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Abstract: The COVID-19 pandemic imposes new challenges on the capability of governments
in intervening with the information dissemination and reducing the risk of infection outbreak.
To reveal the complexity behind government intervention decision, we build a bi-layer network
diffusion model for the information-disease dynamics that were intervened in and conduct a full
space simulation to illustrate the trade-off faced by governments between information disclosing
and blocking. The simulation results show that governments prioritize the accuracy of disclosed
information over the disclosing speed when there is a high-level medical recognition of the virus and
a high public health awareness, while, for the opposite situation, more strict information blocking
is preferred. Furthermore, an unaccountable government tends to delay disclosing, a risk-averse
government prefers a total blocking, and a low government credibility will discount the effect
of information disclosing and aggravate the situation. These findings suggest that information
intervention is indispensable for containing the outbreak of infectious disease, but its effectiveness
depends on a complicated way on both external social/epidemic factors and the governments’
internal preferences and governance capability, for which more thorough investigations are needed
in the future.

Keywords: information intervention; information disclosing; information blocking; social network;
COVID-19

1. Introduction

The COVID-19 pandemic has attacked the whole world over the past few months.
The key features of the Novel Coronavirus, such as long incubation period, high infectious-
ness, and asymptomatic transmission, were not perceived at the beginning until they were
gradually unveiled [1–4]. The WHO and governments keep disclosing epidemic informa-
tion, but the disclosure is based on their own endowments, preferences, and perceptions,
resulting in misleading information at least in the early stage of COVID-19 outbreak, such
as “Masks work? NO” (quoted from Scott Atlas, the White House coronavirus task force
member), “This is a flu. This is like a flu” (quoted from Donald Trump, the president of
the US), and “There is some immune system variation with Asian people”(quoted form
Taro Aso, the Deputy Prime Minister of Japan), etc. This information failed to alert the
public but let their guards down instead. Then, the high mortality rate and emergency
announcements subsequently incited widespread fear and exacerbated the epidemic situ-
ation. Theoretically, a systematic provision of timely and effective information from the
government can mitigate the downsides [5]. However, in the real world, speed entails
inaccuracy and cognitive uncertainty that keep government away from accomplishing such
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a tough mission [6]. Thus, in the early stage of an epidemic with strong externalities like
COVID-19, the government’s choice between timeliness and effectiveness of intervention
strategies raises a theoretical challenge for the management of urgent public health crisis.

The key to successfully contain the spread of an unexpected disease like COVID-19 is
to understand the complicated two-way interaction between the dynamics of disease and
those of information (and the human behavior response to information) [7]. Information
might either amplify or diminish the public’s response to a risk event, depending on the
transmission of risk information and public’s reactions at the time it occurs [8]. At the
micro-level, one’s behavior depends on the epidemiological status of the disease, the indi-
vidual’s knowledge about it (information accessed), misinformation, and the individual’s
education and income level [9]. Along with the spread of disease in social life (physical
level), information spreads in a virtual network, which brings the awareness of crisis for
people [10–12], leading them to take preventive measures to stay healthy [13,14]. Therefore,
the spread of disease facilitates the spread of information, which in turn inhibits the spread
of disease [15,16]. However, on the other hand, people usually get illogical, fail to discern
falsity, and disregard the truth during information dissemination [17,18]. Misleading in-
formation seems to have a natural disposition to resonate with public opinions, which
causes spontaneous misrepresentation in transmission [19]. In addition, discussions on
epidemic bring panic [20] and aggravate the harm of the epidemic [21], which will be
further exaggerated by social media [22]. Meanwhile, increasing uncertainty about the
disease makes people feel loss of control and boost people’s anxiety [23], usually accom-
panied by psychological distress [24]. Therefore, information is critical to fighting against
the COVID-19-crisis [25,26], and improper information management strategy may lead to
systematic failure [27].

The government, as the main governing body, is the most critical (information) node
in the entire network, since it can intervene in information by “blocking” [28,29] and
“disclosing” [5,30]. The minimal blocking implies a free and open information environment,
which stimulates information to be widely diffused and induces more people to take self-
protective measures [31], but “rumors” might also proliferate at the mean time [24]. Even
if (under certain premises) some “rumors” are accurate [7,32,33], it might still interrupt the
prevention efforts to the epidemic. It is always believed that government should perform as
a central node to disclose accurate and up-to-date information to the entire society, so as to
keep the public away from untruthful information and prompt the public to make informed
decisions about health protection [30,34]. However, in the real world, governments do
face time constraints and the trade-off between being accurate and being up-to-date in
terms of information disclosing, which is not considered in classical information theory.
Because a highly infectious disease caused by unknown viruses with great externality,
such as COVID-19, spreads together with information of varying qualities (truthfulness,
accuracy, etc.), it is highly probable that the disease has already contaminated the society
before low-quality information is purged. In this case, the government has no way to
disclose accurate information in time, resulting in the loss of public trust and raising the
doubt of the public on the governing capacity of the government, which will accelerate
epidemic outbreak [35–37]. Therefore, governments need to not only decide when to inject
information into the network, but also whether to follow the tenet that governments do
not and should not block information spreading at any circumstance [38].

For information blocking, studies have been conducted in theoretical [39–41], in
empirical [42,43], in case studies [43,44], and other perspectives. These studies argued that,
even if governments have the power to control information [45], they should not do that
because free spread of information is essential to welfare-maximizing [38]. This argument
is based on two underlying assumptions: (1) publishers are completely competitive to
reach an equilibrium of disclosing accurate information; (2) there is no time constraint.
These two assumptions do not apply for COVID-19 because, in the age of Internet media,
people are not incentive compatible to spread accurate information. Moreover, such
highly externalized infectious diseases caused by unknown viruses might have already
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infected a considerable amount of people before low-quality information is purified, so the
government should not simply adhere to the tenet of not blocking information when facing
an unknown health crisis [38]. As a result, we will discuss the complexity and diversity in
information blocking and broaden current information control theory.

By the discussion so far, we notice that the successful containment of epidemic out-
break relies on the successful management on the information dissemination process,
which, however, is hard to achieve in the real world. To better understand the failure in
containing the COVID-19 pandemic, we here construct an information-behavior bi-layer
model by adding a parallel layer of information transmission to the classical SI (Susceptible-
Infected) model of infectious diseases. We intend to describe the effect of heterogeneous
virtual information (at information layer) on heterogeneous nodes’ behaviors (at physical
layer) [46]. The government, as the key node in information network, can influence the
entire network through information disclosing and blocking. Based on this, we assign
values to key variables such as the medical awareness level of the virus and the public’s
health awareness level and then conduct computer simulation experiments under different
scenarios. We reveal the pattern of government information intervention based on the
simulation results. In addition, we only focus on the emergence stage of the infectious
disease, during which the recovery from the infected status, such as self-healing and cure
of the disease, is omitted [47]; therefore, the base model is the SI model rather than the SIR
(Susceptible-Infected-Recovery) model.

Based on the bi-layered network model, we explore two main themes: how disease
spreads affect information spreads and how information affects the efficiency of controlling
the epidemic. We introduce the non-dualism of information and the heterogeneity of nodes’
behaviors into the epidemic model and conduct a simulation to reveal the information
intervention dilemma faced by the government between information disclosing and block-
ing. We find that governments face a trade-off between speed and accuracy in information
disclosing; and the optimal strategy is contingent on varying conditions in information
blocking. The optimal combination of disclosing and blocking is highly sensitive to the
government preference and its governance capacity. Governments that are only responsible
for the outcome of intervention will focus unilaterally on the accuracy at the expense of
speed; a risk-averse government that intends to minimize the maximum infection rate
under uncertain scenarios will impose a more restrictive blocking; and the most restrictive
blocking strategy might be the best for governments with lower capability and credibility.

In summary, this paper makes several important contributions to the literature. First,
existing studies did not pay sufficient attention to the spread and evolution of rumors
during a public crisis [48–50], which is considered in our study. We expounded the impacts
of information dissemination on epidemic evolution in scenarios with different levels of
medical awareness of the virus, public health awareness, and government preferences
and credibilities, which complements the research in this field. Second, most current
studies regard information and disease transmissions as simultaneously happened and
jointly induced by the physical movement of an agent [46], while this is not the case
during COVID-19 pandemic as the internet obviates the needs for physical contact in
information transmissions [51]. Thus, in our paper, we separate the information and
disease transmissions and investigate the impact of heterogeneous information on the
individual behaviors and disease dynamics. Third, unlike previous research on government
information interventions with known risk [5,28–30], ours are on government information
interventions with unknown risk. The lack of prior knowledge on the Corona-SARS-2 is
the most striking feature of the COVID-19 pandemic, which weakens the usefulness of
government action and calls for a reassessment of government information intervention
under a crisis environment with high uncertainty. To this end, this paper demonstrates a
couple of intervention dilemmas faced by government, which complements the existing
theories.
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2. Methods
2.1. The Model of Information Disclosing

The information dissemination system resp. behavioral response system is embedded
in the information network resp. physical network. Both networks are given as follows.

Information network: the network has (N + 1) nodes, first N are individual nodes
representing N individuals denoted as i, i = 1, 2, · · ·N, and one government information
node denoted as j. The degree of an individual node i is denoted as yi, which obeys
a power-law distribution, that is, F(yi) ∝ y−v

i , where F(·) is the CDF and yi satisfies
ε ≤ 1/yi ≤ 1, where ε is a small constant to avoid the degree to blow up. Degree and
degree distribution are concepts used in graph theory and network theory. A graph
(or network) consists of a number of vertices (nodes) and the edges (links) that connect
them. The number of edges (links) connected to each vertex (node) is the degree of the
vertex (node). The degree distribution is a general description of the number of degrees of
vertices (nodes) in a graph (or network), and, for random graphs, the degree distribution is
the probability distribution of the number of degrees of vertices in the graph, which usually
assumes a power-law distribution. Throughout the following analysis, we take v = −1
and ε = 0.01. The government node j (representing real-world government) discloses
information to every individual node and can only obtain information from n1 (n1 � N)
(The notation “�” means that the number n1 must be far less than the number N.) random
nodes. The neighborhood of an individual node i is the set of all other nodes (including j)
it connects with, denoted as Oi.

Physical network: the physical network has M nodes, including n2 “special” nodes
defined as the “gathering spots”, which predisposes these nodes to this epidemic. Mt de-
notes the distribution of locations of all N individuals during period t, and M0 is the initial
distribution that can be viewed as the “home” for every individual (node), thus at the
beginning of each period t the individuals move from M0 to Mt and return back to M0 at
the end of period t. Home coordinates M0 and gathering spots are randomly assigned and
different from each other, so we have N + n2 < M. Suppose there are n3 random nodes,
each with identical initial information ξ, who disseminate information at the outbreak
of disease; n4 random nodes are initially affected by the public crisis, representing the
“patient zero”.

Without loss of generality, we unitize the information between 0 and 1. The rules for
information dissemination in each period are as follows.

Stage i. Individual nodes send information to neighbors. Each node that has information at
the beginning of each period sends its information to all its neighbors, so all (N + 1) nodes
might receive information from others. As information is spontaneously [19], rapidly, and
extensively [22] misrepresented during transmission, and most people do not send more
accurate information than they receive [17,18], we assume that information gets distorted
and misrepresented during each transmission. Thus, the actual amount of information
received is δxi due to information decay, where δ ∼ U(0, 1), and we assume xi ∈ [0, 1]
without loss of generality.

Stage ii. Individual nodes receive information from neighbors. Each node might have
multiple information sources, and it merges the information from all its neighbors weighted
by their degrees (and including itself). Each individual updates its information based on
Equation (1) at each period before the government intervenes:

xi,t+1 =
∑k∈Oi

δxk,tyk + xi,tyi

∑k∈Oi
yk + yi

. (1)

Stage iii. The government node censors and screens the information. The government has a
threshold XD once it receives information from individuals (otherwise, the government
would not act in this stage), the government will screen out all individuals with above-
threshold information at the beginning of current period, among whom the government
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pinpoints the nearest ones and takes the maximum amount of information they carry
denoted as xd.

Stage iv. Government node discloses information. The government is not able to intervene
until it censors and screens the information; thus, there is a lag between receiving infor-
mation and disclosing, which as we can see in Figure 4e, increases with XD. After the lag
(otherwise, the government would not act in this stage), the government shall disclose xd
to all nodes in each period with a weight of λ, where λ ∈ (0, 1). The higher the λ, the more
credible the information.

Stage v. Individual nodes update information again. The government intervention
switches the updating rule to

xi,t+1 = λxd + (1− λ)
∑k∈Oi

δxk,tyk + xi,tyi

∑k∈Oi
yk + yi

, (2)

which is also the final amount of the information after government intervention. In addition,
we assume that the amount of information of initial information holders (those who have
information in period 0) is constant, i.e., they do not apply for Equations (1) and (2).

In short, in the first period, only a few people disseminate information, which will be
randomly decayed in each subsequent period, this process simulates the misrepresentation
of information.

Twitter data show that there was a significant heterogeneity in the behavioral response
to the COVID-19 epidemic [52]. Some people, once informed about the epidemic, wear
a mask and practice social distance to not expose themselves to the virus—while others
panicked, herded, and behaved irrationally because of bad news, exemplified by flocking
to churches for psychological comfort [53], to supermarkets for daily supplies [54], and
taking radical actions like repeated hospital visits [55]. Thus, in this paper, we group the
population by susceptibleness to irrational behavior caused by information described by an
exogenous parameter—individual threshold XI that distinguishes whether an individual
is panic-prone or non panic-prone by comparing it with the amount of information the
individual has. An above-threshold (under-threshold) information denotes a (non) panic-
prone individual. For a panic-prone node, we assume its probability of going to gathering
spots instead of maintaining the original trajectory is 1− x·,a, where x·,a is the amount
of information it has. For a non panic-prone node, we assume that its probability of
not moving is r·,N = x·,a. Thus, the behavioral routine is as follows (see Figure 1 for a
simplified example): a node moves along with its path with a maximum radius d1, and the
actual distance it moves obeys a uniform distribution in (0, d1); this node will randomly
choose one of the gathering spots if intending to go to one in this period; every individual
node follows this routine, then we have an evolving geographical distribution Mt of the
population moving in period t. The uninfected will contact everyone within the maximum
infection radius d2 and there is a probability µ of being infected for each contact.
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G
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S

Figure 1. A diagram for individuals’ behavioral routine. Consider a world with 36 nodes (d1 = 2,
d2 = 1), among which there are only one infected node (S), one health node (H) and one gathering
spot (G).

Throughout the simulation analysis, we focus on the impact of three key parameters,
the initial information (ε), individual threshold (XI), and disclosing threshold (XD), which
are the most important quantities to measure the impact of government intervention on
the coupled information-disease dynamics. The initial information is the source of all
information, which denotes the medical awareness of the virus; the individual threshold is
a parameter to distinguish the population by groups set above, the smaller it is, the higher
the level of public health awareness. Disclosing the threshold, chosen by the government,
measures its relative priority to speed and accuracy in information dissemination. One of
the objectives of our experiment is to ascertain the optimal disclosing threshold. Govern-
ment prioritizes speed more as its threshold is lower, “0“ means that government discloses
the information immediately upon receipt; “1” means that government only discloses
completely accurate information.

2.2. The Experiments of Information Disclosing

The simulation steps will be: (Figure 2 brief overviews these steps):

1. Generate a random information network and a random physical network, the former
illustrates the information relationship between people, and the latter records the
coordinates of people M0 and gathering spots on the map.

2. Assign values to initial information and individual threshold. The initial information
is the source of all information, which denotes the medical awareness of the virus;
the individual threshold is a parameter to distinguish the population by groups set
above; the smaller it is, the higher the level of public health awareness.

3. Assign values to the disclosing threshold. The disclosing threshold, chosen by the
government, measures its relative priority to speed and accuracy in information
dissemination. One of the objectives of our experiment is to ascertain the optimal
disclosing threshold. Government prioritizes speed more as its threshold is lower.

4. Generate random individual nodes with initial information and random initial in-
fected nodes.

5. Enter period 1.

(a) Each individual node with information sends out information to neighbors.
(b) Each individual node will update its information (weighted) based on Equa-

tion (1).
(c) The government initiates a censoring and screening and enters stage d after a

lag period, only for the first time does it receive the above-threshold informa-
tion. If the government never receives above-threshold information, skip c, d,
and go to e.
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(d) Government discloses information to the public, which induces another round
of information update for individual nodes based on Equation (2).

(e) The population is grouped into infected and healthy people by health status,
and into panic-prone and non panic-prone by how much information one has
compared with the individual threshold.

(f) Each individual node moves in a physical layer following the routine of the
subgroup it is in with probability based on its final information.

(g) Reset the infection status of healthy individual within the transmission radius
of an infected one according to the infection probability.

6. Return to step 5, initiate a new round for 50 times, that is, run the experiment for
50 periods. The data show a stability after 40 periods, so we stopped at 50.

7. Output the final overall infection rate at the end of period 50.
8. Repeat steps 4–7 for 50 times to reduce the randomness, record the mean, and standard

deviation of the final infection rate.
9. Reassign for the disclosing threshold discrete values that equally divide the interval

[0, 1] into 11 parts, and repeat steps 3–8 for each value, that is, 11 times, to find the
final infection rates for different disclosing threshold scenarios.

10. Reassign for initial information a discrete array 0.4, 0.6, 0.8, 1.0, and reassign for an
individual threshold the same values reassigned for the disclosing threshold in the
previous step. Then, repeat steps 2–9, that is, 44 times.

Now, we have conducted an experiment with a full parameter space for each initial
condition. A total of 484 different conditions were simulated for 24,200 repetitions of the
experiment, each lasts for 50 periods, which adds up to a total of 1,210,000 periods of ex-
periments. They essentially cover all possible scenarios under different external constraints.
Table 1 lists the definitions, values, and distributions of all parameters in the model.

Table 1. Definitions, values, and distributions of variables in the model.

Variable Definition Values/Distributions

ξ initial information 0.4, 0.6, 0.8, 1.0

XI individual threshold 0.1, 0.2, · · · , 1.0

XD disclosing threshold 0.1, 0.2, · · · , 1.0

XB blocking threshold 0.1, 0.2, · · · , 1.0

d1 maximum moving radius 2

d2 maximum infection radius 1

N population 1024

n1 population that can send information to government 5

n2 numbers of gathering spots 10

n3 population with initial information 1

n4 initial infections 3

M numbers of nodes (area of the whole map) 2500

µ infection rate of one-time contact 30%

δ information decay rate U(1%, 99%)

λ government’s credibility 90%
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start

Generate two networks

Assign values to 

Initialize infection nodes

Interaction among nodes

Individual send out
information

Individual update information

end

Output

Step i

Step ii

Step iii

Step iv

Step v

if collected accurate info

Government activated to
collect accurate info

if delivered

if preparation done in d period

Government prepare to
disclose info

Government disclose
accurate info to individuals

Individual make move

disease spread

Figure 2. Flowchart of our simulation. In step ii, we assigned 4× 11× 11 = 484 different values.
Then, we repeated steps iii and iv each for 50 times, respectively.

2.3. The Model and Experiments of Information Blocking

We assume the government will suppress any transmission of information under
XB; thus, XB = 0 denotes the special case in the previous discussion. Combining the
blocking threshold with other initial conditions above, we have a new parameter space
simulation with a total of 5324 different scenarios simulated and a total of 266,200 repeated
experiments. Each group lasts for 50 periods, for a total of 13,310,000 experiments.

3. Results and Discussion
3.1. Modeling Framework

Our model consists of two main systems: information dissemination system and be-
havioral response system. In the information dissemination system, each individual sends
(receives) information to (from) its neighbors through an information network. Given that
information will always be rapidly, extensively [22], and spontaneously [19] misrepresented
during transmission, and that most people do not send more accurate information than
they receive [17,18], we assume information gets distorted and misrepresented during each
transmission. In the behavioral response system, each individual makes a move according
to its information (with probability). Once informed about the epidemic, some people
behave rationally such as practicing social distancing, while others behave irrationally such
as flocking to churches [53], to supermarkets [54], and taking radical actions like repeated
hospital visits [55].

The information dissemination system affects the behavioral response system. The gov-
ernment might intervene in the information dissemination to reduce infections by either
disclosing or blocking information.

For information disclosing, the government discloses information to all individuals
to make them behave rationally (or at least not behave irrationally). Obviously, the more
accurate the information is and the earlier it is disclosed, the public can be better guided
which lowers the final infection rate. However, it takes time for government to censor
and screen information before disclosing, which brings an accuracy-speed trade-off. We
use a disclosing threshold to measure the government’s preference on speed or accuracy;
a higher threshold indicates a higher preference on accuracy: a threshold “1” means the
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government would not disclose any information unless it is completely accurate; while “0”
indicates an immediate disclosure without any censoring and screening.

For information blocking, the government blocks less-accurate information trans-
missions between individuals. Obviously, a stringent blocking leads to a transmission of
information with higher accuracy. However, blocking will slow down the overall informa-
tion dissemination in the network, and then slow down the government’s censoring and
screening of information. Thus, there is a trade-off between disclosing and blocking. We
use a blocking threshold to measure the blocking stringency, the government would block
any transmission of any under-threshold information: a threshold “0” means no blocking
at all; while “1” means that government blocks all information transmissions.

We analyze both of the optimal thresholds for government. More details on the
settings of our model can be found in the Methods section. In reality, the government has a
great influence on the information dissemination. Thus, in our model, we assume that the
government node is the most critical one and the government-disclosed information highly
outweighs individuals’ information (except for the further discussion of a government
with low credibility in a later section).

3.2. Intervention Dilemma in Disclosing Information

In this part, we will discuss the speed-accuracy trade-off results and analyze the
mechanism in information disclosing.

First, Figure 3 summarizes the results of the simulations with 44 different external
constraints, and we find that there is seldom a single dominant disclosing threshold (the
government’s preference on speed or accuracy), i.e., seeking either speed or accuracy alone
will not result in the lowest infection rate, and the optimal strategy (corresponding to the
lowest infection rate at the end of the last period) is somewhere in between, which implies
a speed-accuracy trade-off.

Disclossing thresholdDisclosing threshold
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Figure 3. Distribution diagram of disclosing threshold. These four subfigures (a–d) correspond to initial information of
1, 0.8, 0.6, and 0.4, respectively, each one has 11 curves representing individual thresholds of all 11 values, which shows
the optimal disclosing thresholds under all 44 different external constraints. The horizontal axis is all possible values of
disclosing thresholds, the vertical axis is the infection rate of the whole society.
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Specifically, the optimal disclosing threshold lies between both ends in about 84.09%
of the cases, and their distributions vary in different external constraints. Figure 3a,b
show that (1) if the initial information is 1 or 0.8 and the individual threshold is in [0, 0.7],
the optimal disclosing threshold has a 91.75% probability of being in the middle, and
mostly (66.89%) falls within [0.6, 0.8]; (2) if the initial information is 0.6 and the individual
threshold is in [0, 0.5], the government has a 93.00% probability of dealing with a trade-off
(Figure 3c), and the optimal disclosing threshold mostly (77.78%) falls in [0.4, 0.6]; (3) if the
initial information is 0.4, the optimal disclosing threshold will almost certainly be greater
than 0.4 (99.98%), but the distribution is too scattered to give a specific interval (Figure 3d).
The mode of optimal disclosing threshold is 0.8 but only with 20.30% frequency.

In addition, we can see that, if the virus is medically well-known (ξ ≥ 0.8) and public
health awareness is low (XI ≥ 0.7), the government shall prioritize accuracy over speed; if
the virus is medically medium-known (ξ = 0.6) and public awareness is high (XI ≤ 0.5),
the government shall balance speed and accuracy, which almost equally signifies; and if the
virus in medically less-known (ξ = 0.4), the government shall probably prioritize accuracy
over speed.

Second, we will dissect the underlying logic and mechanism of the government’s
trade-off. We take one of the curves in Figure 3a that is denoted by ξ = 1 and XI = 0.5,
as an example, to find the relationship between disclosing the threshold infection rate,
then we have Figure 4. In all 550 (11× 50) experiments, the disclosing threshold for the
lowest final infection rate usually lies between 0.7 and 0.9, and the final infection rate first
falls then rises as the disclosing threshold increases, with the inflection point being at 0.8
(Figure 4a); the amount of final information per capita and the duration of government
intervention both increase monotonically with the disclosing threshold (Figure 4b,e); the
number of people infected after government intervention, the number of people infected by
a panic after government intervention and the number of uninfected people remaining at
the time of government intervention all negatively correlate with the disclosing threshold
(Figure 4c,d,f).

One of the fundamental reasons for the government to balance speed and accuracy
is the precipitous fall in the marginal contribution of accuracy as the disclosing threshold
exceeds a certain “point”, while speed hardly affects the final infection rate. The following
is a detailed analysis on the effects of both accuracy and speed.

With respect to accuracy, the effect comes from two perspectives: (1) accurate informa-
tion lowers the infection from panic in a healthy panic-prone population (Figure 4d); (2)
accurate information changes the behavior routine in the panic-prone population, which
reduces the spread of the disease. Both (1) and (2) are in play until the disclosing threshold
exceeds 0.5 (XI in our example); after that, there is no longer a panic-prone group, neither
is infection from panic, which explains the precipitous fall in the marginal contribution
of accuracy.

When it comes to speed, the effect comes from two perspectives as well: (1) the time
the government spends on censoring and screening information, which we call a lag; (2) the
number of remaining uninfected people at the time of government disclosing information.
The more accurate information the government seeks, the longer the lag (Figure 4e) and
the fewer uninfected people remain at the time of disclosing (Figure 4f). Notice that both
have roughly the same slope with respect to disclosing threshold, which explains a roughly
constant marginal cost of pursuing accuracy.

The combination of constant marginal costs and abrupt fall in marginal benefits leads
to an inflection point in disclosing threshold, which explains the heterogeneity in the
distribution of optimal disclosing threshold: as disclosing threshold exceeds individual
threshold, a sudden fall of benefits occurs, which theoretically makes the optimal disclosing
threshold slightly greater than the individual threshold, which explains what we discussed
above that the intervals in which the optimal disclosing threshold mostly lays differ.

In most cases, the government’s premature disclosing of inaccurate information will
contaminate the overall network, while obsession with accuracy may have the government
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miss the disclosure window before too many people are infected, which is intolerable to
government who requires a low infection rate. Thus, there is a trade-off.
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Figure 4. Simulation results for government’s trade-off in disclosing under the special case of ξ = 1, XI = 0.5. (a) depicts
final infection rate; (b) conveys the impact of disclosing threshold on information; (c,d) represent the positive effective
of a larger disclosing threshold by showing the new infections overall or from panic after government intervention;
and (e,f) describe the negative effect by showing when the government intervenes and how many health people remained
at intervention.

3.3. Intervention Dilemma in Blocking Information

We assume the government will block any transmission of under-the-blocking-threshold
(XB) information between individuals; thus, XB = 0 denotes the special case in previous
discussion. Other settings are the same as above. In this part, we will discuss the optimal
blocking strategies and analyze the mechanism.

As shown in Figure 5, the optimal blocking threshold varies from case to case. Overall,
a small blocking threshold ([0.1, 0.3]) is necessarily (100%) not optimal; a strict blocking
threshold (XB ≥ 0.8) is usually (50.41%) optimal, experimental data show a value between
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45% and 55% in most external conditions; but 0 is the optimal threshold still in 20.25% of
cases, and usually (89.80%) occurs when ξ ≥ 0.8 and XI ≤ 0.7. When the initial information
is low (ξ ≤ 0.6), not blocking is seldom (0.83%) optimal.

We have our key findings from the above analysis. First, minor blocking is not an
option for government because it is dominated by stricter blocking in a deteriorated or
being deteriorated information environment and undermines the efficiency of information
dissemination in a benevolent environment. Second, in the age of the Internet, information
is extremely interconnected and low-quality information is more easily disseminated, thus
stricter information blocking might be an option worth considering in the early stages
of an outbreak of an unknown infectious disease. Finally, if the virus is well-known at
the medical level, plus the public has a certain level of health awareness, free spread of
information might improve the situation; while, otherwise, as in the case of COVID-19,
governments should intervene in the spread of information in social networks.

From the simulation results, we can see that, in most cases, the optimal strategy will be
either highly stringent blocking or free spread. Blocking low-quality information not only
increases the overall information of the whole population, but causes side effects under
certain external conditions. Thus, not blocking can be an optimal strategy in some cases. In
this section, we provide an in-depth analysis of the data and a mechanistic analysis.

Figure 5b reveals in general the optimal blocking threshold negatively correlates with
initial information: as initial information drops from 1 to 0.4, the probability of optimal
blocking threshold taking 0 will be 52.07%, 27.27%, 1.65%, and 0%, respectively. Figure 5c
shows a positive correlation between optimal blocking threshold and individual threshold.
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Governments block information mainly by suppressing less-accurate information,
but which, once implemented, will slow down the overall information dissemination in
the network anyway. Therefore, blocking can neither be too stringent nor too liberal, an
optimal one usually lies in between. However, mild blocking is necessarily not optimal as
it fails to purify the information environment.

Furthermore, when the virus is well-known (ξ = 1), especially when public health
awareness is high (XI ≤ 0.3), not blocking dominates most of the time (69.70%). While
stringent blocking (XB ≥ 0.8) is necessarily not (0%) an optimal strategy because higher-
quality information, which helps to slow the spread of the disease with high public health
awareness, is also blocked. Thus, when both the initial information and the level of public
health awareness are at a high level, not blocking is optimal; otherwise, information that
would not cause panic might do now. In addition, when medical awareness of the virus
declines, so does the proportion of valuable information, which necessitates blocking as
well.

3.4. Optimal Intervention under Different Government Types

In previous sections, our study was based on the neutral government assumption
that governments only seek the lowest infection rate. However, in reality, a government is
not a personalized organization pursuing social optimum because it is often checked by
various inside and outside nodes. In addition, government credibility makes a difference
as well. In this section, we will discuss the optimal strategy for non-neutral governments
and low-credible governments.

An unaccountable government that evades responsibilities would only care for lower
new infections after intervention rather than global infections, which digresses from the
objective described above. As shown in Figure 6a, the later the government discloses
information, the less that will be newly infected after disclosure. There are two underlying
reasons: (1) late disclosed information will indeed be more accurate, which reduces the
infection rate; and (2) there are less uninfected people at the time of disclosing. Therefore,
a blame-evading government would delay the disclosing to avoid being held accountable.

A conservative government that prefers the least error-prone strategy (minimizing
maximum loss) rather than the optimal one (the loss minimization strategy) would block
all the information (Figure 6b). Since the optimal strategy would not be accessed until
all external conditions are fully judged and scrutinized, which is not feasible for COVID-
19, complete blocking would be optimal for such a government to avoid the worst case
scenario. Our experiment of 484 different scenarios manifests a complete blocking will
never lead to the highest infections.
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Figure 6. Simulation results for non-neutral governments and low-credible governments. (a) portrays
the unaccountable governments based on the settings in Figure 4a, the vertical axis is the number
of newly infected people after government intervention; (b) the distribution of worst blocking
threshold (highest infections) based on the settings of Figure 5 portrays the risk-averse government;
(c,d) describe the low-credible governments by reassigning for government’s credibility 10% while
keeping other variables unchanged.

4. Conclusions

In this paper, we introduce the non-dualism (by non-dualism, we mean the informa-
tion is neither absolutely accurate nor absolutely not but partially accurate) of information
and the heterogeneity of nodes’ behaviors into the epidemic model and conduct a sim-
ulation to reveal the information intervention dilemma faced by the government and to
explore the trade-offs among corresponding strategies. Our experiments highlight that:

1. For information disclosing, governments face a trade-off between speed and accu-
racy. A better medical understanding of the virus and an inadequate public health
awareness make accuracy outweigh speed; otherwise, a quick one is better.

2. For information blocking, the optimal strategy is contingent on varying conditions:
no blocking is usually optimal for a well-known virus and a higher public health
awareness; otherwise, blocking is preferred.
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3. The optimal combination of disclosing and blocking is highly sensitive to the govern-
ment preference and its governance capability. A government that is only responsible
for the outcome of intervention will focus unilaterally on accuracy at the expense of
speed; a risk-averse government that intends to minimize the maximum infection rate
in uncertain scenarios will impose a more restrictive blocking; and the most restrictive
blocking strategy might be best for governments with lower capability and credibility.

These findings reveal the complexity in government decision-making about dissem-
ination of disease information: neither allowing free flow of information nor disclosing
it as early as possible is optimal. Under extreme conditions, they are even harmful to the
goal of controlling disease outbreak. The interaction between information and infectious
disease deepens our knowledge about public health crisis governance, enriches the existing
theories in public economics and public management, and provides useful social and policy
implications.

In reality, some governments are not as capable and credible as assumed. A lower
credibility will discount the effects of disclosing information or even annul it, which
makes a total blocking optimal as shown in Figure 6c,d. The bankruptcy of government
credibility originates in two ways: (1) the government’s past mediocre performance; (2) the
public’s inherent belief in “small government”. Meanwhile, a similar experience in the past
also affected government responses and effects, as we can see with the horrible painful
memories of SARS inducing vigilance for COVID-19 in East Asia countries, while the U.S.
and Europe were indifferent in the early stage of this pandemic.

In the preceding discussion, we relaxed one assumption at a time, whereas the gov-
ernment’s preferences are more complex in reality. In a broader context, the government’s
preferences (objective function) are affected by two things: the government’s perception
and judgment of the epidemic (decision-making base), and the government’s priorities in
different objectives (decision-making objectives); both change over time.

This paper also has some limitations. For instance, our discussion focuses mainly on
the theoretical mechanisms behind the joint spreading process of information and epidemic,
and the proposed intervention strategies have not yet been analyzed with the real-world
data. One reason for the lack of empirical analysis is the complex set-up of the bi-layered
network model. The information dissemination network and the physical-layer contact
network are not precisely observable in the real world, which makes it challenging for
acquiring sufficient data for model fitting. On the other hand, the observed infection and
information dissemination process are often already intervened in by the government;
therefore, it is hard to separate the net effect of government intervention from the ex-
post spreading data. Then, it is technically difficult to quantify the key parameters of
intervention. To this end, we believe more sophisticated empirical techniques have to be
introduced for the implement data-oriented analysis of our model, such as the network
reconstruction and the causal detection techniques, which forms a promising direction for
future investigation.
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