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Abstract: Small areas refer to small geographic areas, a more literal meaning of the phrase, as well
as small domains (e.g., small sub-populations), a more figurative meaning of the phrase. With post-
stratification, even with big data, either case can encounter the problem of small local sample sizes,
which tend to inflate local uncertainty and undermine otherwise sound statistical analyses. This
condition is the opposite of that afflicting statistical significance in the context of big data. These two
definitions can also occur jointly, such as during the standardization of data: small geographic units
may contain small populations, which in turn have small counts in various age cohorts. Accordingly,
big spatial data can become not-so-big spatial data after post-stratification by geography and, for
example, by age cohorts. This situation can be ameliorated to some degree by the large volume
of and high velocity of big spatial data. However, the variety of any big spatial data may well
exacerbate this situation, compromising veracity in terms of bias, noise, and abnormalities in these
data. The purpose of this paper is to establish deeper insights into big spatial data with regard to
their uncertainty through one of the hallmarks of georeferenced data, namely spatial autocorrelation,
coupled with small geographic areas. Impacts of interest concern the nature, degree, and mixture
of spatial autocorrelation. The cancer data employed (from Florida for 2001–2010) represent a data
category that is beginning to enter the realm of big spatial data; its volume, velocity, and variety are
increasing through the widespread use of digital medical records.

Keywords: big data; big spatial data; cancer; small area; small geographic area

1. Introduction

Currently popular scientific terms include “big data” and “big spatial data.” Especially
when dealing with medical and public health data, one big (spatial) data feature meriting
more attention is (geographic) resolution. This feature interfaces with the Law of Large
Numbers (LLN), a statistical principle that may be summarized as follows:

Given random sampling, as a sample size, n, goes to infinity, the empirical proba-
bility of an event approaches its theoretical probability (given by its probability
mass or density function): the distribution of a random sample tends to resemble
the distribution for its parent population more closely as n increases.

In other words, certain statistics computed from a sample tend toward their corre-
sponding parameter values as n increases, which relates the LLN to the Central Limit
Theorem (CLT), another fundamental principle of statistics (see [1]). These two statistical
concepts interface with interplay between the notions of big data and of resolution, with
the latter sometimes moderating the former. This theme constitutes the topic of this paper.

The phrase big (spatial) data refers to extremely large datasets, with the meaning of
“big” remaining ambiguous, and not necessarily referring to amount. Rather, the following
selected data properties constitute the differentiating features: volume (i.e., quantity),
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velocity (i.e., availability speed), variety (i.e., diversity of types), variability (i.e., information
content meaning constantly changing), veracity (i.e., degree of reliability/accuracy), and
complexity (i.e., structured, semi-structured, quasi-structured, and unstructured). Big
data are burdened with the following requisites, which need to be performed efficiently
and effectively: analyzing, capturing, privacy preserving, querying, sharing, storing,
transferring, updating, and visualizing [2]. These are the same handling requirements
that distinguish between geographic information system datasets and many other types of
data [3] (p. 1), furnishing a strong link between the notions of “big data” and “big spatial
data.” Cressie et al. [4] (p. 115) note that “ . . . the sheer size of a massive [dataset] may
challenge and, ultimately, defeat a statistical methodology that was designed for smaller
[datasets] . . . ” One such failure is statistical significance testing: with a large enough
dataset, virtually all results are statistically significant. Conversely, with a small enough
dataset, virtually no results are statistically significant (i.e., small sample sizes undercut the
trustworthiness of statistical inferences, with a sample size of one, in and of itself, unable
to furnish any information about the precision of its sample statistic; see [5]). Another
stems from such data almost always being non-random, such that without adequate data
analytic precautions, resulting correlations can be spurious, predictions can be erroneous,
and results can be unsatisfactory.

With these aforementioned caveats in mind, the purpose of this paper is to establish
some deeper insights into big spatial data, with special reference to public health data,
in terms of their uncertainty through one of the hallmarks of georeferenced data, namely
spatial autocorrelation (SA), coupled with small geographic areas (re. resolution). A focal
point is the intersection of SA with the issue of instability of estimates in small sample
sizes, and/or over small geographic areas in the presence of what appears to be big
spatial data. Impacts of interest concern the nature, degree, and mixture of SA. Big data
analyses focus on hypothesis generation rather than hypothesis testing [6], and hence
one important theme for big spatial data is relationship stability, especially with regard
to heterogeneity, across geography (as well as time). Accordingly, this paper studies six
Florida metropolitan statistical areas (MSAs) to address this geographic stability aspect.
Meanwhile, big healthcare data (increasingly acquired from electronic health records) are
not only complex, but also have unique characteristics, beyond their large size (which often
is relative to the usually unavoidable extremely small clinical trial sample sizes; [7]), that
both facilitate and complicate the uncovering of insights about an observable public health
phenomenon. To this end, this paper studies selected cancer cases for the period 2001–2010.
Its aim is to identify and assess geographical patterns within the context of SA to establish
a better understanding of small geographic area data uncertainty [i.e., the instability of
small sample size (à la the CLT) and/or small geographic area estimates].

1.1. A Motivating Example: The Role of Resolution

Geocoding of individuals allows for their post-stratification by areal units such as
ZIP codes and census blocks, block groups, and tracts, these latter three polygon types
being devised by the United States (US) Census Bureau [8]. These units constitute small
areas. Aggregated socio-economic/demographic attribute data often are available for these
geographic polygons, enabling data merging for observational studies involving ecological
correlation analysis. This data analytic framework often suffers from post-stratification
defects, especially when it yields small geographic area sample sizes. Spielman et al. [9],
after studying US census data uncertainty causes, show that these data tend to have higher
margins of error for smaller geographic areal units. In other words, resolution matters.

Figure 1 illustrates this preceding contention, furnishing an appropriate example
here, because binning of observed values to construct histograms parallels the geographic
aggregation of geocoded points into areal unit polygons. This illustration employs three
random sample sizes: 104, 105, and 106. It also employs three resolutions (i.e., bin sizes):
0.1, 0.01, and 0.001. Sampling is from a uniform distribution; the LLN implies that as n
increases these histograms should converge on their parent theoretical uniform frequency
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distribution for the interval [0, 1]. All three coarser resolutions display little deviation from
a uniform distribution, with this deviation decreasing with increasing sample size. As
resolution becomes finer, the n = 104 sample size fails to display a close correspondence
with its parent uniform distribution: the moderate resolution has noticeable variation, and
the fine resolution has conspicuous variation in bin frequencies. These deviations dampen
out as n increases to 105, and then to 106. However, if the bin size were decreased to 0.0001
for the n = 106 sample size, then it, too, would exhibit obvious deviations from a uniform
distribution. One principal implication is that small area resolution, both geographic and
non-geographic, plays a critical role in determining the meaning of the notion of big data,
particularly with regard to its volume and variability properties.
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1.2. Effective Geographic Sample Size: A Complicating Factor

One of the complexities of spatial data arises from their being correlated data contain-
ing redundant or duplicate information (i.e., they are spatially autocorrelated; [10]). The
SA latent in most geographically distributed socio-economic/demographic data is positive,
and roughly ranges from 0.4 to 0.6 for provincial/state, county, and census tract resolutions
across national and regional geographic landscapes studied to date. The SA latent in most
remotely sensed images also is positive, and roughly ranges from 0.9 to 0.99, certainly for
a 30 m-by-30 m pixel size (e.g., Landsat images). The effective geographic sample size
for n areal units is the number, n*, of equivalent independent and identically distributed
observations based upon the nonredundant information content in a given dataset [11–15];
n*, like degrees of freedom, may not be an integer.

Table 1 furnishes examples of n and n* that have been gleaned from the literature. The
calculation of n* is somewhat sensitive to the assumed spatial statistical model. Neverthe-
less, even with moderate positive SA (PSA), substantial reductions in effective sample size
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occur. Reductions for remotely sensed images potentially could decrease from an extremely
large n to an n* < 30.

Table 1. Selected illustrative effective geographic sample sizes.

Geographic Landscape Variable/Model n n* Publication

Murray smelter site

lead (Pb)/SAR

253

77.0

[11]lead (Pb)/geostatistics 58.2

lead (Pb)/MESF 159.8

Everglades biomass/SAR 15,000,000 337,401

[16]Adirondack NDVI/SAR 257,033 1182

Yellowstone Factor 1/SAR 118,800 2236

MESF denotes Moran eigenvector spatial filtering; SAR denotes simultaneous autoregressive model

1.3. The Florida Cancer Dataset

This paper summarizes analyses of individual cancer cases located in the following six
Florida MSAs: Jacksonville, Miami, Orlando, Pensacola, Tallahassee, and Tampa. Figure 2
portrays the location of these MSAs, which furnish a wide geographic coverage of the state.
This study utilizes six different cancer types that have a relatively large number of cases:
breast, female breast, colorectal, lung & bronchus, melanoma skin, and urinary bladder.
The other counties have relatively small numbers of cancer cases, so that a considerable
number of small areal units in the counties (e.g., census block groups) have zero cases even
for these more common cancer types. Hence, this study focuses on the six counties.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 5 of 16 
 

 

 
Figure 2. The State of Florida, and the locations of the six studied metropolitan statistical areas 
(MSAs). 

Geographically aggregated cancer cases were converted to rates per 100,000 popula-
tion, in part, to adjust for the varying sizes of the areal units (i.e., census block groups). 
Other analyses of these data include articles by Hu et al. [17,18] and Lee et al. [19,20], 
which furnish additional details about these data. 

2. Standardized Cancer Rates 
Populations tend to be heterogeneous, and hence can be subdivided into more ho-

mogeneous sub-populations. The goal of standardization is to adjust for this heterogene-
ity in order to establish measures that are comparable across the sub-populations (e.g., 
cohorts) differing in, for example, age and/or other demographic characteristics (e.g., sex). 
Ignoring this heterogeneity results in crude rates, measures that may be distorted because 
the sub-populations differ in size, and hence can differentially influence these measures. 
One approach to incorporating a reasonable weighting of the various sub-populations is 
to establish a standard, a reference population with a particular composition. The result-
ing standardized measure is the summary rate that would be observed in a population 
with the specified composition [21]. In other words, standardization is an indirect method 
that adjusts for confounding factors, such as age, to remove their distorting effects from 
population comparisons. 

Two demographic factors impacting cancer rates are age and sex. The statistical small 
area problem here is the cross-tabulation of age and sex. With regard to resolution, these 
cross-classification cells are the bins to be filled by a particular set of geocoded cancer data. 
The following three reference populations may be considered: World, US, and Florida 
(FL). The formula quantifying this measure may be written as follows: R = ∑ ∑ hki

hki
10 hk

∗∑ ∑ hk
∗ = ∑ ∑ hki

hk
∗
hki∑ ∑ hk

∗ 10 = ∑ ∑ hki

hki

hk
∗∑ ∑ hk

∗ 10   

 
(1)

where subscript h denotes each of H age groups, subscript k denotes each of K sex groups, Chki denotes the number of cancer cases in cross-classification h-k in areal unit i, Phki de-
notes the population count in cross-classification h-k in areal unit i— Chki Phki⁄ × 10  is 
the crude rate per 100,000—and Phk

∗  denotes the population count in cross-classification 
h-k in the reference population used for standardization purposes. 

Figure 2. The State of Florida, and the locations of the six studied metropolitan statistical ar-
eas (MSAs).

Individual cancer patient data in Florida from 2001 to 2010 were obtained from the
Florida Cancer Registry of the Florida Department of Health and then analyzed (with
rigorous University of Texas at Dallas and Florida Department of Health Institutional
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Review Board monitoring and approval). This dataset contains limited individual patient
demographic characteristics, such as age and gender, as well as residential locations in
the form of geocoded x, y coordinates. These data includ no information that can reveal
patient identities. Cancer patient points that were inadequately geocoded using home
address matching were removed from the dataset as part of its data cleaning (The Florida
Department of Health contracts address matched to a private vendor that uses proprietary
geocoding software. Authors’ data cleaning resulted in a dataset with a geocoding success
rate of roughly 90%). These points were geocoded either to a ZIP code centroid with
a partial address (i.e., ZIP code only), or were assigned to areal units that have zero
population in both the 2000 and 2010 US decennial census reports. Duplicate registry
entries were also removed. After this data cleaning exercise, 9,444,852 records remained
for use in this study. Table 2 presents the number of cancer cases from this reduced set of
records for the six cancer types in the individual MSAs.

Table 2. Case counts for selected cancer types.

Variable Jacksonville Miami Orlando Pensacola Tallahassee Tampa

n (# block groups) 699 3377 833 267 233 2006

total # cases 987,796 4,166,052 1,567,398 332,549 272,146 2,122,641

breast: C50.0-C50.9 # cases 10,409 45,691 14,687 3559 2543 24,772

female breast: C50.0-C50.9 # cases 10,303 45,028 14,522 3520 2520 24,484

colorectal: C18.0-C18.9, C19.9, C20.9 # cases 5732 30,537 9147 2065 1207 17,001

lung & bronchus: C34.0-C34.9 # cases 9420 34,681 12,400 3755 1749 25,666

melanoma skin: C44.0-C44.9 # cases 2745 14,291 4803 934 675 8131

urinary bladder: C67.0-C67.9 # cases 2405 13,003 3727 894 274 7853

NOTE: International classification of diseases for oncology (ICD) codes follow cancer types; # denotes the number of cases or observations.

Geographically aggregated cancer cases were converted to rates per 100,000 popula-
tion, in part, to adjust for the varying sizes of the areal units (i.e., census block groups).
Other analyses of these data include articles by Hu et al. [17,18] and Lee et al. [19,20], which
furnish additional details about these data.

2. Standardized Cancer Rates

Populations tend to be heterogeneous, and hence can be subdivided into more homo-
geneous sub-populations. The goal of standardization is to adjust for this heterogeneity
in order to establish measures that are comparable across the sub-populations (e.g., co-
horts) differing in, for example, age and/or other demographic characteristics (e.g., sex).
Ignoring this heterogeneity results in crude rates, measures that may be distorted because
the sub-populations differ in size, and hence can differentially influence these measures.
One approach to incorporating a reasonable weighting of the various sub-populations is to
establish a standard, a reference population with a particular composition. The resulting
standardized measure is the summary rate that would be observed in a population with
the specified composition [21]. In other words, standardization is an indirect method
that adjusts for confounding factors, such as age, to remove their distorting effects from
population comparisons.

Two demographic factors impacting cancer rates are age and sex. The statistical small
area problem here is the cross-tabulation of age and sex. With regard to resolution, these
cross-classification cells are the bins to be filled by a particular set of geocoded cancer data.



Int. J. Environ. Res. Public Health 2021, 18, 231 6 of 16

The following three reference populations may be considered: World, US, and Florida (FL).
The formula quantifying this measure may be written as follows:

Ri =
H

∑
h

K

∑
k

Chki
Phki

105 P∗
hk

∑H
h ∑K

k P∗
hk

=
∑H

h ∑K
k Chki

P∗
hk

Phki

∑H
h ∑K

k P∗
hk

105 =
H

∑
h

K

∑
k

Chki
Phki

P∗
hk

∑H
h ∑K

k P∗
hk

105 (1)

where subscript h denotes each of H age groups, subscript k denotes each of K sex groups,
Chki denotes the number of cancer cases in cross-classification h-k in areal unit i, Phki
denotes the population count in cross-classification h-k in areal unit i—(Chki/Phki)× 105 is
the crude rate per 100,000—and P∗

hk denotes the population count in cross-classification
h-k in the reference population used for standardization purposes.

2.1. Some Simple Comparisons of the Reference Populations

The reference populations have different distributions across 18 5-year age cohorts
(Figure 3a), with the last cohort being 85+. Percentages by age cohort vary more for very
young people, and tend to decrease as people get older (Figure 3b). Figure 3 suggests that
age- and sex-standardized results should be similar across the three reference populations.
It also suggests that older age cohorts are rarer events, and hence may constitute more
problematic data points vis-à-vis the LLN.
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2.2. Some Comparisons of the Crude and Standardized Rates

Table 2 reveals that: (a) an aggregation of the six cancer types studied here results in
9,444,852 case occurrences; and the number of age-sex-block group cross-classifications
here is 1,038,100. Table 3 reveals that roughly 90% of these cross-classifications have zero
entries. This situation is far more extreme than that portrayed in Figure 1, which is based
upon random allocations to cross-classification subgroups. Often big spatial data do not
constitute a random sample. Table 2 documents that all six cancer types are present in each
of the Florida MSAs. Table 3 documents that few block groups have no cancer cases for
each of these cancer types. The primary culprit here is the distribution of cases across age
cohorts.

Figure 4 presents scatterplots for the associations between age-and-sex standardized
together with crude cancer rates, by cancer type and MSA. Each scatterplot includes three
age-sex adjustments, one based upon the World, one based upon the US, and one based
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upon the state of Florida reference population distributions. The trend lines appear in
this rank order in all scatterplots. Equation (1) discloses that standardization modifies
a crude cancer count by inflating it, deflating it, or leaving it unchanged in accordance
with the ratio of the block group and reference population cohort counts. The scatterplots
appearing in Figure 4 highlight that these adjustments can create leverage and influential
points affecting their corresponding trend line. Meanwhile, Table 3 reports extreme outliers
and the frequency of block groups with zero rates. These two heavy tail indicators imply
that few of these rates can approximate a normal random variable by being subjected
to a Box-Cox power transformation. Such power transformations tend to be successful
when deviation occurs in only one tail, rather than two tails. Furthermore, large numbers
of zeros defy tail stretching. In other words, the nature of these data suggests that they
need to be analyzed using non-normal probability models, which, in turn, require the
rates to be rounded to integers. This rounding introduces additional uncertainty into an
analysis, which should be much less than the specification error that would be introduced
by assuming a normal approximation when this approximation is very poor. Here this
rounding error increases/decreases (7 increases, and 13 decreases) the variance of the rates
by less than 0.01%.

Table 3. Non-normal frequency distribution tail characteristics: zeroes and extreme large-value outliers.

Variable Jacksonville Miami Orlando Pensacola Tallahassee Tampa

n [# block groups (BGs)] 699 3377 833 267 233 2006

# 0 case BGs 0 23 0 2 4 5

% age-sex-BG 0 s 80.3 82.3 78.3 80.7 86.4 81.6

% age-sex-BG 0 s, 20–54 age cohort 90.1 92.1 89.3 91.0 92.4 92.1

breast: C50.0-C50.9
# 6-sigma outliers

# 0 case BGs 2 61 1 4 8 20

female breast: C50.0-C50.9
# 6-sigma outliers 1/2/2/2 3/8/8/8 0/0/1/1 0/1/1/1 0/1/0/1 1/5/4/5

# 0 case BGs 2 62 1 4 8 22

colorectal: C18.0-C18.9,
C19.9, C20.9

# 6-sigma outliers 0/1/1/1 5/9/9/5 0/1/0/0 0/0/0/0 0/0/0/0 1/4/4/5

# 0 case BGs 11 105 11 3 19 57

lung & bronchus:
C34.0-C34.9

# 6-sigma outliers 1/1/1/1 4/8/8/7 0/2/2/2 0/0/0/0 0/0/0/0 1/2/2/3

# 0 case BGs 6 95 7 4 12 24

melanoma skin:
C44.0-C44.9

# 6-sigma outliers 1/1/1/1 4/2/3/2 1/1/0/0 1/2/2/2 1/1/1/1 6/7/7/7

# 0 case BGs 130 754 92 32 67 289

urinary bladder:
C67.0-C67.9

# 6-sigma outliers 1/0/0/1 6/7/8/10 1/1/2/2 0/0/0/0 0/0/0/1 2/2/2/3

# 0 case BGs 74 477 98 25 97 264

NOTE: use of the 6-sigma criterion emphasizes extreme outliers; entries are crude/world/US/ Florida standardized rates; International
classification of diseases for oncology (ICD) codes follow cancer types; # denotes the number of cases or observations.

Table 4 furnishes popular SA measures, namely the Moran Coefficient (MC) and the
Geary Ratio (GR), for the geographic distributions of the five cancer types within each of
the six MSAs. These measures indicate that the levels of SA vary by cancer type, have some
trends across the MSAs, and are dramatically impacted by age-sex standardization. They
also indicate that, for the most part, the prevailing SA essentially is weak and positive.
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Table 4. Traditional SA indices for the five selected cancer types by MSA and standardization reference population.

Cancer
Crude World Standardized US Standardized FL Standardized

MC GR MC GR MC GR MC GR

Jacksonville MSA

Female breast 0.16 0.79 0.11 0.84 0.10 0.83 0.10 0.83

Colorectal 0.17 0.80 0.10 0.84 0.08 0.86 0.08 0.86

Lung & bronchus 0.15 0.80 0.24 0.73 0.23 0.74 0.21 0.75

Melanoma skin 0.29 0.69 0.20 0.78 0.20 0.76 0.18 0.78

Urinary bladder 0.08 0.89 −0.02 0.98 −0.04 1.00 −0.04 1.00

Miami

Female breast 0.03 0.95 0.08 0.94 0.08 0.95 0.07 0.94

Colorectal 0.03 0.87 0.06 0.99 0.06 0.98 0.06 0.96

Lung & bronchus 0.04 1.16 0.14 0.93 0.14 0.90 0.14 0.89

Melanoma skin 0.12 1.03 0.08 0.76 0.06 0.76 0.05 0.77

Urinary bladder 0.16 1.38 0.09 0.88 0.09 0.87 0.08 0.87

Orlando

Female breast 0.25 0.72 0.17 0.80 0.18 0.80 0.18 0.79

Colorectal 0.29 0.64 0.09 0.88 0.08 0.90 0.08 0.90

Lung & bronchus 0.37 0.56 0.19 0.77 0.17 0.79 0.16 0.80

Melanoma skin 0.34 0.63 0.21 0.75 0.22 0.74 0.21 0.74

Urinary bladder 0.30 0.63 0.00 0.96 0.00 0.96 0.00 0.96

Pensacola

Female breast 0.11 0.88 0.05 0.97 0.05 0.94 0.04 0.94

Colorectal 0.07 0.89 0.08 0.84 0.10 0.84 0.08 0.86

Lung & bronchus 0.14 0.84 0.21 0.76 0.22 0.74 0.21 0.73

Melanoma skin 0.12 0.77 0.03 1.04 0.02 1.02 0.01 0.98

Urinary bladder 0.07 0.96 0.00 0.90 -0.01 0.93 -0.02 0.93

Tallahassee

Female breast 0.33 0.67 0.09 0.96 0.09 0.96 0.09 0.95

Colorectal 0.15 0.79 0.09 0.85 0.09 0.86 0.08 0.86

Lung & bronchus 0.14 0.79 0.05 0.90 0.05 0.92 0.04 0.92

Melanoma skin 0.35 0.74 0.26 0.82 0.27 0.82 0.26 0.83

Urinary bladder 0.07 0.84 0.01 0.93 0.01 0.93 0.01 0.93

Tampa

Female breast 0.19 0.78 0.02 0.95 0.02 0.95 0.02 0.95

Colorectal 0.26 0.70 0.05 0.94 0.05 0.92 0.05 0.92

Lung & bronchus 0.33 0.65 0.17 0.78 0.16 0.80 0.14 0.82

Melanoma skin 0.37 0.58 0.11 1.03 0.15 0.92 0.16 0.88

Urinary bladder 0.26 0.69 0.03 0.86 0.03 0.86 0.04 0.87

3. Spatial Autocorrelation and Public Health Data

SA is a feature of georeferenced health data; Jacquez [22] summarizes a number of
sources. Disease mapping reveals that cases tend to cluster in geographic space, often
forming hotspots and coldspots. This outcome may result from a disease being contagious,
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or from exposure to some common underlying environmental factor (e.g., a geographically
concentrated contaminant) that couples with genetic susceptibility to promote occurrences
of an illness. Furthermore, Schelling’s [23,24] work highlights that neighborhoods tend
to house people with many similar lifestyle characteristics, such as income and density
of housing, rather than random mixtures of people. These contexts imply the presence of
PSA. One consequence of the resulting SA is overdispersion in count data described by
binomial, negative binomial, and Poisson probability models.

However, cancer is not contagious; it may link to a common exposure, and often
takes a goodly number of years to develop, introducing noise that may well mask links.
Consequently, one may expect geographic distributions of cancer rates to be characterized
by weak PSA [25]. However, it may also exhibit a negative SA (NSA) component, which
may be specific to the census block group geographic resolution. One source of this NSA in
MSAs is attributable to land use zoning practices, which can juxtapose zero and non-zero
population count areal units. Another is local social network structures and screening rates:
if a person gets screened, s/he may encourage his/her neighbors to get screened, especially
if the screening results in a cancer diagnosis. One possible outcome is a cancer map with
adjacent high and low rates. This same type of outcome can arise from targeting specific
neighborhoods for screening, which again would produce such local contrasts.

3.1. Moran Eigenvector Spatial Filtering: A Brief Overview

Moran eigenvector spatial filtering [26] is a novel spatial statistical methodology
addressing SA that adds a set of synthetic proxy variables, which are eigenvectors ex-
tracted from a doubly centered version of an n-by-n, usually binary 0–1, spatial weights
matrix C that links geographic objects together in space as control variables to filter SA
out of residuals and transfer it to the mean response in a regression model specification
(this modification creates a spatially varying intercept term). These control variables
identify and isolate the stochastic spatial dependencies among georeferenced observa-
tions, thus allowing model parameter estimation to proceed with observations mimicking
being independent.

The crucial matrix C mathematical attributes are eigenfunctions, which are n pairs of
n-tuples and scalar quantities computed via the matrix determinant of a modified version
of matrix C, MCM, where M =

(
I − 11T/n

)
, I denotes the n-by-n identity matrix, and

1 denotes the n-by-1 vector of ones: a scalar (eigenvalue) and a vector (its corresponding
eigenvector). Eigenvalues are the n scalar solutions to the nth order polynomial matrix
determinant equation det (MCM − λI) = 0; the corresponding eigenvectors E are the
non-trivial vector solutions to the equation (MCM − λI)E = 0. These eigenfunctions are
the basis of Moran eigenvector spatial filtering (MESF), and are the synthetic variates that
account for nonzero SA in spatial regression residuals.

The MC index of SA may be written, using matrix notation, for some random variable
Y with n georeferenced observations, as

n
1TC1

YT(I − 11T /n)C
(
I − 11T /n)Y

YT(I − 11T /n)Y
=

n
1TC1

YTMCMY
YTMY

(2)

ESFs are constructed as linear combinations of the MCM matrix eigenvectors. Ap-
pealing properties of these eigenvectors include: (1) they are mutually orthogonal and
uncorrelated; (2) one vector is proportional to 1, the intercept covariate in a regression
model; and (3) eigenvalues index, and eigenvectors support the visualizing of, various
distinct natures and degrees of SA.

Including eigenvectors as covariates, and selecting relevant ones with a stepwise
procedure, enables SA to be accounted for in a conventional statistical estimation con-
text, in either a linear or a generalized linear model (GLM) specification. In many GLM
applications, SA tends to account for about half of any detected overdispersion.
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3.2. Spatial Autocorrelation and Big Spatial Data

Big spatial data can take on various forms. One is an increase in the number of
areal units, which relates more to infill than to increasing domain asymptotics in spatial
sampling, but relates mostly to data volume. Recent asymptotic analyses [27,28] reveal
that across a wide range of random variable types, sample sizes, and geographic surface
partitionings, the MC outperforms the GR as an index of SA. This finding bolsters the
conceptual basis of MESF.

Another form is moving from very small sample sizes typical of many clinical trials
(Institute of Medicine, 2001) to millions of cases gleaned from medical records. The number
of such cases in this study, for five specific cancer types, is nearly 9.5 million. But post-
stratification, for both standardization and spatial analysis purposes, moves these data
away from the big spatial data realm, at least to some degree. The SA latent in them
appears to be a mixture of PSA and NSA. MESF is a methodology particularly suitable for
analyzing this SA mixture. Because MESF involves n eigenvectors, and n can be relatively
large for MSAs (e.g., 3377 for Miami), implementing MESF becomes a challenge here,
particularly when coupled with a GLM and stepwise eigenvector selection. The number of
required estimation iterations at each eigenvector selection step for a model specification,
and the substantial size of a candidate eigenvector set (which now has vectors representing
both PSA and NSA), challenges estimation algorithms that successfully work for smaller
georeferenced datasets, such as the one for Tallahassee (n = 233). In other words, nonlinear
estimation combined with combinatorics can magnify a moderate-to-large spatial data
problem into a big spatial data problem.

3.3. Constructing ESFs for Florida MSA Standardized Cancer Rates

Section 2.2 presents an argument for rejecting the use of a normal approximation
when conducting a spatial analysis of standardized cancer rates (e.g., the presence of
zeroes, outliers, and leverage observations). The analysis summarized in this section
employs a Poisson probability model because researchers most often employ it to describe
vital statistics rates. The assumption of a Poisson random variable requires rounding of
the standardized rates to integers, the form of their crude rate counterparts (the noise
introduced by this arithmetic operation appears to be trivial; see Section 2.2). Meanwhile,
equation (1) suggests several possible offset variables, including not positing one (a rate
per 100,000 results in a constant across all cancer types and MSAs, and simply modifies
each intercept by LN10

(
10−5) = −5). Given the presence of overdispersion, this Poisson

assumption is replaced with a negative binomial random variable assumption.
The inferential basis for the cancer data analysis summarized in this paper is model

based; cancer cases are not random samples. As such, acceptable diagnostics need to
accompany the spatial statistical models employed in this analysis. The presence of
overdispersion (i.e., extra-Poisson variation) and of SA are two important data features
needing to be accounted for in order to satisfy important model properties. Overdispersion
relates to uncertainty, primarily through noise and abnormalities in data. Here minimizing
specification error helps to address these data features: a normal approximation was
replaced by a Poisson specification (involving rounding of rate numerators), which then
was replace with a negative binomial specification (to account for variation described by
σ2 = µ(1 + ηµ) rather than simply σ2 = µ, where η > 0 denotes the dispersion parameter).
The outcome of this sequence of substitutions should be, for example, a deviance statistic
essentially equal to 1. Overdispersion can relate to a random effects term. As such, latent
SA links to a spatially structured component of this term, whereas the residual dispersion
parameter links to a spatially unstructured component of this term.

Because an auto-negative binomial model can capture only NSA, and most georefer-
enced phenomena display PSA, the analysis summarized here employed a MESF negative
binomial (MESFNB) model specification. Table 5 summarizes the number of modified
spatial weights matrix eigenvectors in a given MSA candidate set; because the expectation
is a mixture of PSA and NSA, Table 5 contains counts for both SA natures.
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Table 5. The size of the candidate eigenvector sets based upon
∣∣MCj/MC1

∣∣ ≥ 0.25 .

Variable Jacksonville Miami Orlando Pensacola Tallahassee Tampa

n (# block groups) 699 3377 833 267 233 2006

# PSA eigenvectors 179 846 218 68 63 519

# NSA eigenvectors 254 1146 316 99 91 727

NOTE: # denotes the number of observations or eigenvectors.

Table 6 summarizes MESFNB estimation results. A simulation experiment was con-
ducted for each sample size, sampling the mean for each of 10,000 replications from a
gamma distribution with randomly selected parameters from the interval (0, 10). Extreme
deviance results based upon this experiment indicate that only melanoma skin and urinary
bladder cancer in Jacksonville have dispersion parameters statistically significantly greater
than what is expected for the NB specification employed here. Meanwhile, the level of SA
in these data is low. Roughly 70% of the geographic distributions of studied cancers have a
mixture of PSA and NSA in which the PSA component dominates. Urinary bladder cancer
is the only cancer type that consistently has a mixture in which NSA dominates. Five geo-
graphic distributions have only a PSA component. Urinary bladder cancer in Tallahassee
fails to exhibit any SA. Of note is that the age-sex standardization transformation appears
to have introduced noise into these georeferenced data, resulting in a shrinkage of their SA
index values toward zero SA.

Table 6. SA analysis of age-sex standardized cancer rates, world population as the reference.

Variable Female Breast Colorectal Lung & Bronchus Melanoma Skin Urinary Bladder

Jacksonville (n = 699)

# PSA eigenvectors 24 16 32 16 1

Pseudo-R2 0.18 0.14 0.30 0.17 0.01

# NSA eigenvectors 17 10 10 3

Marginal Pseudo-R2 0.10 0.06 0.06 0.04

Dispersion parameter 0.15 0.14 0.24 1.25 1.24

Deviance 1.13 1.18 1.18 2.29 1.35

Miami (n = 3377)

# PSA eigenvectors 66 32 20 33 23

Pseudo-R2 0.12 0.07 0.08 0.03 0.04

# NSA eigenvectors 30 18 0 1 5

Marginal Pseudo-R2 0.05 0.05 0.00 0.00 a 0.05

Dispersion parameter 0.41 0.62 0.82 3.01 1.82

Deviance 1.18 1.19 1.17 1.21 1.24

Orlando (n = 833)

# PSA eigenvectors 45 24 47 16 3

Pseudo-R2 0.28 0.17 0.27 0.18 0.03

# NSA eigenvectors 42 26 20 5 4

Marginal Pseudo-R2 0.18 0.14 0.10 0.03 0.03

Dispersion parameter 0.13 0.28 0.25 1.43 1.48

Deviance 1.16 1.20 1.20 1.26 1.24

Pensacola (n = 267)

# PSA eigenvectors 2 3 11 1 1
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Table 6. Cont.

Variable Female Breast Colorectal Lung & Bronchus Melanoma Skin Urinary Bladder

Pseudo-R2 0.06 0.06 0.22 0.03 0.03

# NSA eigenvectors 1 2 1 1 2

Marginal Pseudo-R2 0.02 0.05 0.00 0.07 0.06

Dispersion parameter 0.31 0.38 0.32 1.55 1.24

Deviance 1.15 1.17 1.19 1.24 1.24

Tallahassee (n = 233)

# PSA eigenvectors 5 1 0 2 0

Pseudo-R2 0.15 0.04 0.00 0.21 0.00

# NSA eigenvectors 4 0 1 0 0

Marginal Pseudo-R2 0.11 0.00 0.04 0.00 0.00

Dispersion parameter 0.67 1.42 0.92 3.92 6.28

Deviance 1.24 1.24 1.21 1.17 1.02

Tampa (n = 2006)

# PSA eigenvectors 26 22 74 33 3

Pseudo-R2 0.08 0.09 0.23 0.10 0.01

# NSA eigenvectors 32 20 45 6 3

Marginal Pseudo-R2 0.09 0.07 0.09 0.04 0.03

Dispersion parameter 0.31 0.55 0.32 1.85 1.76

Deviance 1.15 1.19 1.19 1.25 1.23

NOTE: a An unstable estimate; bold denotes statistically significant; # denotes the number of eigenvectors.

4. Conclusions

The analyses summarized in this paper emphasize that SA latent in cancer data
appears to be weak and a mixture of PSA and NSA. Both this feature and the uncovered
extra-Poisson variation imply the need for a spatially structured and a spatial unstructured
random effects term in a model specification. These components should serve as clues for
selecting substantive covariates to include in a MESFNB model specification. They also
may relate to the age-sex standardization transformation used; just as with Box-Cox and
Box-Tidwell power transformations, perhaps such a standardization needs to be applied to
both sides of the equation.

The data analyzed for this paper comprises nearly 9,500,000 cancer cases, which
is big spatial data based upon most sample sizes used for clinical trials, or for medical
panel surveys (which often involve thousands or more). However, with post-stratification,
even with big data, a researcher can encounter the problem of small local sample sizes
materializing, which tends to inflate local uncertainty and undermine otherwise sound
statistical analyses. Accordingly, georeferenced data analyses must address the resulting
bias, noise, and abnormalities in these data.

This paper’s georeferenced cancer data spatial analyses fulfill its aim, namely to
identify and assess geographical patterns within the context of SA, rendering a better
understanding of small geographic area data uncertainty. SA obscures effective sample
size, impacts the efficacy of the LLN and the CLT, differs between crude and standardized
rates, and meshes with geographic resolution, introducing instabilities into spatial statistical
estimates. Various parts of this paper illustrate these contentions.

Finally, this paper summarizes findings about the nature, degree, and mixture of SA
in selected geographic distributions of cancer. One useful finding here is that a mixture
of PSA and NSA is the norm for cancer data across six different MSAs [also see 17]. One
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useful future research theme concerns whether or not the polygon-based SA studied in this
paper holds for noncontiguous geographic areas, given the point nature of the individual
cancer cases.

One important outcome of this work is that this paper furnishes deeper spatial sta-
tistical insights into small geographic area data uncertainty. Small sample and empty
cross-classification cells complicate post-stratified data analyses. A mixture of PSA and
NSA complicates spatial data analyses. The presence of non-zero SA reduces the sample
size (see Table 7). Data anomalies and excessive zeroes negate the validity of normal
approximation analyses, increasing the numerical intensity of proper analyses, but with a
MESFNB model specification furnishing a good description of the spatial distribution of
standardized cancer rates at a reasonably fine geographic resolution.

Table 7. Approximate effective geographic sample size, n*.

Cancer Type Jacksonville Miami Orlando Pensacola Tallahassee Tampa

n (# block groups) 699 3377 833 267 233 2006

female breast 503 2803 450 246 172 1665

colorectal 559 2972 575 238 224 1685

lung & bronchus 447 3107 525 208 224 1364

melanoma skin 580 3276 658 240 184 1725

urinary bladder 664 3073 783 243 233 1926

NOTE: # denotes the number of observations.
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