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Abstract: According to the World Health Organization, about 20 million people are infected with
Hepatitis E every year. In 2015, there were 44,000 deaths due to HEV infection worldwide. Food,
water and climate are key factors that affect the outbreak of Hepatitis E. This paper presents an
ensemble learning model for Hepatitis E prediction by studying the correlation between historical
epidemic cases of hepatitis E and environmental factors (water quality and meteorological data).
Environmental factors include many features, and ones that are most relevant to HEV are selected
and input into the ensemble learning model composed by Gradient Boosting Decision Tree (GBDT)
and Random Forest for training and prediction. Three indicators, root mean square error (RMSE),
mean absolute error (MAE) and mean absolute percentage error (MAPE), are used to evaluate the
effectiveness of the ensemble learning model against the classical time series prediction model. It is
concluded that the ensemble learning model has a better prediction effect than the classical model,
and the prediction effectiveness can be improved by exploiting water quality and meteorological
factors (radiation, air pressure, precipitation).

Keywords: hepatitis E; ensemble learning; prediction

1. Introduction

According to the World Health Organization (WHO), about one third of the world’s
population is exposed to the threat of hepatitis E virus (HEV) and is at risk. About 20 million
people are infected with HEV every year. In 2015, there were 44,000 deaths due to HEV
infection worldwide, accounting for 3.3% of all viral hepatitis deaths [1]. Hepatitis E has
been found in various countries and regions all over the world, but it is more common in
developing countries in Asia and Africa, with outbreaks from time to time, and sporadic
cases also occur in developed countries [2]. Hepatitis E is an intestinal infectious disease
transmitted by fecal oral route. The transmission of hepatitis E can be divided into food
borne and water-borne. The incidence of hepatitis E is related to the climate, because
climate change impacts the environment, e.g., by affecting the water and food supply.
Certain research [3] has already demonstrated the relationship between climate change
and bacterial infections. In this work, we want to further explore the relationship between
climate change and the incidence of Hepatitis E.

The traditional early warning work of infectious diseases usually adopts the empirical
statistical method. By collecting the historical infectious disease case data, the statistical
model is used to study the incidence trend of infectious diseases. The time series of EEG
(Electroencephalogram) are used to judge the onset of Alzheimer’s disease [4]. Clinical
historical influenza incidence data is used to build an early prediction model for influenza
like infectious diseases [5]. In 2005, Kulldorff constructed a prospective spatio temporal
scanning statistical model and applied it to early detection of disease outbreaks based on
case numbers alone. This method does not need the data of the population at risk. It makes
the smallest assumptions about the time, geographical location or scale of the outbreak,
and adjusts them according to the changes of space and time [6].
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With the continuous development of science and technology, researchers began to
integrate external factors into the early warnings for infectious diseases, such as economic
activities, climate change and population mobility. The WHO has established an early
warning system for malaria incidence rate based on monthly case reports and local rainfall
in Burundi [7]. In the era of artificial intelligence, disease prediction also has a new method
to keep pace with the times. Kathy Lee et al. proposed a real-time influenza and cancer
monitoring system based on the space, time and text mining of Twitter data [8]. These
studies demonstrate the potential for disease prediction using complex environmental
factors. The objective of this study was to predict the incidence rate of hepatitis E by
exploiting complex environmental factors with machine learning. The data we used
included the historical cases of hepatitis E and the hydrological and meteorological data
of the case environment. We used two different machine learning models (GBDT and
Random Forest) to improve the accuracy of the prediction model by ensemble learning.

2. Method Overview

The traditional early warning for hepatitis E in China usually adopts the empirical
statistical method, which only uses historical hepatitis E disease case data to predict the
incidence of hepatitis E in the future. In contrast, our approach uses ensemble learning
method based on the integration of hepatitis E case data, meteorological data and water
quality data to perform prediction and try to achieve an early warning ability.

We obtained hepatitis E cases in a southeast province from 2009 to 2018 and collected
the climate, temperature, humidity, water pollution and other related environmental data
in this region. After preprocessing, those related environmental data were used for feature
selection: to select factors most relevant to hepatitis E.

Our approach is outlined in Figure 1.

Figure 1. Approach overview.

Phase 1. Exploring the statistical properties of case data of hepatitis processing
abnormal and missing values of case data, water quality data and meteorological data.

Phase 2. Performing correlation analysis and feature selection on the preprocessed
data to facilitate the construction of the prediction model.

Phase 3. Building a prediction model of hepatitis E based on ensemble learning, and
comparing it with the classic time series model to verify the advantages and disadvantages
of an ensemble learning model.

The rest of the paper is organized as follows. Section 2 briefly introduces knowledge
from ensemble learning. Section 3 advances the prediction model of hepatitis E based on
ensemble learning. Section 4 discusses the evaluation of prediction models and Section 5
discusses the experiments that were performed. Section 6 reviews related work and
Section 7 provides conclusions and future work.
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3. Brief View of Ensemble Learning

We always hope to get accurate and stable one training models. In practice, the
training results are not so ideal, as sometimes only a few biased models can be obtained. By
calculating the probability of this outcome occurring, we concluded that if there are several
independent models, the performance of the combined model is much better than that of
a single model. For example, for the classification problem, a trained model’s prediction
accuracy rate could be 55%, which is at a medium level. If there are 100 of these types of
models, the probability of correct classification results of the ensemble model can increased
to 82%. Ensemble learning combines multiple models with medium performance to get a
better performance prediction model. The underlying idea is: for the classification problem,
although one model gets the wrong classification result, other models can correct the error;
for the regression problem, the prediction result of one model has a large error, but the
prediction results of other models can balance the error.

Using different machine learning techniques to obtain multiple approximately inde-
pendent models is not practically operative. Different models have different parameters
and different requirements for input data. Therefore, the key to ensemble learning is
to generate many approximately independent models. From this we can get a two-tier
structure of ensemble learning, and the underlying algorithm is called a base learner. Base
learners are relatively independent machine learning algorithms. In the next step, they are
integrated into an ensemble learning model. The commonly used base learner is a binary
decision tree. The upper level algorithm makes the base learners almost independent of
each other, and combines them. Currently, the widely used ensemble methods are bagging
and boosting.

The Gradient lifting method is one of the classical boosting algorithms, which uses the
decision tree as the base learner and generates a model called a gradient boosting decision
tree (GBDT). The decision tree used in GBDT is a regression tree. The goal of each training
is to reduce the error of the last training and finally get the minimum error. The model uses
the gradient descent method to reduce the error, and the default loss function is the mean
square error:

L(y, f (x)) =
1
n

n

∑
i=1

(yi − f (xi))
2 (1)

where y is the measured value and f (x) is the prediction value. The model is expressed as:

F(x) =
M

∑
m=1

βmh(x; αm) (2)

where βmh(x; αm) is the m-th base learner, h(x; αm) is the m-th decision tree, αm is its
parameter and βm is the weight in each iteration. Then the optimal prediction function is
as follows,

F∗(x) = argmin
F(x)

Fy,x[L(y, f (x))]. (3)

It can be seen from Equation (2) that to find the optimal prediction function, it is
necessary to find the optimal (βm, αm) as follows,

ˆ(βm, αm) = arg min
αm ,βm

N

∑
i=1

L(yi, fm−1(xi) + βmh(xi; αm)) (4)

where fm−1(xi) is the base learner of the m − 1-th training, while fm−1(xi) + βmh(xi; αm) is
the base learner of the m-th training.

Given training data T = {(xi, yi)}N
i=1, the processing steps of GBDT are:
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Initializing the base learner, generating a decision tree with a depth of 1.

f0(x) = argmin
c

N

∑
i=1

L(yi, c) (5)

For the m-th decision tree:
Calculate the negative gradient, or residual, where i = 1, 2, · · · , N:

rim = −
[

∂L(yi, f (xi))

∂ f (xi)

]
f (x)= fm−1(x)

. (6)

Taking the residuals obtained in (1) as the measured values of new samples, upon
which a new decision tree is constructed to obtain the leaf node region: Rjm, j = 1, 2, · · · , J.

Calculating the best fitting value of Rjm:

cmj = argmin
c ∑

xi∈Rmj

L(yi, fm−1(xi) + c) (7)

which can be updated:

fm(x) = fm−1(x) +
J

∑
j=1

cmj I
(

x ∈ Rmj
)

(8)

thereby outputting decision tree fM(x).

4. Prediction Model Based on Ensemble Learning

In our approach, GBDT (Gradient Boosting Decision Tree) and random forest were
used to construct prediction models for hepatitis E. The process of a hepatitis E prediction
model is as follows:

4.1. Data Acquisition and Cleaning

The data of hepatitis E cases, population data and regional coding data used in this
study are collected from a southeast province in China. Meteorological data is collected
from greenhouse data sharing platform. The surface water monitoring data is collected
from China’s national environmental monitoring station. The hepatitis E data contain five
attributes: gender, age, occupation, region and time of onset. This paper mainly analyzes
the reported cases of hepatitis E from 2010 to 2018.

Data cleaning is of great importance. The cleaning methods involved in this paper
include abnormal value processing, missing value processing and data coding.

The meteorological data comes from the daily monitoring data of national monitoring
stations of the greenhouse data sharing platform. As shown in Table 1, meteorological
data includes atmosphere temperature, surface temperature, wind speed, sunshine hours,
relative humidity, precipitation, evaporation and station air pressure. Some meteorological
data is missing due to detection equipment or data storage malfunction. Hence, cleaning
meteorological data deals with abnormal and missing values.
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Table 1. Original meteorological data.

Attribute Name Meaning Unit

avg_tem Average temp ◦C
max_tem Daily maximum temperature ◦C
min_tem Daily minimum temperature ◦C
avg_gst Mean surface temperature ◦C
max_gst Daily maximum surface temperature ◦C
min_gst Daily minimum surface temperature ◦C
avg_win Average wind speed m/s
max_win Maximum wind speed m/s

ssd Sunshine hours h
avg_rhu Average relative humidity %
avg_rhu Minimum relative humidity %

pre_20_20 Accumulated precipitation from 20:00 to 20:00 mm
min_evp Small evaporation mm
max_evp Large evaporation mm
avg_prs Average local air pressure hPa
max_prs Daily maximum local air pressure hPa
min_prs Daily minimum local air pressure hPa

We drew the box diagram with Python matlibplot.pyplot, and checked the abnormal
value of meteorological data with the describe function of dataframe class in pandas package.
Figure 2 shows original meteorological data obtained from 58,457 meteorological stations.
The abnormal values are special codes in meteorological data. They were replaced by
pandas. Dataframe.replace function. Figure 3 shows meteorological data after processing.

Figure 2. Illustration of the original meteorological data with abnormal data.
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Figure 3. Illustration of the meteorological data after cleaning for abnormal values.

After that, in line with our target, we performed feature construction to generate more
sophisticated features to better describe some more complex phenomena, based on the
meteorological data and water quality data after processing and the incubation period of
hepatitis E. Some of the constructed features are illustrated in Table 2.

Table 2. Meteorological and water quality features.

Attribute Meaning Unit

avg_tem_2m Average temperature of the first two months (◦C)
avg_tem_3m Average temperature of the first three months (◦C)
avg_win_2m Average wind speed in the first two months (m/s)
pre_sum_2m Accumulated precipitation days in the first two months (d)

do_2m Average dissolved oxygen in the first two months mg/L
nh3_n_2m Average high ammonia nitrogen in the first two months mg/L
qual_2m Water quality category in the first two months 1\2\3\4\5\6

The data of hepatitis E were then sorted into time series data. Finally, the water
quality characteristics, meteorological characteristics and the time series of hepatitis E cases
were integrated.

4.2. Feature Selection

Feature selection determines whether the selected features are useful for the prediction
target. It is necessary to understand some background knowledge related to the problem
when constructing the feature. The general principle is to use one’s imagination to create
features as often as possible. If the new features contain redundant features, then the
redundant features can be deleted through feature selection. Feature design and selection
need iterative verification to get better results. After constructing features according to the
relevant domain knowledge, the correlation coefficient method is used to select features,
and then the embedding method is used to further select features in the subsequent
modeling process.

Feature selection refers to selecting a feature subset from the complete feature set
which is beneficial to the training model and is as small as possible. An appropriate
feature subset can reduce the running time of the model, improve the performance of the
model and enhance the interpretability of the model. A practical problem often has many
attributes (i.e., features), but these attributes are not related to the problem; usually there
are some irrelevant features and redundant features that interfere with the construction
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of the model. Therefore, we needed to filter the feature set to reduce the difficulty of the
model, and improve its performance.

This paper used the combination of a filtering method and embedding method for
feature selection. Firstly, the univariate feature selection method was used to filter out the
features with low correlation with the prediction target. Then, the embedding method was
used to further screen features in the follow-up experiments.

Feature selection based on the filtering method is included in data preprocessing,
before model training. The method evaluates the correlation between different features
and prediction results by calculating the statistical characteristics or information entropy of
each feature. The feature subset which is beneficial to model training was selected. This
method is based on single variable analysis with the correlation coefficient method.

Feature selection based on the embedding method directly takes feature selection as
a part of a machine learning model. Some machine learning models can score features
themselves. We can use these models to train, obtain the importance ranking of input
features and select features according to their importance.

4.3. Parameter Adjustment

The preliminary selected features were used as the input of GBDT/random forest.
The model parameters were adjusted, and the features are screened and trained. Finally,
the test set was used to predict and analyze the results.

The adjustment of ensemble learning parameters starts from the base learner and
the upper level algorithm. The GBDT and random forest are both decision trees, so the
parameters that need to be adjusted in the decision tree should be considered first. max_
Depth sets the maximum depth of the tree; a deeper decision tree may get better prediction
results in the random forest, but a deeper tree needs a longer training time and incurs a risk
of over fitting. We needed to balance these pros and cons. In the gradient lifting method,
the iterative process will correct the wrong results, hence the shallow decision tree can get
good results.

In the adjustment of the upper level algorithm, both GBDT and random forest should
set n_estimators, which specifies the number of base learners in the ensemble method.
In the algorithm based on a decision tree, n_estimators and the maximum depth of the tree
jointly determine the complexity of the model. If the parameters are too small, this will
cause over fitting of the model, and if they are too big, it will lead to the model not fitting
well. Many attempts are needed to determine the best values. In GBDT, the learning_Rate
also needs to be set. When the learning rate is too large, the training error will drop rapidly,
which is likely to cause over fitting. If the learning rate is too small, then more iterations
are needed to obtain better results, which will reduce the training speed. n_Estimators and
learning_ Rate will affect each other and are usually adjusted together. In addition, these
two values will also affect the choice of optimal maximum depth.

5. Evaluation Metrics

Cross validation is a commonly used verification method in model optimization and
parameter adjustment. It improves the generalization ability of the model by evaluating
the parameter setting and prediction effectiveness. We adopted a three folded time series
cross validation, as seen in Figure 4.

Mean absolute error (MAE): The mean absolute error is the mean absolute error of
all samples.

MAE =
1
n

n

∑
i=1

∣∣y′i − yi
∣∣ (9)

where y′i is prediction value of a sample, yi is measured value, MAE is ranged over [0, +∞) .
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Figure 4. Evaluation Model.

Mean absolute percentage error (MAPE): MAPE is the mean absolute percentage error of
all samples.

MAPE =
100%

n

n

∑
i=1

∣∣∣∣y′i − yi

yi

∣∣∣∣ (10)

where y′i is the prediction value, yi is the measured value and MAPE is ranged over
[0, +∞) . When the predicted value is the same as the measured value, MAPE is 0. If MAPE
is greater than 1, it means that the model is of poor quality. Compared with MAE, MAPE is
more intuitive to express the quality of the model, but it should be noted that when the
measured value is 0, MAPE cannot be used.

Root mean square error (RMSE):

RMSE =

√
1
n

n

∑
i−1

(
y′i − yi

)2. (11)

The time series cross validation method was used to evaluate the prediction effect
of the model. The experimental data are divided into three groups of training sets and
test sets by using the fold time series cross validation method. This method can reflect the
generalization ability of the model and the laws contained in the data of different periods
and time spans. The influence of different scale training sets on the prediction effect can be
found through it. The RMSE, MAE and MAPE of the model on the test set were calculated
to evaluate the prediction effect of the model.

6. Experiments
6.1. Experiments Overview

This section discusses implementation of the prediction model of hepatitis E based
on ensemble learning, specifically using GBDT and random forest two ensemble methods,
and comparing this approach with the classic time series model of the infection prediction
method. We selected the model with better prediction effect, combined with the moving
percentile method and the moving average method to provide early warning of the high
incidence of hepatitis E.

Experiment 1: implementing the prediction model of the monthly incidence of hepati-
tis E based on GBDT/random forest.

Experiment 2: implementing the prediction model of monthly incidence of hepatitis E
based on the time series method, and comparing the performance of three prediction models;

Experiment 3: Using the ensemble learning model combined with the moving per-
centile method and the moving average method to predict the high incidence month of
hepatitis E in 2018.

6.2. Experiments of Ensemble Learning Models

The data of hepatitis E cases, population data and regional coding data used in this
study were collected from a southeast province in China. Meteorological data was collected
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from a greenhouse data sharing platform. The surface water monitoring data was collected
from China’s national environmental monitoring station. The data of hepatitis E contains
five attributes: gender, age, occupation, region and time of onset. This paper mainly
analyzes the reported cases of hepatitis E from 2010 to 2018. Based on the data of hepatitis
E cases, water quality and meteorological factors from 2010 to 2018, we divided the training
set and test set by using the three-fold time series cross validation method, and used RMSE,
MAE and MAPE as evaluation indexes to train the GDBT model and random forest model
to determine their optimal parameters.

6.2.1. GBDT Experiments

Mean square error and absolute error synthesis were selected as the loss function of
the GBDT model. That is, the loss parameter was set to “Huber”, and several important
parameters of the model were adjusted respectively to select their optimal combination.

First n_estimators was set to 1000 and other parameters were set to default values. The
mean square error of the training set and the test set initially decreased very quickly, while
the mean square error of the test set began to rise after the decline. The model was over
fitted. We therefore reduced the step size of gradient descent and adjusted the relevant
parameters of the decision tree. We compared the performance of different decision tree
depths to select the appropriate decision tree depth. Through experiments, the tree with
depth 1 was selected as the base learner. The final parameters are shown in Table 3.

Table 3. Gradient boosting decision tree (GBDT) Parameter Settings.

Parameter Name Meaning Value

loss Loss function huber
n_estimators Number of decision tree 300
max_depth Maximum depth 1

learning_rate Step size of gradient lifting 0.02
max_features The number of features sqrt

The above parameters were used to train the three groups of data. The fitting degree
of the three groups of training sets is shown in Table 4.

Table 4. GBDT Fitting degree under a training set.

RMSE MAE MAPE

Group1 5.767 4.616 11.85%
Group2 8.337 6.807 16.17%
Group3 10.743 8.478 18.55%
Average 8.282 6.634 15.53%

Test set prediction performance is shown in Table 5.

Table 5. GBDT prediction performance under a test set.

RMSE MAE MAPE

Group1 13.961 12.150 26.83%
Group2 17.001 13.291 20.82%
Group3 12.816 9.982 19.80%
Average 14.593 11.807 22.48%

In the three groups of experiments, the smaller the training set, the better the fitting
degree. The prediction results of the third group were the best and the second group
were the worst. The fitting and prediction results of three groups of data are shown in
Figures 5–7, respectively. It can be seen from the figures that the number of prediction
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cases in group 2’s testing set was abnormally convex for a period. The fitting degree in
the same period in the group 3’s training set was also poor. The reason for this is that
the transmission factors of infectious diseases are complex, the reasons for which are not
covered in this paper.

Figure 5. GBDT’s fitting and prediction results for group 1.

Figure 6. GBDT’s fitting and prediction results for group 2.

Figure 7. GBDT’s fitting and prediction results for group 3.

In viewing the features of the GBDT model, six features, ‘the number of patients in
the last month’, ‘the average daily minimum pressure in the first two months’, ‘the average
potassium permanganate index in the first three months’, ‘the average daily maximum
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wind speed in the first three months’ and ‘the average daily radiation in the first three
months’, were screened out.

6.2.2. Random Forest Experiments

Mean square error is the loss function of the Random Forrest model. Parameters were
set as shown in Table 6.

Table 6. Random forest parameter settings.

Parameter Name Meaning Value

n_estimators Number of decision trees 200
max_depth Maximum depth of trees 5

min_samples_split Minimum number of samples for node re segmentation 10

The above parameters were used to train the three groups of data. The fitting degree
of the three groups of training sets is shown in Table 7. Test set prediction performance is
shown in Table 8.

Table 7. Random forest fitting degree under the training set.

RMSE MAE MAPE

Group1 8.531 6.703 16.95%
Group2 7.859 6.511 15.08%
Group3 8.489 6.880 14.59%
Average 8.293 6.698 15.54%

Table 8. Random forest prediction performance under the test set.

RMSE MAE MAPE

Group1 13.379 11.343 25.66%
Group2 16.310 12.606 19.56%
Group3 12.108 9.526 18.65%
Average 13.932 11.159 21.29%

In the training set, the three groups’ fitting degree showed little difference. In test
set, the third group has the best prediction performance. Figures 8–10 show the fitting
and prediction results of random forest. In the second and third groups of experiments,
the model could predict the increase of the number of cases, but there was still a certain
gap in the numerical value. In general, the prediction results of random forest were slightly
better than GBDT.

Figure 8. Random forest’s fitting and prediction results for group 1.
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Figure 9. Random forest’s fitting and prediction results for group 2.

Figure 10. Random forest’s fitting and prediction results for group 3.

According to the feature importance score, five features, (the number of patients in
the last month), (the average potassium permanganate index in the first three months),
(the average daily minimum ground temperature in the first two months), (the average
daily maximum wind speed in the first three months and the average precipitation in the
first two months) were finally screened out.

6.3. Comparative Experiment

The time series prediction model has been commonly used in disease prediction.
In this work, SPSS time series statistics software was used to predict hepatitis E cases. Time
series cross validation was used to product three training and test sets. Their fitting and
predicting processes are analyzed as follows.

The original time series of hepatitis E case data from 2010 to 2018 is shown in Figure 11.
It can be seen that from 2010 to 2018, the number of hepatitis E cases has no obvious
upward or downward trend. Except for 2012, 2014 and 2015, the incidence of hepatitis E
was generally high in winter and spring.
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Figure 11. Original time series of hepatitis E from 2010 to 2018.

Based on the above analysis, the simple seasonal model of exponential smoothing
method was used to fit the three groups of data. The exponential smoothing method
is a time series analysis and prediction method developed on the basis of the moving
average method. It is used to predict the future of a phenomenon by calculating the
exponential smoothing value and combining it with a certain time series prediction model.
The principle is that the exponential smoothing value of any period is the weighted average
of the actual observed value and the exponential smoothing value of the previous period.
In the exponential smoothing method, the simple seasonal model is especially suitable for
a time series with periodic characteristics because of considering seasonal effects. We used
the SPSS to conduct the fitting of the simple seasonal model for the prediction of hepatitis E.

The average RMSE was 11.42, MAE was 8.807 and MAPE was 17.91%, The fitting
degree of each training set is shown in Table 9. RMSE, MAE and MAPE showed that the
model fitting degree of the first training set was the best. Table 10 shows the prediction
performance comparison of the three test sets.

Table 9. Fitting degree of the training set of the time series model.

RMSE MAE MAPE

Group1 10.455 8.158 16.07%
Group2 11.324 8.612 18.36%
Group3 12.482 9.650 19.29%

Table 10. Prediction performance of test set of time series model.

RMSE MAE MAPE

Group1 20.274 17.269 42.25%
Group2 17.571 14.269 23.20%
Group3 20.485 17.692 39.92%

Figures 12–14 show the fitting results of training set and prediction result of test
set, respectively. In the three groups of experiments, according to the evaluation index,
the second group has the best prediction effect, that is to say, the relatively good prediction
effect can be obtained by training the historical case data for about five years.
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Figure 12. Fitting and prediction results for the time series model, group 1.

Figure 13. Fitting and prediction results for the time series model, group 2.

Figure 14. Fitting and prediction results for the time series model, group 3.

The prediction effect of time series model for the first two periods of the test set is
obviously better than that of the later period, which is more obvious in the first and second
groups of data, namely, the medium and short-term experiments. This is a feature of the
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time series model, where prediction depends on historical data. The further ahead the time
of the prediction data is from the evaluation period, the worse the prediction effect is.

The experiment data of the three groups shows that after adding meteorological factors
and water quality factors, compared with the time series model, the prediction effect of
hepatitis E monthly incidence based on the ensemble learning model is improved. The
RMSE, MAE and MAPE were used to compare the time series model with the two ensemble
learning models in Table 11. The prediction effect of ensemble learning is better than that
of the time series model. Among them, random forest is slightly better than GBDT.

Table 11. Comparison of the model prediction effect.

RMSE MAE MAPE

Time series model 19.443 16.41 35.12%
GBDT 14.593 11.807 22.48%

Random Forest 13.932 11.159 21.29%

According to the comparison, we could conclude that our method could largely
improve the prediction accuracy. The traditional empirical statistical method only relies
on case reports, which can typically suffer from delay issues. Our method based on the
combination of history case data with other data, such as meteorological data and water
quality data, would provide a more timely approach.

In this section, the fitting prediction results of time series model and ensemble learning
model for hepatitis are compared. In the experiment involving the ensemble learning
model, we selected the features for prediction. Experiments show that ensemble learning
is better than the time series model, and the prediction effect of random forest is slightly
better than that of GBDT.

7. Discussion

To our knowledge, this study is the first attempt to use the ensemble learning model
based on the integration of hepatitis E case data, meteorological data and water quality
data to perform prediction and try to achieve an early warning ability.

Prediction and early warning of diseases, especially for infectious disease, is of great
importance. Relying on the rapid development of statistics, computer science and other
disciplines, the United States pioneered the research and exploration of modern infectious
disease early warning technology. In 1924, Walter A. Shewhart proposed the control chart
method, which was later applied to the national disease surveillance system by the United
States Department of Health [9]. In the 1970s, Box and Jenkins put forward the time series
prediction method. This method can be used to understand the long-term development
trend of things by analyzing the historical changes of things and making predictions. It is
still widely used in the prediction of various diseases [10]. In 1998, Kleinman et al. proposed
a generalized linear mixed model, and used this model to provide an early-warning for
infectious diseases caused by bio-terrorism in a small area [11].

Other countries have quickly joined the trend. In 2003, Australia launched an auto-
mated real-time public health monitoring system during the Rugby World Cup. Based on
the data collected by the emergency system, the system uses text classification technology
to monitor epidemic situations in Sydney in real time [12]. In 1997, Canada and who
jointly established the global public health intelligence network to monitor global epidemic
information by identifying Internet information such as news and blogs [13].

In 2003, severe acute respiratory syndrome (SARS) broke out in China. The Chinese
government realized that a simple reporting system for infectious diseases has been unable
to support the needs of the prevention and control of infectious diseases in modern society.
Then, the network direct reporting system of infectious diseases and public health emergen-
cies was quickly established, which changed the reporting and management of epidemic
information fundamentally [14]. In 2008, based on the network direct reporting system,
China built an automatic infectious disease prediction system. The early warning function
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for an epidemic outbreak was realized by using the historical monitoring data and spatial
temporal model of infectious diseases [15]. In 1982, Professor Deng Julong established the
gray model. This model can reveal the continuous development and change process of
things in the case of incomplete information. It is widely used in the prediction of infectious
diseases. Chinese scholars have applied it to the prediction of intestinal infectious diseases,
insect borne infectious diseases, sexually transmitted diseases and other infectious dis-
eases [16–18]. Zeng Guang, Ding Yanpeng and Cheng Yingkai used retrospective methods
to analyze the historical monitoring data of various notifiable infectious diseases in China.
The study found that if the seasonal incidence curve of a contagious disease showed a
right (left) deviation, then the incidence rate of the next cycle tends to have an increase
(decrease). The more the deviation, the greater the probability of an increase or decrease
in incidence rate. This phenomenon is named “Zeng-Ding” [19]. Subsequently, more
scholars have studied the verification and prediction of “Z-D” phenomenon in a variety of
infectious diseases [20,21]. In 2002, Guo Xiuhua and other scholars proposed to predict
seasonal series by wavelet analysis. Based on the historical data of hemorrhagic fever from
1995 to 1998, a model was established to predict its incidence rate in 1999 in Heihe and
Linyi [22]. Based on the research results of foreign scholars on early warning of infectious
diseases, control chart method and time series model are also widely used in the research
of infectious disease prediction and early warning in China [23,24].

Research on complex network theory finds that human society is regarded as a net-
work model with uneven distribution, in which there are obvious scale-free effects and
small world effects. Each individual and other individuals in the social network show
aggregation, which coincides with the epidemic characteristics of infectious diseases. There-
fore, the spread of infectious diseases in the community can be regarded as the transmission
behavior on complex networks. In order to prevent and control infectious diseases, the com-
plex network predicts its transmission mechanism and finds out the key nodes to control
and isolate them [25]. In 2006, Gong Jianhua and others established the SARS dynamic
transmission model, and used multi-agent technology to construct the individual based
spatiotemporal transmission mechanism of SARS [26].

Machine learning methods and artificial intelligence methods are now very popular.
Much research has been trying to use those methods in the public health domain. An arti-
ficial neural network can automatically adjust the structure of the model to adapt to the
characteristics of the things analyzed, and learn the rules between the features, which is
suitable for the research on infectious disease prediction [27]. Google influenza trends
(GFT) uses anonymous, aggregated Internet search activities to provide real-time estimates
of influenza activity. It performed well at the time of the global outbreak of influenza A
(H1N1) in 2009 [28]; however, it was discontiuned due to important errors.

So, in this work, we have presented our effort to use the ensemble learning method to
implement prediction and early warning systems for hepatitis E.

8. Conclusions and Future Work

Hepatitis E is an intestinal infectious disease transmitted by a fecal oral route. The
outbreaks of hepatitis E in China can be divided into two categories: food borne and
water-borne. In most areas, the incidence of hepatitis E is high in spring. This is because
climate change has impacts on the weather and environment in a certain area, including on
its water and food.

The outbreak of infectious diseases often involves many factors, including society,
economy, population and so on. It is very complex to forecast and provide early warnings
of infectious diseases accurately.

In this paper, the incidence of hepatitis E was predicted using an ensemble learning
model, which was trained with case data, meteorological data and water quality data.
Specifically, the ensemble learning method was applied to the prediction and early warning
of hepatitis E, and the moving percentile method was applied to the early warning of
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hepatitis E. In addition, the meteorological factors and water quality factors that may affect
the incidence of hepatitis E were integrated into the prediction of hepatitis E.

According to the results, our method generates a much more accurate prediction result
compared to the traditional empirical method. Traditional empirical statistical methods
such as the time series model relies only on the case reports of hepatitis E, which would
typically suffer from a delay issue. In our method, we used an ensemble learning method
to implement a prediction approach based on the integration of hepatitis E case data,
meteorological data and water quality data. The involvement of meteorological data and
water quality data could largely ease the dependence on timely reports. Also, our way
could provide a way to achieve early warning of hepatitis E outbreaks, since hepatitis E’s
transmission is clearly related to weather and water.

There are still many areas to be improved in the research of prediction and early
warning methods for hepatitis E. The following aspects may be explored:

Applying other machine learning algorithms to predict the incidence trend of hepatitis
E and further improving the accuracy of predictions.

Hepatitis E is a food borne infectious disease, while the epidemic characteristics of
different regions have major differences between them. Due to the gradual improvement
of the Chinese national health level, the association between hepatitis E and living environ-
ment may be weakened. Its transmission involves population, economic and other factors,
so it is necessary to consider the relationship between these other factors and hepatitis E.
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