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Abstract: The uptake of As by various plants growing in highly enriched sites was examined in
order to identify potential As accumulators and to assess the risk associated with As presence in
plant shoots. Representative samples of 13 plant species, together with soil samples, were collected
from various sites affected by historical As mining: mine and slag dumps, tailings and contaminated
soils with As concentrations in a range 72–193,000 mg/kg. Potentially and actually soluble As forms,
extracted with 0.43 M HNO3 and, 1M NH4NO3 were examined in relation to As concentrations in
plant roots and shoots. The latter differed strongly among the species and within them and were in the
ranges 2.3–9400 mg/kg and 0.5–509 mg/kg, respectively. The majority (over 66%) of plant samples had
As shoot concentrations above 4 mg/kg, an upper safe limit for animal fodder. The uptake of As by
plants correlated well with total and extractable soil As, though As concentrations in plants could not
be predicted based on soil parameters. Equisetum spp. and C. epigejos indicated a particularly strong
accumulation of As in shoots, while A. capillaris, and H. lanatus showed a limited As root-to-shoot
transfer, apparently associated with species-related tolerance to As.

Keywords: arsenic; accumulation; extractability; translocation factor; bioaccumulation factor;
bioconcentration factor

1. Introduction

Arsenic is a naturally occurring soil component that due to anthropogenic activities can be locally
concentrated to the levels that negatively affect human health and functioning of ecosystems. If present
in high concentrations, it can pose a particular risk to humans and animals because of its toxicity,
mutagenicity and carcinogenicity [1–3]. Numerous papers have focused on the issues of drinking
water pollution in black foot disease endemic areas [4–6], as well as on the accumulation of As by rice
from soils irrigated by As-contaminated water [7–10]. Arsenic can also cause various disturbances in
ecosystems, however, the ecological effects of its presence in soils in high amounts were less extensively
examined [11]. Obviously, enhanced uptake of As in plants can pose a considerable risk to wild and
domestic consumers by entering a food chain.

Arsenic is usually poorly soluble in soils and is poorly taken up by plants [12–15]. The aboveground
parts of plants usually contain small concentrations of As, below 1 mg/kg [16,17]. The permissible level
of As in dry fodder has been established at a level of 4 mg/kg [18,19]. It has been proved that several
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plant species growing in strongly contaminated sites can develop various tolerance mechanisms that
lead to reduced uptake of As, either by adaptation of the arsenate uptake system or by avoidance
and exclusion [20–25]. Mycorrhiza, as well as rhizospheric and endophytic bacteria can additionally
reduce the influx of As to plant roots therefore supporting the tolerance to its high concentrations
in soils [26–28]. On the other hand, however, some plants species, particularly those growing in
aquatic conditions or wetlands, can intensively take up As and tolerate its high concentrations in
shoots. An extreme case of that phenomenon is As-hyperaccumulating species [29,30], though,
their natural occurrence was not reported from Europe. However, there are several reports on strong
accumulation of As in plants growing in strongly polluted sites, in particular in those affected by
mining activity, so that its concentrations in plant shoot tissues can be as high as tens, hundreds or
even thousands mg/kg [15,31–39].

There are three historical As mining sites in the Sudetes (SW Poland) where As ores were exploited
and processed over centuries: Złoty Stok (former German name: Reichenstein, N 50◦26–28’, E 16◦51–54’),
Radzimowice (N 50◦56’27–44”, E 15◦57–58’) and Czarnów (N 50◦48’15–34”, E 15◦54–55”), of which Złoty
Stok, that operated until 1962, was the largest one. The concentrations of As in waste rocks disposed on
numerous waste dumps, and those in tailings and soils, are there as high as thousands mg/kg [40–44],
while the concentrations of soil As, considered environmentally safe, have been set by Polish law at the
levels 10–100 mg/kg, depending on soil properties and land usage [45,46].

It is important to examine the uptake of As by various plant species in such unfavorable
conditions, and to recognize the factors governing As translocation to plant shoots, often described
by a translocation factor TF (1) [47]. Another biogeochemical index, a bioaccumulation factor BAF,
based on total concentrations of As in soils and plant tissues, is commonly used to assess the potential
of As uptake from soils (2) [48]. Another index, a bioconcentration factor BCF (defined in analogy
to aquatic environments), based the concentrations in soil pore water or on potential or actual
solubility/extractability, is sometimes preferred for the assessment of a real risk associated with the
presence of toxic elements in soils and its uptake by plants (3) [49–51]:

TF =
As in shoots
As in roots

(1)

BAF (shoots or roots) =
As in plant material (shoots or roots)

total As in soil
(2)

BCF (shoots or roots) =
As in plant material (shoots or roots)

soluble (extractable) As in soil
(3)

The main aims of this research were: (1) to examine total concentrations of As in plant shoots and
roots in the mine activity-affected sites strongly enriched in As in order to assess the risk for potential
consumers; (2) to recognize plant species that accumulate relatively high concentrations of As in their
shoots and show high values of As bioavailability indices; (3) to check suitability of two ISO-approved
extracting solutions for the prediction of As uptake by plants.

2. Materials and Methods

2.1. Experimental Areas

The study was carried out in eight areas situated in three historical As mining centres: Złoty Stok,
Radzimowice and Czarnów (Table 1). Some of those areas (1,5) were partly barren surfaces of large
mine dumps, some others (4,6,7) were situated in forests with numerous smaller mine or slag dumps
scattered there throughout, or in grasslands (2,3). Area 6 was additionally affected by acid mine and
rock drainage (AMD and ARD). The areas 2 and 7 were typical hay meadows, either occasionally
flooded by tailings (2) or affected in the past by ore mining and smelting (7). Area 3 was a dry
grassland where soils developed of pure tailings accumulated at the foreland of impoundment. Finally,
area 8 represented a mosaic of forested land patches and grasslands with mine dumps of various sizes.
In all those areas, soils contained very high concentrations of As [40].
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Table 1. Description of experimental areas and basic soil properties.

Mining Center Area No Description of Area, Settings

Soil Properties (Fine Soil) *

pH
As, mg/kg

Total HNO3-
Extract.

NH4NO3-
Extract.

Złoty Stok
(German: Reichenstein)

1
The Orchid Dump. A 2.4 ha large dump built of mine waste, covered
ca. 50 years ago with a layer of humus-rich soil. It owes its name to a

large population of Orchis mascula L. growing there [52,53]
3.14–5.81 751–48,900 42–10,500 0.08–4.88

2 Hay meadows (ca. 6.0 ha) in a floodplain of the Trująca river, flooded
periodically in the past by stormwater mixed with tailings [41] 3.53–6.66 102–6070 74–3650 0.30–6.04

3 Foreland of tailings impoundment, a ca. 2 m-elevated plain area (1.6
ha) built of tailings [42]; dry, unmaintained grassland 7.22–7.60 7950–22,700 4710–9860 6.65–12.7

4 Deep valley in a forested area, with spread dumps of mine wastes and
heaps of slag disposed in medieval times by local smelting works [54] 3.43–4.89 1950–16,700 830–5090 1.45–1.52

Radzimowice
(German: Altenberg)

5

Dumps of gangue rocks disposed at the Arnold shaft–A part of the
Wilhelm mine that operated until 1925. Polymetallic veins of

hydrothermal origin were exploited to acquire metals, mainly Fe, Cu,
Pb and As [40]

2.90–7.26 1550–14,300 690–3320 0.20–1.56

6 Forested area affected by acid mine and rock drainage (AMD and
ARD) form Arnold shaft (Wilhelm mine) [55,56] 2.91–4.55 2480–193,000 650–18,900 0.04–27.5

7

Hay meadows in the surroundings of two shafts of the Wilhelm mine.
Soils contain admixtures of mine waste rocks. Additionally, they were

polluted by the emissions from a local smelter that operated
until 1925 [40]

3.60–4.39 73–603 5–78 0.02–0.67

Czarnow (German:
Rothenzechau) 8

Dumps disposed by the Evelinensgluck mine that operated until 1925,
and their close surroundings, partly forested, partly used as meadows

and pastures [52,57,58]
2.88–7.43 72–98,500 4–6570 0.05–38.7

* All data are the mean values of three replicates, as explained in Section 2.2.
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2.2. Soil and Plant Sampling

On the basis of a screening study, representative species of grass and herbaceous plants, commonly
occurring in all the areas, were chosen for analysis (Table S1). Additionally, two kinds of tree seedlings,
that started to inhabit the dumps, were included in the study. In June, i.e. in the time of grass flowering,
plant samples were collected from each area in representative 6–8 points.

The plants were sampled, including aboveground parts and roots (or rhizomes), together with
about 2 kg lumps of topsoil (0–20 cm). The aboveground parts of plants were separated in the field by
harvesting directly above the crowns (or above soil surface), while the soil lumps with underground
parts of plants were transported to the laboratory, where the roots were carefully removed from soil.
Soil and plant material was then air-dried and prepared for analysis. Material collected from each
sampling point was represented by three subsamples, so all the analysis were performed in triplicates.
For statistical analysis, aimed to compare As uptake by various plants, only those species were taken
into account that were represented by at least four samples (Table S1).

2.3. Soil Analysis

Air-dried soil samples were homogenized, ground, and sieved to 2 mm under special safety
conditions that involved a vacuum-driven fume hood and personal protection for technicians (protective
clothes, masks and glasses). Aliquots of fine soil material (ca. 200 g) were then analyzed. Soil texture
was determined by a sieve-and-hydrometer method [59]. Soil pH was measured potentiometrically
in a suspension (1:2.5, v:v) with 1M KCl. Organic carbon (Corg) content in soil was analyzed on
the CS-MAT 5500 instrument (Strohlein, Kaarst,. Germany). For determination of “pseudototal” As
(termed further “total”), soil samples were digested with aqua regia (HNO3 + HCl, 1 + 3) in microwave
oven, according to ISO 14466. Potentially soluble forms of As were extracted from soil with 0.43 M
HNO3 (ISO 17402), and actually soluble As species–with 1 M NH4NO3 (ISO 19730). Additionally,
a soluble P, considered phytoavailable, was determined by a lactate/Ca method [60,61], a routine
procedure used in Poland, as the concentrations of P in soil pore water can considerably affect As
uptake by plants [62–65]. Concentrations of As and P in digests and extracts were determined by
ICP-AES, on an iCAP 7400 system (Thermo Scientific, Waltham, MA, USA), with determination limits
0.002 and 0.02 mg/L, respectively. All reagents and deionized water were of ultra-pure quality, and all
the labware used was either new or thoroughly cleaned prior to usage. Validation of analytical methods
involved analysis of two solid CRMs, certified for aqua-regia extracted elements (CNS 392 i CRM 027).
All the results of control analyses were considered satisfactory, falling in the range 98–104% of As
certified values. Due to the lack of a suitable CRMs, the analytical correctness of As determination in
HNO3 and NH4NO3 extracts, was verified via standard addition.

2.4. Plant Analysis

Oven-dried (60 ◦C, 24 h) and ground samples of plant material were pretreated with 30% hydrogen
peroxide and digested in concentrated HNO3, in a microwave system. The digests were diluted with
deionized water and filtered through 0.45 µm syringe filters. The concentrations of As in the digests
were determined by ICP-AES as in soil digest. Validation of analytical method involved the analysis of
plant CRMs: BCR-414 and DC-7349. Additionally, the analytical results obtained with ICP-AES were
randomly controlled by ICP-MS 8800 Triple Quad (Agilent, Santa Clara, CA, USA). The differences
between the results obtained with these two methods remained below 20%.

2.5. The Indices of As Uptake and Root-to-Shoot Transfer

In order to characterize the uptake of As by plants in relation to soil As concentrations, as well
as to assess the rate of its translocation from roots to the aboveground parts, appropriate indices
were calculated. A translocation factor TF was determined as the ratio of As concentrations in plant
shoots to those in roots [47]. Shoot/root bioaccumulation factor (BAF) was defined as the ratio of As
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concentrations in plant material to total As concentrations in soil. Shoot and root bioconcentration
factors BCF were calculated in relation to soluble As in soil [50,51], i.e. to its fraction extractable with
1M NH4NO3 or with 0.43 M HNO3.

2.6. Statistics

Basic descriptive statistics was applied to evaluate the distributions of data sets obtained from
chemical analyses. When necessary, the sets of variables were normalized by log 10 transformation
prior to further calculations. For each data sets and each plant species, median values and 25% and
75% percentiles were calculated and visualized in the form of box-and-whiskers plots. Extremes and
outliers were neglected in those calculations, though, they were presented in the graphs.

The relationships between log-normalized soil and plant data have been presented in diagrams.
produced by the Excel software. Pearson correlation coefficients were calculated to examine the
relationships between soil properties and arsenic concentrations in plant samples. Additionally,
principal component analysis (PCA), the multivariate statistical technique, was applied both to the
whole sets of data, and to the data characterizing particular plant species separately, in order to extract
information about the associations and relationships between the variables. All statistical analyses
were performed using Excel 2010 (Microsoft, Albuquerque, NM, USA) and Statistica 13 (StatSoft, Tulsa,
OK, USA) softwares.

3. Results and Discussion

3.1. Soil Properties

Soil properties differed strongly both among the areas and in most cases, also within them (Table 1).
Total As content in soils varied in the range: 72–193,000 mg/kg, with the smallest values in the area 7
(hay meadows and pastures in Radzimowice), and extremely high As accumulation in an alluvial soil
affected by AMD and ARD in the area 6. Very high As concentrations, above 10,000 mg/kg, were also
reported from various mine dumps.

Obviously, As present in soils, was mainly inherited from primary As-bearing minerals, such as
arsenopyrite, loellingite, their various associations [44,55,57], as well as from secondary minerals and
non-crystalline components of different susceptibility to weathering and various solubility. Therefore,
the shares of potentially soluble As (extractable with HNO3) and actually soluble As (extractable
with 1M NH4NO3) in soils differed strongly among the samples falling in the broad ranges 0.3–88.6%
and <0.01–0.83% % of total As, respectively, with the median values: 37.1% and 0.04%. Though,
in the whole set of study data, both potentially and actually soluble As concentrations were highly
significantly (p < 0.001) correlated with total soil As (Table 2). They correlated also with the content of
soluble (“bioavailable”) P in soils. Relatively poorer (R = 0.449), though still significant at p < 0.001,
correlation between 1M NH4NO3-extractable As and soil pH was undoubtedly caused by the fact that
the solubility of As tends to increase both at high pH, due to an anionic character of As-bearing ions,
and at extremely low pH, due to dissolution of iron oxides [15]. The pH values in our study were
spread in a broad range (2.88–7.66), likely including the zones of enhanced solubility both at low and
high pH. Moreover, a relationship between a real As solubility vs. pH can be modified in the field by
changing soil redox conditions followed by a possible reductive dissolution of iron oxides [15,43,66],
which might have not been reflected after soil drying in lab conditions.

3.2. Arsenic Concentrations in Plants

Box-whiskers plots (Figure 1) show the concentrations of As in shoots and roots of plant species
examined. The pictures illustrate a large diversity of plant capability to take up As from soils and to
accumulate it in their tissues. Minimum and maximum As concentrations determined in plant samples
differed dramatically, more that by three orders of values. However, the median As concentrations,
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determined separately for particular plant species, listed in Table S2, and indicated in graph as black
squares, did not differ so largely.
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Figure 1. Arsenic concentrations in shoots (a) and roots (b) of plant species examined.
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Table 2. Correlations coefficients between soil properties, total As and extractable As in soils, n = 146.
The sets of data lacking a normal distribution were normalized by log-transformation.

As Parameter
Soil Parameters

Total As, mg/kg pH “Bioavailable” P

0.43M HNO3-extractable As, mg/kg 0.835 *** 0.316 *** 0.811 ***

1M NH4NO3-extractable As, mg/kg 0.726 *** 0.449 *** 0.786 ***

1M NH4NO3-extractable As, % of total −0.445 *** 0.275 ** −0.057

Correlations significant at p < 0.01, and < 0.001 are indicated with asterisks (**, and ***, respectively)

3.2.1. As in Plant Shoots

Total concentrations of As in the aboveground parts of plants were in a broad range 0.5–509 mg/kg,
indicating that the plants growing in our study area can accumulate very high amounts of As in
their shoots. The median value, determined for the whole set of results, was 8.9 mg/kg, which was
comparable with As concentrations in plant shoots reported by various authors from contaminated
environments [15,16,67–70]. It should be stressed, however, that the majority of results, i.e. 66%,
exceeded the value 4 mg/kg, considered a safe concentration of As in animal fodder. In particular,
an upper quartile of analytical data should attract special attention, as 25% of all plant samples had
the shoot As concentrations above 26.9 mg/kg, and 10% of results exceeded 50.8 mg/kg. Moreover,
statistical calculations neglected several outliers and extreme values (i.e. the results > 61 mg/kg) that
made up further 8% of particularly high As concentrations. The highest species-related median value
of shoot As concentration, 47.5 mg/kg, was determined in Equisetum spp., a genus that was already
reported as As accumulator [33,40,71]. Its high As accumulation capability can be attributed either
to special, genus-related physiological features, not yet more closely examined, or explained by its
particular tolerance to temporary soil flooding and As mobilization in reducing conditions.

A relatively high median value of As concentrations in the shoots, 26.8 mg/kg, were also reported
for C. epigejos, a dominating grass species in the areas 2 and 3. Two extremely high values of As
concentrations in plant shoots (478 and 509 mg/kg) were also reported for the representatives of this
grass species. They grew in soils with neutral pH (pH > 6.8) and considerably high concentrations of
1M NH4NO3-extractable As (>2.5 mg/kg). It can be supposed that, unlike three other grass species:
H. lanatus, F. rubra and A. capillaris, growing in same conditions (in the areas 1, 2 and 3), the populations
of bush grass C. epigejos examined in this study did not evolve the mechanisms of tolerance based on
As avoidance or reduced influx to the shoots [21,23,72].

3.2.2. As in Plant Roots

As concentrations in plant roots were, in general, much higher and much more differentiated than
those in the aboveground parts of plants (Figure 1) and ranged from 2.3 to 9400 mg/kg. Extremely high
As concentrations in plant roots (2400 mg/kg and higher), apparently associated with very strong soil
enrichment in As, were reported for two grass species: A. capillaris and H. lanatus, while C. epigejos
and S. vulgaris had the highest median values of root As (126 and 147 mg/kg, respectively). On the
contrary, relatively low root As were reported in the case of D. flexuosa growing in acidic mine soils,
and L. corniculatus, that had the median root As: 11.3 and 10.8 mg/kg.

3.3. Translocation Factor TF

Translocation factor TF is a parameter that characterizes plant ability to transfer elements from
roots to shoots. The values of TF calculated for all the plants growing in the study areas ranged broadly
(0.004–26.8), though, they were generally very low (Figure 2), with a median 0.17, which is a typical
feature for As [15,16,39,73,74].
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Most of the species-determined median values of TF remained below 0.20. The exceptions were:
an unusually high median of 0.82 obtained for D. flexuosa, a grass growing in forest habitats in strongly
acidic soils (pH 2.88–4.32) on the dumps, as well as the medians for spruce seedlings P. abies on acidic
mine dump soils: 0.37, the horsetail Equisetum spp.: 0.28, and ferns Dryopteris spp.: 0.21 (Table S2).
It should be stressed, however, that singular exceptionally high values of TF were noted for various
species. The TF values above 10 were reported in the cases of F. rubra, A. capillaris and Dryopteris spp.,
and they all were associated with strongly acidic soils (pH below 3.8).

3.4. Bioaccumulation Factor BAF

BAF values, that relate the accumulation of element in plant shoots or roots to its total concentrations
in soils, did not differ from those described in similar studies, and were in general very low. The shoot
BAF values were in the range <0.001–0.179, with 90% cases below 0.025, and a median value 0.003.
The single cases of considerably high BAF coefficients, above 0.1, were noted for grasses: C. epigejos
(0.179, 0.117), F. rubra (0.174) and A. capillaris (0.116), as well as for a common bird’s-foot trefoil
L. corniculatus (0.164) and Dryopteris spp. (0.105). The horsetail (Equisetum spp.) indicated a relatively
high median shoot BAF: 0.008. The relationships between As concentrations in plant shoots and total
As in soils are illustrated in the Figure 3. The cases listed above appear as outliers protruding above a
cloud of the other data. A clear tendency of increasing As in shoots with increasing soil total As was
confirmed by a high correlation coefficient (R = 0.640), significant at p < 0.001 (Table 3).

The root BAF values differed strongly within our study, and were obviously higher than the shoot
BAFs, falling in the range <0.001–1.13, with a median 0.020. An extraordinarily high BAF value (>1.0)
referred to C. epigejos growing in soil with slightly acidic pH (4.82). The latter result was checked
twice and should be considered as a case of unusually strong capability of that particular bush grass
genotype to accumulate As in its roots. No similar cases of such a strong As accumulation in the roots
of this grass species are in fact reported in the literature. The median values of root BAF, determined for
single plant species separately, were in the range 0.002–0.062, with the lowest values (<0.003) obtained
for the ferns Dryopteris spp. and the grass D. flexuosa that grew in acidic soils and poorly accumulated
As in roots/rhizomes. On the contrary, three other grass species: H. lanatus, A. capillaris and C. epigejos,
as well as the representative of Loteae family, L. corniculatus, had the highest median values of root
BAF, above 0.050. All these three grass species were earlier reported to develop the mechanisms of
As tolerance, based on either avoidance or exclusion and apparently supported by mycorrhiza and
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rhizospheric bacteria. Those mechanisms can be responsible for an increased accumulation of As in
plant roots [23,26,28]. The highest values of root BAF were associated with soils highly enriched in As,
with its total concentrations in the range 103–104 mg/kg.Int. J. Environ. Res. Public Health 2020, 17, x 9 of 17 
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Figure 3. Arsenic concentrations in the aboveground parts of plants, as related to soil As. Graph
(a) illustrates the relationships between As in the aboveground parts of plants and total soil As,
and graph (b) relates the concentrations of As in the aboveground parts to 1M NH4NO3-extractable As
in soils.

3.5. As Extractability and Plant Uptake. Bioconcentration Factors BCF

Considering a limited As solubility in soils, we presumed that the correlations between As
concentrations in plant tissues and actually or potentially soluble soil As in soils should be stronger
compared to those with total soil As. Correlation coefficients between 1M NH4NO3-extractable As in
soils and As concentrations in plant roots and shoots, determined for the whole collection of samples,
were indeed relatively high (R: 0.503 and 0.599, respectively), and highly significant (Table 3). Similarly
high and significant were correlations between the root and shoot As and 0.43 M HNO3-extractable
soil As (R: 0.576 and 0.584). All those R values were, however, lower than corresponding R coefficients
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calculated for total soil As, and a graphical illustration of plant shoot As vs. soluble soil As (Figure 3)
proved a large diversity of experimental data.

The values of related root and shoot actual bioconcentration factor BCF (calculated in relation to
actual As solubility) differed strongly, and were in the ranges <0.1–1210 for shoots and <0.1–8290 for
roots, with the medians: 7.4 and 41.5. The BCF values depended on extractable soil As, and decreased
with increasing pool of potentially or actually soluble pool of soil As (Table 4). In other words,
the higher was the pool of soluble As in soil, the smaller part of this pool was taken up and accumulated
by plants.

Table 3. Correlations between soil properties and parameters that characterize As uptake by plants
(n = 132). The sets of data lacking a normal distribution were normalized by log-transformation.

Parameter of As
Uptake by Plants

Soil Parameters

Total
As, mg/kg

0.43M
HNO3-

Extractable
As, mg/kg

1M
NH4NO3-

Extractable
As, mg/kg

pH
“Bio-

Available”
P, mg/kg

1M NH4NO3-
Extractable

As, % of Total

As in shoots, mg/kg 0.640 *** 0.584 *** 0.599 *** 0.430 *** 0.404 *** −0.187 *

As in roots, mg/kg 0.645 *** 0.576 *** 0.503 *** 0.427 *** 0.485 *** −0.227 **

TF −0.274 ** −0.207 * −0.122 −0.116 −0.167 * 0.223 **

BAF–shoots −0.674 *** −0.549 *** −0.379 ** −0.133 −0.338 ** 0.368 ***

BAF–roots −0.361 *** −0.287 ** −0.223 ** −0.046 −0.188 * 0.193

BCF–shoots −0.277 ** −0.481 ** −0.641 *** −0.282 ** −0.473 *** −0.471 ***

BCF–roots −0.016 −0.202 ** −0.531 *** −0.101 −0.234 ** −0.531 ***

Correlations significant at p < 0.05, 0.01, and 0.001 are indicated with asterisks (*, **, and ***, respectively).

Table 4. Arsenic BAF and BCF values calculated for shoots and roots of particular plant species. BCF
related to 1M NH4NO3-extractable As in soils.

Species Shoot BAF Shoot BCF Root BAF Root BCF

Range Median Range Median Range Median Range Median

Acer platanoides <0.001–0.014 0.001 1.3–103 3.4 0.001–0.131 0.020 7.2–410 45

Picea abies <0.001–0.006 <0.001 0.4–8.3 4.5 <0.002–0.018 0.004 1.1–32.8 19

Holcus lanatus <0.001–0.066 0.005 0.7–206 7.9 0.002–0.624 0.051 3.7–2910 78

Festuca rubra <0.001–0.174 0.003 <0.1–284 4.9 <0.001–0.355 0.018 15.4–217 106

Agrostis capillaris <0.001–0.116 0.005 <0.1–74 6.4 <0.001–0.885 0.054 <0.1–8290 49

Deschampsia flexuosa <0.001–0.015 0.001 1.3–1120 6.3 <0.001–0.025 0.002 0.5–1350 10

Calamagrostis epigejos 0.002–0.179 0.005 0.9–204 10.0 0.006–1.13 0.062 7.9–2790 49

Calamagrostis
arundin. 0.001–0.001 0.001 0.8–9.7 5.9 0.004–0.052 0.009 22.7–114 46

Lotus corniculatus <0.001–0.164 0.005 1.4–51 4.5 0.001–0.164 0.059 7.3–1360 14

Trifolium pretense 0.001–0.062 0.004 0.8–265 12.4 0.021–0.065 0.033 15.4–217 107

Silene vulgaris 0.001–0.005 0.002 1.3–12 5.4 0.004–0.063 0.018 6.3–170 29

Dryopteris spp. <0.001–0.105 0.002 2.7–1210 10.8 <0.001–0.069 0.003 2.9–283 22

Equisetum spp. <0.001–0.047 0.008 1.2–96.6 15.3 0.001–0.135 0.019 0.7–347 79

Particularly high median values are highlighted in bold.

This effect was associated with a decrease in As root-to-shoot translocation factor TF along
with increasing As root concentrations (Figure 4). Apparently, the mechanisms that prevented As
from being translocated to the aboveground parts of plants were particularly efficient at high As
root concentrations.
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Figure 4. Roots to shoots transfer factor of arsenic (TF) as related to root As concentrations. Calculated
correlation coefficient: R = −0.693, significant at p < 0.001.

Plant species-related values of the shoot BCF turned out to be the lowest (<0.1) for A. capillaris,
known for its ability to develop various mechanisms of tolerance to high soil As [21,23,31], and the
highest in the cases of Dryopteris spp. and D. flexuosa growing in acidic soils. Apparently, low soil
pH and associated low extractability of As, did not prevent As from being taken up by plant roots
and translocated to the shoots (fronds). This phenomenon should be more closely examined from the
standpoint of plant physiology. Changing As uptake by plants in their various phonological phases
should be considered as a factor of variability [75]. The median shoot BCF values, determined separately
for each plant species, were in a relatively narrow range 3.4–12.4, with the highest values obtained for
horsetail, ferns and red clover. A considerably efficient uptake of soluble As by horsetail and ferns
can probably be explained by an intermittent increase in As solubility in periodically occurring wet
conditions, typical for the habitats of area 6. Such an effect was not reflected by the results of As
extractability, determined in dried soil samples. Seasonal differences in As accumulation by plants
growing in floodplain soils and the importance of soil moisture conditions were clearly documented
by Simmler et al. [39], similarly to the effects of soil moisture on As uptake by rice [8].

Similarly to the shoot BCFs, the root BCF values also showed a large diversity, although they
were poorly correlated with each other (R = 0.273). It means that some plants that easily accumulated
soluble As in their roots did not translocate it easily to the shoots. This observation reflects the
differences between tolerant and non-tolerant plants. For instance, some samples of tolerant plant
species: L. corniculatus, H. lanatus, A. capillaris and F. rubra, that had the root BCF values exceeding
1000, turned out to poorly translocate As to shoots.

A lack of clear correspondence between As extractability with 1M NH4NO3 and As plant uptake,
(in the whole data set and within the data characterizing single plant species), indicates that this
extraction cannot be used for prediction of As accumulation by plants. Similar statement refers also
to HNO3-extractable As. Consequently, a risk that As concentrations in plants growing in strongly
enriched soils exceed a value of 4 mg/kg, considered a safe threshold, cannot be simply predicted based
on soil extractions.

Moreover, a multivariate PCA analysis (Figure S1), similarly to single correlations (Table 3)
proved that shoot and root As concentrations correlate better with total than with extractable soil As.
Though, the PCA analysis performed for single species separately indicated that (in some cases) the
close associations between extractable As in soils and As in plants did exist, and those parameters
were governed by the same principal components. For instance, the analysis indicated the strong
associations between shoot and root As concentrations in major plant species, including H. lanatus and
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C. epigejos (Figure S1), which was reflected by their close neighborhood in related PCA graphs. In the
case of ferns Dryopteris spp., however, there was no such an association, which means that different
factors governed As accumulation in their roots (rhizomes) and fronds.

Another kind of associations, revealed by the PCA graphs, was those among soil pH, “available” P,
and (sometimes) a 1M NH4NO3-extractable soil As, which proved to be usually governed by the same
principal components. It should be stressed again, however, that the concentrations of As in the shoots
and roots of various plant species did not show any clear relationships with those soil parameters.

4. Conclusions

Our study showed that majority (over 66%) of plant samples collected from the sites affected
by As mining and processing contained in their aboveground parts relatively high concentrations
of As, above 4 mg/kg, an upper limit for safe animal fodder. Very high As concentrations in plant
shoots were typical for extremely enriched soils, but they occurred also in the sites with total As below
1000 mg/kg. As concentrations in plant shoots proved to differ strongly among the species and within
them. Despite the fact that they were correlated with total and extractable soil As, it would not be
possible to simply predict As concentrations in plants based on soil parameters.

Equisetum spp. and C. epigejos indicated a particularly strong accumulation of As in their shoots,
associated with the high values of TF. Very high shoot concentrations of As were also found in some
samples of A. capillaris, in spite of the capability of this species to develop the mechanisms of tolerance
that normally limit As root-to-shoot transfer.

The cases of particularly intensive uptake of As by plants require a closer examination with special
focus on possible seasonal and weather-related variations in soil As extractability and the dynamics of
As accumulation by plants. Another issue that should be further investigated, is a pH-dependence
of mechanisms responsible for As accumulation in plant roots and limiting its translocation to the
aboveground parts of plants. Apparently, such mechanisms did not develop in plants growing in
acidic mine soils.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/9/3342/s1,
Table S1: Plant species examined; Table S2: Median As concentrations in shoots and roots and median values of
transfer factor TF for plant species examined; Figure S1: The results of principal component analysis performed
for all data and selected plant species separately.
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