on a normal distribution with identity link function and unstructured correlation matrix.

With regards to PM2.5 concentration ratio (2016/2010), Table 5 indicates significantly
greater PM2.5 increases in districts with higher percentages of SCs, females, children, and
people with disabilities, as well as households with no toilets. Greater PM2.5 pollution
increases are also significantly associated with lower percentages of urban and illiterate
populations, households without assets, and those in poor condition residences.

4. Discussion

Our preliminary statistical analysis drew attention to the range of international and na-
tional standards on PM2.5 pollution and districts in India where these air quality standards
were exceeded (Table 2). Districts with higher outdoor PM2.5 concentrations in 2010 than
recommended international guidelines were found to contain more than 85% of India’s
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population and households. At least 85% of people and households associated with each
of our socially disadvantaged groups are also located in these districts. Districts where
PM2.5 pollution exceed India’s national air quality standards contain about 56% and 51%
of those in our socially disadvantaged population and household categories, respectively,
with the sole exception of the ST population. As found in previous research, the presence
of ST populations in less industrialized areas of northeastern and northern India implies
that they are also located in areas with lower particulate air pollution [21].

Our primary research goal was to determine if PM2.5 pollution and its recent increases
were significantly greater in districts with higher proportions of socially disadvantaged
groups, after controlling for spatial clustering, population density, and other contextual
factors. Our multivariable GEE analysis revealed higher PM2.5 concentration in urbanized
districts with higher percentages of SCs, young children, households in poor condition
residence, and households without toilets. We also found significantly higher PM2.5
concentration increases in less urbanized districts with higher percentages of SCs, female,
children, and people with disabilities, as well as households with no toilets.

Overall, our results provide strong evidence of significantly higher air pollution risk
burdens for specific disadvantaged and vulnerable population groups. Both bivariate and
multivariable statistical analyses indicated that SCs and young children (0–6 years) are
disproportionately located in districts with higher exposure to PM2.5 pollution, as well as
those with the highest increases in PM2.5 pollution. These findings emphasize the urgent
need for addressing and reducing PM2.5 emissions, since SCs as a socially marginalized
group often lack access to protective resources or are unable to afford risk mitigation, and
children are physically more susceptible to adverse health effects of such emissions. The
female percentage was significantly lower in districts with higher PM2.5 concentration,
but greater in districts with higher PM2.5 increases. The negative association with PM2.5
pollution is connected to higher male population in larger urban areas and districts of IGP,
while the positive association can be explained by PM2.5 increases in southern states and
medium sized cities with relatively higher female proportions. These findings could also
indicate a male pattern of urban migration in India, so that the most polluted areas also
offer greater employment opportunities for migrant men. However, as a secondary-tier
of urban settlements begin to show the effects of economic and industrial development,
the proportion of women facing exposure to PM2.5 pollution has also increased.

In contrast to the SC population, STs are significantly underrepresented in the most
polluted districts based on our bivariate analysis, and also show a non-significant associa-
tion in our multivariable models. This finding can be explained by their lower proportions
in districts of the IGP and other regions characterized by higher PM2.5 pollution and recent
increases. It could also reflect lack of economic or industrial development in districts
in northeastern and extreme northern states with higher ST proportions that potentially
lead to lower PM2.5 levels in these areas. Our multivariable analysis indicated that the
percentage of people with disabilities is significantly higher in districts with greatest PM2.5
increases, but not significantly associated with PM2.5 exposure. This finding could reflect a
pattern similar to women whereby people with disabilities are not found in highly urban
areas since they may not be able to seek industrial employment, but as air pollution be-
gins to increase in medium sized cities, they too face increasing exposure. The illiterate
population was found to be overrepresented in districts with the highest concentrations
and increases in PM2.5 pollution in our bivariate analysis. However, after controlling for
additional socioeconomic variables in our multivariable models, illiteracy rate indicated a
non-significant relationship with PM2.5 exposure and a significantly negative relationship
with PM2.5 increase. The latter could be potentially associated with significant increases of
PM2.5 concentrations in several districts of southern India with higher literacy rates.

Our findings also reveal housing quality-related injustices in the distribution and
increase of PM2.5 pollution. Both bivariate and multivariable analyses indicate significantly
greater PM2.5 exposure and increases in districts with a higher percentage of households
without toilets. This could be partially related to their relatively higher proportions in
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states of the IGP and central India. Similar positive associations were observed for the
percentage of households residing in poor condition residence in bivariate analyses and
multivariable analysis of PM2.5 exposure. However, the negative coefficient for this vari-
able in the multivariable model for PM2.5 increase could potentially be linked to relatively
lower proportions of households in poor condition houses in districts of south India which
experienced recent PM2.5 increases. The percentage of households without assets was not
significantly related to PM2.5 levels and negatively related to PM2.5 increases in our multi-
variable analysis. This is not entirely surprising because of the lower proportions of this
group in densely populated and urbanized districts of the IGP and southern India, which
experienced substantially higher PM2.5 exposure and increases. Similar location patterns
have influenced the statistical results for the proportion of households with drinking water
outside their premises, which was found to be negatively and non-significantly related to
PM2.5 concentration and increase. Overall, these findings show that while asset ownership
and access to drinking water have increased in urban India, quality of house construction
and access to toilets still remains a matter of concern, particularly in areas of higher air
pollution levels and recent increases.

5. Conclusions

Our distributive EJ analysis reveals geographically and socially disparate patterns of
exposure to ambient PM2.5 pollution, as well as recent increases in PM2.5 pollution, at the
district level in India. Districts with higher percentages of SCs, children, and households
without toilets are burdened by significantly higher levels of both surface PM2.5 and recent
increases in PM2.5, even after controlling for clustering and contextual factors. In addition to
these three indicators of social disadvantage or vulnerability, the proportion of households
in poor condition residences are significantly greater in districts with higher PM2.5 pollution,
while the proportion of people with disabilities are significantly greater in districts with
higher PM2.5 increases. Although PM2.5 exposure is significantly higher in more urbanized
districts located mainly in the IGP region, PM2.5 exposure indicated a recent increase in
relatively less urbanized areas located predominantly in southern and central India. These
differences in spatial patterns potentially suggest increasing air pollution in medium or
small Indian cities that could be driven by migration and regional population shifts, as
well as by industries moving towards less urbanized areas to take advantage of lower
levels of pollution. This pattern of increase also suggests that besides SCs and children,
women and people with disabilities are also facing increasing exposure to air pollution thus
expanding the characteristics of vulnerable populations facing environmental injustices
in India. While our study provides an important starting point, additional analyses and
data sources are necessary to examine how factors such as population growth, rural-urban
migration trends, and changing patterns of economic and industrial development have
contributed to increases in PM2.5 pollution and their unequal social impacts.

As air pollution becomes a tangible concern across urban India, it is expected that citi-
zen pressure will move government and business interests towards privileging policies and
practices that protect environmental quality [38]. These could include stricter regulation of
pollution by the Central and State Pollution Control Boards and a shift to less polluting
transport options, as well as greater investment in ‘green’ technologies, renewable energy,
and effluent treatment by industrial units [4]. However, there may also be a tendency to
form ‘pollution havens,’ further exacerbating the exposure to pollution faced by socially
disadvantaged groups and enabling more advantaged segments to relocate to less polluted
enclaves. Alongside, an unmitigated emphasis on economic growth is leading India to
relax environmental laws in an attempt to draw foreign investment. There is thus a broader
global context within which the economic incentive to pollute is high enough to cause
corporations and governments to disregard their social costs. Within this framework,
the work of local activists and national environmental organizations becomes that much
more challenging, especially when upper and middle classes have the option to move
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away from sites of pollution. Much remains to be done then to align EJ objectives with
profit-making pressures.

This study has drawn attention to the relationship between increasing particulate air
pollution and increasing environmental injustices in India, and through this to emphasize
the need to delve further into the social consequences of worsening environmental quality.
Future studies need to consider how exposure to other forms of pollution, including water
and soil pollution, reveal similar forms of injustices. Moreover, the ways in which multiple
forms of pollution intersect with each other and with social disadvantages needs to be
studied in more detail. Particulate pollution is one element of a larger set of negative
pollution outcomes, and while its severity signals the urgent need to control polluting
activities, it should also be viewed as the leading edge of a more comprehensive objective
to tackle India’s environmental injustices by improving environmental quality.
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