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Abstract: A variety of activities potentially contribute to the beneficial effects of probiotic bacteria
observed in humans. Among these is a direct inhibition of the growth of pathogenic bacteria in the gut.
The present study characterizes head-to-head the in-vitro pathogen growth inhibition of clinically
relevant infectious bacterial strains by different types of probiotics and a synbiotic. In-vitro growth
inhibition of Escherichia (E.) coli EPEC, Shigella (Sh.) sonnei, Salmonella (S.) typhimurium, Klebsiella
(K.) pneumoniae and Clostridioides (C.) difficile were determined. Investigated products were a yeast
mono strain probiotic containing Saccharomyces (Sac.) boulardii, bacterial mono strain probiotics
containing either Lactobacillus (L.) rhamnosus GG or L. reuteri DSM 17938, a multi strain probiotic
containing three L. rhamnosus strains (E/N, Oxy, Pen), and a multi strain synbiotic containing nine
different probiotic bacterial strains and the prebiotic fructooligosaccharides (FOS). Inhibition of
pathogens was moderate by Sac. boulardii and L. rhamnosus GG, medium by L. reuteri DSM 17938
and the L. rhamnosus E/N, Oxy, Pen mixture and strong by the multi strain synbiotic. Head-to-head
in-vitro pathogen growth inhibition experiments can be used to differentiate products from different
categories containing probiotic microorganisms and can support the selection process of products for
further clinical evaluation.
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1. Introduction

The invention of antibiotic therapy some 100 years ago was a major step forward in medical
practice, allowing medical practitioners to manage otherwise deadly infections caused by pathogenic
bacteria. However, in the recent past, the rapid increase of bacterial antibiotic resistance has become
a pressing problem of global healthcare [1]. More sensible and less widespread use of antibiotics
is necessary to counteract the increasing loss of their efficacy. While it is clinically challenging to
implement, antibiotics should only be used where their usage is appropriate, and best only in confirmed
cases of bacterial infections. In addition to a careful usage of antibiotics, probiotics or synbiotics should
be considered as prophylactic measures, at least for patients at risk of certain bacterial infections (e.g.,
the elderly admitted to an intensive care unit), as complementary therapy during and after antibiotic
therapy, or even as standalone therapy under certain specific circumstances for bacterial infections.
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Every orally taken antibiotic is leading to alterations of the gut microbiota, in some patients with
symptoms (e.g., diarrhea), in others without symptoms [2]. While antibiotic-associated diarrhea (AAD)
is worrying, the disturbance of the gut microbiota by antibiotics can have more severe consequences.
Among these severe side effects is, for example, pseudomembranous colitis [3], which is caused by
a pathogen overgrowth of the gut, in this case by C. difficile. Pathogenic bacteria are omnipresent in
the human gut. However, as long as the gut microbiota is well balanced and diverse, no pathogen
overgrowth will take place [4]. Disturbance of the equilibrium of the gut microbiota can result in loss of
this pathogenic overgrowth control. Such a can loss then lead to a strong proliferation of pathogens in
the gut and finally result in disease manifestation. Supplementation with certain probiotics or synbiotics
(mixtures of probiotic bacteria with a prebiotic component) during and after antibiotic therapy has
been demonstrated to reduce occurrence of AAD [5].

Today, a huge variety of products containing probiotic microorganisms are available.
These products can be categorized according to their composition: (i) yeast and bacterial products,
(ii) mono strain and multi strain products or (iii) probiotic and synbiotic products. In the present study,
the inhibitions of five bacterial pathogens, E. coli EPEC, Sh. sonnei, S. typhimurium, K. pneumoniae and
C. difficile by representatives of different categories of products containing probiotic microorganisms are
studied. The evaluated probiotics are the clinically well-established mono strain probiotics containing
either Sac. boulardii [6], L. rhamnosus GG [7] or L. reuteri DSM 17938 [8], and two newer products, one
being a multi strain probiotic containing a mixture of three different L. rhamnosus strains (E/N, Oxy,
Pen), the other being a complex multi strain synbiotic containing six lactobacilli (L. acidophilus, L. casei,
L. paracasei, L. plantarum, L. rhamnosus GG, L. salivarius), three bifidobacteria strains (Bifidobacterium (B.)
bifidum, B. longum, B. lactis) and the prebiotic FOS.

Most published in-vitro growth inhibition studies focused on the characterization of only one
pathogenic bacterium and one or a limited number of products containing probiotic microorganisms.
The present study evaluated the antagonistic activity of a range of products in head-to-head in-vitro
growth inhibition experiments with a number of different bacterial pathogens, which can support the
selection of products for future, more in-depth investigations.

2. Materials and Methods

2.1. Probiotics and Synbiotic

The yeast Sac. boulardii probiotic Enterol® (Biocodex, Gentilly, France) contains in each capsule
4.5 × 109 colony forming units (CFU) of the Sac. boulardii strain CNCM I-745. Dicoflor® (Bayer Sp. z
o.o., Warszawa, Poland) contains 6 × 109 CFU of L. rhamnosus GG ATCC© 53103 per capsule. BioGaia®,
(InfectoPharm Arzneimittel und Consilium GmbH, Heppenheim, Germany) contains 108 CFU L. reuteri
DSM 17938 per 5 drops. Lakcid® (Biomed-Lublin S.A., Poland) contains a total of 2 × 109 CFUs as
mixture of the L. rhamnosus strains E/N (40%), Oxy (20%) and Pen (40%), [9]. The complex multi strain
synbiotic Multilac® Baby (Vivatrex GmbH, Aachen, Germany) is a freeze-dried powder. Each sachet
contains a total of 109 CFUs as a mixture of equal CFU amounts of L. acidophilus LA-14; L. casei R0215;
L. paracasei Lpc-3; L. plantarum Lp-115; L. rhamnosus GG, L. salivarius Ls-33, B. lactis Bl-04, B. bifidum
R0071, B. longum R0175 and 1.43 g of the prebiotic ingredient FOS.

2.2. In-Vitro Growth Inhibition of E. coli EPEC, Sh. sonnei, S. typhimurium and K. pneumoniae

For the in-vitro pathogen inhibition experiments with E. coli EPEC (clinical isolate, collection
number 3410/19 E. coli 025), Sh. sonnei ATCC© 9290TM (ATCC, Manassas, VA, USA), S. enterica subsp.
enterica serovar typhimurium ATCC© 14280TM (ATCC, Manassas, VA, USA) and K. pneumoniae subsp.
pneumoniae ATCC© 700603TM (ATCC, Manassas, VA, USA) the respective pathogen was inoculated
on Columbia agar with 5% sheep blood (CM0331, Fisher Scientific GmbH, Schwerte, Germany) and
incubated at 37 ◦C under aerobic conditions for 24 h [10]. Suspensions (100 µL) of the five tested
products (mono strain probiotics Sac. boulardii, L. rhamnosus GG, L. reuteri DSM 17938, the multi strain
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L. rhamnosus E/N, Oxy, Pen and the complex multi strain synbiotic) each containing 106 CFU were
inoculated on MRS agar (CM0361, Fisher Scientific GmbH, Schwerte, Germany) and incubated for 48 h
in the presence of 5% CO2 [11]. After the incubation, 10 mm diameter bars were cut out and transferred
to a Mueller–Hinton agar (CM0337, Fisher Scientific GmbH, Schwerte, Germany) previously inoculated
with the respective pathogen strain with a density of 2 on the McFarland scale. The tested cultures
were stored at 4 ◦C for 4 h, followed by incubation at 37 ◦C for 24 h under aerobic conditions.

2.3. In-Vitro Growth Inhibition of C. difficile

For the in-vitro pathogen inhibition studies with C. difficile ATCC© 9689TM (ATCC, Manassas, VA,
USA), the pathogen was cultivated under anaerobic conditions at 35–37 ◦C for 24–48 h on Schaedler
agar (CM0437, Fisher Scientific GmbH, Schwerte, Germany) [12]. Suspensions each containing 106

CFU of the five evaluated products were inoculated on MRS agar and incubated for 48 h in the presence
of 5% CO2. 10 mm diameter bars were transferred to a Mueller–Hinton agar with 5% horse blood
and 20 mg/L NAD (PP0972, E&O Laboratories Ltd, Bonnybridge, UK) and incubated under anaerobic
conditions for 24 h.

2.4. FOS Control and Measurement of Growth Inhibition

For testing a potential pathogen growth inhibitory effect of FOS, 100 µL of a solution containing
14.3 mg/mL FOS (F8052, Sigma Aldrich, St. Louis, Missouri, USA) was applied to a 10 mm filter disk
that was then administered to respective pathogen testing plates. The multi strain synbiotic was tested
on the same plates as a positive control.

At the end of the incubation, measurements of inhibition zones around the tested colonies were
taken from the outer edge of the colonies to the outer edge of the clear zones. Each test was performed
in triplicate and the arithmetic means of the radii measuring from the edges of the colonies to the
edges of the clear zones were calculated as well as the standard deviations SD (Excel, Microsoft,
Redmont, WA, USA). Independent T-test statistical analyses of datasets were conducted with GraphPad
Prism software version 8.2 (GraphPad Software, San Diego, CA, USA), Datasets were considered as
significantly different when a p-value < 0.01 was achieved.

3. Results

In-Vitro Pathogen Growth Inhibition

In-vitro growth of all five tested pathogenic bacteria were inhibited by all evaluated products.
However, the extent of in-vitro growth inhibitions by the products varied significantly for all tested
pathogens (Figure 1).
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Figure 1. In-vitro growth inhibition of pathogens by different probiotics and a multi strain synbiotic. 
The L. rhamnosus E/N, Oxy, Pen mixture contains the three different probiotics in a CFU ratio of 
40/20/40. The multi strain synbiotic contains a mixture of equal CFU amounts of L. acidophilus LA-14; 
L. casei R0215; L. paracasei Lpc-3; L. plantarum Lp-115; L. rhamnosus GG, L. salivarius Ls-33, B. lactis Bl-04, 
B. bifidum R0071, B. longum R0175 and the prebiotic fructooligosaccharides (FOS). Significant 
differences (p-values < .01) between the inhibitions by different products are indicated by horizontal 
lines marked with an asterisk (*). 

The inhibitory patterns found for E. coli EPEC and K. pneumoniae were similar. The antagonistic 
effects of the tested products ranked from weak to strong inhibition as follows: L. rhamnosus GG < 
Sac. boulardii < L. reuteri DSM 17938 = multi strain probiotic L. rhamnosus E/N, Oxy, Pen < complex 
multi strain synbiotic.  

For the inhibition of Sh. sonnei and S. typhimurium an inhibition ranking from weak to strong of 
Sac. boulardii = L. rhamnosus GG < L. reuteri DSM 17938 = multi strain probiotic L. rhamnosus E/N, Oxy, 
Pen < complex multi strain synbiotic was found. While there was a significant difference (p-values < 
.01) between the inhibitions of Sh. sonnei by Sac. boulardii or L. rhamnosus GG and the L. reuteri DSM 
17938 probiotic or the multi strain probiotic L. rhamnosus E/N, Oxy, Pen, the difference of the 
inhibitions by these two groups of probiotics of S. typhimurium was not significant (p-values > .01). 

The inhibition of the gram-positive C. difficile by the tested products resembled that of Sh. sonnei 
and S. typhimurium. The weakest inhibitions were found for Sac. boulardii and L. rhamnosus GG. 
Inhibitions by L. reuteri DSM 17938 and the multi strain probiotic L. rhamnosus E/N, Oxy, Pen were 
intermediate and the best inhibitory effect was found for the complex multi strain synbiotic. 

As shown in Figure 2, FOS alone had no inhibitory effect on E. coli EPEC. FOS also had no 
inhibitory effect on the growth of the other four tested pathogens (data not shown). 

Figure 1. In-vitro growth inhibition of pathogens by different probiotics and a multi strain synbiotic.
The L. rhamnosus E/N, Oxy, Pen mixture contains the three different probiotics in a CFU ratio of 40/20/40.
The multi strain synbiotic contains a mixture of equal CFU amounts of L. acidophilus LA-14; L. casei R0215;
L. paracasei Lpc-3; L. plantarum Lp-115; L. rhamnosus GG, L. salivarius Ls-33, B. lactis Bl-04, B. bifidum R0071,
B. longum R0175 and the prebiotic fructooligosaccharides (FOS). Significant differences (p-values < 0.01)
between the inhibitions by different products are indicated by horizontal lines marked with an asterisk
(*).

The inhibitory patterns found for E. coli EPEC and K. pneumoniae were similar. The antagonistic
effects of the tested products ranked from weak to strong inhibition as follows: L. rhamnosus GG <

Sac. boulardii < L. reuteri DSM 17938 = multi strain probiotic L. rhamnosus E/N, Oxy, Pen < complex
multi strain synbiotic.

For the inhibition of Sh. sonnei and S. typhimurium an inhibition ranking from weak to strong
of Sac. boulardii = L. rhamnosus GG < L. reuteri DSM 17938 = multi strain probiotic L. rhamnosus
E/N, Oxy, Pen < complex multi strain synbiotic was found. While there was a significant difference
(p-values < 0.01) between the inhibitions of Sh. sonnei by Sac. boulardii or L. rhamnosus GG and the
L. reuteri DSM 17938 probiotic or the multi strain probiotic L. rhamnosus E/N, Oxy, Pen, the difference of
the inhibitions by these two groups of probiotics of S. typhimurium was not significant (p-values > 0.01).

The inhibition of the gram-positive C. difficile by the tested products resembled that of Sh. sonnei
and S. typhimurium. The weakest inhibitions were found for Sac. boulardii and L. rhamnosus GG.
Inhibitions by L. reuteri DSM 17938 and the multi strain probiotic L. rhamnosus E/N, Oxy, Pen were
intermediate and the best inhibitory effect was found for the complex multi strain synbiotic.

As shown in Figure 2, FOS alone had no inhibitory effect on E. coli EPEC. FOS also had no
inhibitory effect on the growth of the other four tested pathogens (data not shown).
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products containing probiotic microorganisms commonly used by physicians in Poland. The in-vitro 
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Figure 2. Example of the effects of the multi strain synbiotic (A) and FOS (B) on the in-vitro growth of
Enteropathogenic E. coli EPEC.

4. Discussion

A large number of studies have been published which are characterizing the in-vitro pathogen
growth effects of individual probiotic microorganisms. There are also studies which compare the
growth inhibitory effects of individual strains in head-to-head experiments. Less data are available for
the in-vitro growth inhibitory effect of individual multi-strain products. To our knowledge there is no
study published which compares the in-vitro pathogen growth inhibitory effects of probiotic products
from different categories (yeast, bacteria, mono-strain, multi-strain, probiotic, synbiotic) head-to-head.
The present study compares the in-vitro pathogen growth inhibitory properties of products containing
probiotic microorganisms commonly used by physicians in Poland. The in-vitro pathogen growth
inhibition experiments of the present study are not aiming to identify the underlying mechanisms
of growth inhibition or to identify the causes of potential synergistic effects of probiotic bacteria in
the multi-strain products, but to focus primarily on establishing a ranking of efficacy in this one
particular experimental set-up. Inhibition of pathogen growth is only one potential effect exhibited by
probiotic bacteria in the gut and other activities (e.g., inhibition of the adherence of pathogens to the
gut mucosa, stimulation of the host immune system) are also potential contributors to their efficacy.
However, in-vitro pathogen growth inhibition testing is a helpful measure that can be used to support
the selection of products for further investigation, e.g., in clinical trials.

For the in-vitro growth inhibition testing, five bacterial pathogens were selected which physicians
encounter in their day-to-day practice. All five selected bacterial pathogens represent major health
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care concerns. As outlined in the following, infections with these pathogens are not always requiring
antibiotic therapy. In addition, the increasing rate of developing antibiotic resistance in these bacteria
has stimulated the interest in probiotics as prophylactic, alternative or adjuvant therapy for infections
caused by them.

Enteropathogenic E. coli EPEC is a major cause of infant diarrhea [13]. As long as there is no
evidence for a systemic infection, antibiotic therapy is rarely indicated and should be deferred until
culture results are available. Due to this, and the emerging resistance of E.coli against antibiotics [14],
probiotics are considered as additional options to manage E. coli infections [15]. In-vitro pathogen
growth inhibition experiments found no clear E. coli growth antagonism by the yeast Sac. boulardii [16].
In contrast, in-vitro growth inhibitions of E. coli have been described for a number of mono strain
bacterial probiotics, among them L. rhamnosus GG [17], L. reuteri DSM 17938 [15] and multi strain
probiotics [15,18,19].

Shigella infections are a major public health problem in areas of poor sanitation with especially
high incidence, morbidity and mortality in children [20]. Shigellosis is spread by fecal-oral transmission
and ingestion of a small number of Shigella bacteria can already cause clinical disease. Most patients
recover from Shigellosis without antibiotic treatment within 5−7 days. Various antimicrobial agents
are effective in the treatment of severe cases of Shigellosis, however, a globally emerging antibiotic
resistance is observed [21]. Consequently, probiotics are considered as an alternative approach
to manage Shigellosis. Sac. boulardii has been shown to interfere with Shigella pathogenesis [22],
however, in-vitro growth inhibition of Sh. sonnei by Sac. boulardii has not been published. Inhibition of
in-vitro growth of Sh. sonnei has been demonstrated for L. rhamnosus GG [17], for L. reuteri [23] and a
number of other lactobacilli [24]. For the multi strain products investigated in this study, results from
in-vitro growth inhibition of Sh. sonnei have not been demonstrated.

Most food-borne bacterial gastroenteritis is caused by S. typhimurium. Antibiotic therapy is not
advised for most of the patients with S. typhimurium infection, as the infection is often self-limiting
and antibiotic resistance of the bacterium is on the rise [25]. Therefore, especially for severe cases or
patients with persistent infections [26], non-antibiotic treatment alternatives are needed [27]. There is a
large amount of studies, including human clinical trials, indicating that Sac. boulardii has potential in the
prevention and treatment of infections with S. typhimurium [28]. However, no study has been published
comparing the in-vitro growth inhibition of S. typhimurium by Sac. boulardii with that of bacterial
probiotics. In-vitro growth inhibition of S. typhimurium has been shown for a number of individual
lactobacilli strains, [17,29,30]. The method has also been used for the search for new lactobacilli strains
with growth inhibitory potential against S. typhimurium [19,31]. Our group has recently published that
S. typhimurium was more strongly inhibited by a multi strain synbiotic (different from that investigated
in the present study) when compared with the in-vitro growth inhibition caused by its individual
bacterial strains [30].

K. pneumoniae is responsible for an alarming increase in hospital infections, especially in intensive
care units. More and more antibiotics have lost their efficacy against K. pneumoniae, and strains of
K. pneumoniae have emerged that are resistant against most of the presently available antibiotics [32,33].
Consequently, interest in probiotics/synbiotics as alternative options to manage infections with
K. pneumoniae has emerged. Few studies have investigated the effect of probiotics on the in-vitro
growth of K. pneumoniae [34–36], however, all with promising results.

For an initial C. difficile infection (CDI), the exposure to antibiotics is the most important risk
factor [37]. In this context, it is important to note that certain antibiotics (e.g., clindamycin, quinolones,
cephalosporins) are associated with a higher risk of causing CDI. The pathology of CDI is characterized
by a disruption of the gut microbiota, resulting in an overgrowth by C. difficile, production of toxins
and disease development. Characteristic symptoms are diarrhea and abdominal pain. In severe
cases, the CDI can result in a life-threatening pseudomembranous colitis. Recurrence of CDI is a
not uncommon observation. First step in the treatment of CDI is discontinuing the therapy with the
inciting antibiotic as soon as possible. Depending on severity of the CDI, three antibiotics can be



Int. J. Environ. Res. Public Health 2020, 17, 3332 7 of 10

considered for therapy: metronidazole, vancomycin and fidaxomicin [38]. In addition, supporting the
diversity of the gut microbiota is an important therapeutic objective in the management of CDI [39].

In-vitro growth inhibition of C. difficile by a number of mono strain probiotics, among them
L. rhamnosus, and bifidobacteria has been described [40,41]. To our knowledge, the present study is the
first which compares head-to-head the in vitro-growth inhibition of C. difficile by representatives from
different categories of products containing probiotics.

The products evaluated in the present study can be categorized by the following criteria:
(i) yeast/bacteria, (ii) mono strain/multi strain and (iii) probiotic/synbiotic (containing probiotic and
prebiotic components). While the in-vitro pathogen growth inhibitory effects vary among the tested
products, the inhibitory effects seem not to be pathogen-dependent. Weakest pathogen inhibition
is observed for Sac. boulardii and L. rhamnosus GG, intermediate for L. reuteri DSM 17938 and the
L. rhamnosus E/N, Oxy, Pen mixture and strongest inhibition is found for the multi strain synbiotic. This
finding is in line with the hypothesis that multi strain probiotics exhibit superior growth inhibitory
effects towards pathogenic bacteria because they are combining a broader range of independent
antibacterial activities, some of which might even act synergistically [42,43]. However, it has to be
mentioned that in-vitro characterization of the potential synergistic effects in multi strain probiotics,
especially those containing a larger number of different strains, can hardly be demonstrated due
to the fact that thousands, if not millions of potential combinations would have to be investigated.
Synbiotics might have an additional advantage over pure probiotics, as their prebiotic component
provides a source of energy, potentially supporting the proliferation of their probiotic components.
Based on our experiments, we can exclude that FOS itself has an inhibitory effect on one of the tested
pathogenic bacteria.

An obvious limitation of the present study is that it is using only one experimental set-up to
establish an in-vitro efficacy ranking among the evaluated products. No efforts have been undertaken
to investigate the underlying mechanisms of the observed pathogen inhibitions or the underlying
mechanisms of potential synergies in the multi strain products. Dedicated human clinical studies will
be necessary to evaluate if these in-vitro findings will translate into clinical benefits for patients.

5. Conclusions

In-vitro growth inhibition of a variety of pathogens is helpful to differentiate products and product
categories containing probiotic microorganisms. Based on the results of the present study, multi strain
probiotics should be preferred in case a strong in-vitro growth inhibition of a broad range of pathogens
is desired. Our study results can support the product selection for future clinical investigations.
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