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Abstract: The study investigated the spatiotemporal evolution of PM2.5 concentration in the Beijing–

Tianjin–Hebei region and surrounding areas during 2015–2017, and then analyzed its 

socioeconomic determinants. First, an estimation model considering spatiotemporal heterogeneous 

relationships was developed to accurately estimate the spatial distribution of PM2.5 concentration. 

Additionally, socioeconomic determinants of PM2.5 concentration were analyzed using a spatial 

panel Dubin model, which aimed to improve the robustness of the model estimation. The results 

demonstrated that: (1) The proposed model significantly increased the estimation accuracy of PM2.5 

concentration. The mean absolute error and root-mean-square error were 9.21 μg/m3 and 13.10 

μg/m3, respectively. (2) PM2.5 concentration in the study area exhibited significant spatiotemporal 

changes. Although the PM2.5 concentration has declined year by year, it still exceeded national 

environmental air quality standards. (3) The per capita GDP, urbanization rate and number of 

industrial enterprises above the designated size were the key factors affecting the spatiotemporal 

distribution of PM2.5 concentration. This study provided scientific references for comprehensive 

PM2.5 pollution control in the study area. 

Keywords: PM2.5; socioeconomic factors; spatiotemporal patterns; spatiotemporal heterogeneous; 

spatial panel Dubin model 

 

1. Introduction 

Atmospheric pollution significantly influences human health, climatic environment, and 

sustainable urban development [1–4]. According to a World Health Organization (WHO) report in 

2014, atmospheric pollution causes more than seven million deaths worldwide each year [5]. A recent 

study based on the Global Exposure Mortality Model estimated that 8.9 million people died globally 

in 2015 [6]. With China’s rapid economic, industrial, and urban development, atmospheric pollution 

has become an increasing problem. East China, especially the Beijing–Tianjin–Hebei region, has 

witnessed frequent occurrences of severe haze since 2013. The Beijing–Tianjin–Hebei region is 

responsible for the majority of North China’s economic development, and coordinated development 

in this region is one of three national strategies in China [7]. Therefore, comprehensive atmospheric 

pollution governance in the region has attracted wide attention from China’s government. PM2.5 

(atmospheric particulate matter with a diameter of less than 2.5 μm) is the primary cause of haze. 
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Twenty-eight cities in the Beijing–Tianjin–Hebei region and surrounding areas are considered to be 

the main transmission channels of atmospheric pollution in the region. Hence, accurate interpretation 

of spatiotemporal distribution and evolution of PM2.5 concentrations in the Beijing–Tianjin–Hebei 

region and surrounding areas, as well as a recognition of the primary influencing factors of PM2.5 

concentrations, have important theoretical and practical significance to atmospheric pollution 

control. 

An accurate estimation of the spatial distribution of PM2.5 concentration is a prerequisite for 

determining its determinants. Traditionally, the spatial distribution of PM2.5 concentration is 

generated through spatially interpolating ground PM2.5 observations [8,9]. Although the ground 

observations are accurate, the observation stations are limited in number and distributed unevenly, 

thus making it difficult to produce accurate spatial distribution solely by interpolating the ground 

observations. Moreover, observations also suffer from a representativeness error. With the assistance 

of relevant auxiliary variables (e.g., satellite-derived Aerosol Optical Depth (AOD) data), the 

estimation accuracy of PM2.5 concentrations can be significantly improved. Various estimation 

models based on the relationship between PM2.5 and auxiliary variables have been proposed. These 

methods can be divided into two categories, i.e., physical models and statistical models. The physical 

models use atmospheric chemistry models to simulate the association between AOD and PM2.5, and 

then estimate PM2.5 using satellite-derived AOD and the derived association [10–12]. The statistical 

models apply statistical methods (e.g., multiple linear regression, generalized additive model, and 

random forest) to investigate the relationship between ground-measured PM2.5 and satellite-derived 

AOD and other auxiliary variables, and then builds an estimation model based on the derived 

relationship [13–18]. Most of the statistical models argued that PM2.5 concentration is affected by the 

selected auxiliary variables that are fixed throughout the estimation period. However, it has been 

reported that PM2.5 is sensitive to meteorological conditions, but this sensitivity changes over time 

[19–21]. For example, certain meteorological factors may not significantly affect PM2.5 concentration 

during a specific period [22]. Additionally, AOD is an optical remote sensing product, which is 

significantly influenced by weather conditions (e.g., cloud and rain), resulting in a large amount of 

data gaps. All of these factors inevitably have adverse effects on accurately estimating the spatial 

distribution of PM2.5 concentration. 

Determining factors that influence PM2.5 concentration have recently generated increased 

research interest and involves various aspects, including economic development, natural conditions, 

and urbanization [23–26]. Although such research can provide useful references for formulating 

atmospheric environmental governance policies, it still has some shortages. It is common to represent 

PM2.5 concentration of a region based on one ground measurement [23,27,28]. Due to significant 

spatial variation in PM2.5 concentration, such simplification will likely corrode the reliability of 

results. Although some studies have estimated PM2.5 concentration in urban areas based on gridded 

PM2.5 data [29,30], these grid data mainly come from interpolation of ground PM2.5 observation data 

or from statistical models based on satellite-derived AOD. Nevertheless, it was not until February 

2012 that China measured PM2.5 concentration as a proxy for environmental air quality and at the end 

of 2014 a national observation network to measure PM2.5 levels was established (~1500 observation 

stations). Therefore, the interpolation results and statistical model results before 2014 may have larger 

uncertainty due to the limitation of available observations. The relationship between PM2.5 

concentration and influencing factors are complicated, which creates some uncertainty in model 

construction. Some studies have focused on the relationship from a time-series perspective without 

regarding the spatial dependence of PM2.5 pollution [24,29,31]. Given the spatial dependence of 

atmospheric pollution, some studies applied spatial models to investigate the influencing factors on 

PM2.5 concentration [32,33]. However, the spatial model usually only considers panel data at a 

particular time, which may obtain different or even opposite results for panel data at different times 

because of the small sample data size. Although many studies have explored factors that influence 

PM2.5 concentration, it should be noted that at different stages of development, there can be 

substantial differences in economic growth, energy consumption, industrial structure, population, 



Int. J. Environ. Res. Public Health 2020, 17, 3014 3 of 16 

 

and environmental background. Ignoring these differences is very likely to cause biased or suspicious 

conclusions. 

Given that the national observation network was not completed until the end of 2014, this study 

focused on the spatiotemporal evolution of PM2.5 concentration in 28 cities of the Beijing–Tianjin–

Hebei region and surrounding areas during 2015–2017, and then identified its socioeconomic 

determinants. Firstly, an estimation model for high spatial-resolution PM2.5 estimation was created 

based on the reconstructed AOD missing gaps and the spatiotemporal heterogeneous relationship 

between PM2.5 and auxiliary variables, which disclosed the spatial distribution of PM2.5 concentration 

in the study area. Secondly, based on the analysis of the spatiotemporal evolution of PM2.5 

concentration, the socioeconomic factors that influence local PM2.5 concentration were investigated 

by a spatial panel model. The research study’s conclusions provide scientific references for local 

atmospheric pollution control. 

2. Study Area and Data 

2.1. Study Area 

The study area includes 28 cities of the Beijing–Tianjin–Hebei region and surrounding areas, 

covering an area of ~275,000 km2. As shown in Figure 1, the terrain is high in the west and low in the 

east, with elevation ranging from sea level to >2000 m. The region experiences four distinct seasons, 

with hot and rainy summers due to the East Asian monsoon, and cold and dry winters due to 

subtropical high-pressure systems. The Beijing–Tianjin–Hebei region is the most economically 

developed area in northern China and is the area with the most PM2.5 pollution. 

 

Figure 1. Study area and spatial distribution of ground PM 2.5 observation stations. 

2.2. Data 

Ground PM2.5 observations were from the public platform of the China National Environmental 

Monitoring Center (http://www.cnemc.cn). Before release, these data had been calibrated and quality 

controlled to meet the national environmental air quality standards of China (GB3095-2012). The 

present study used daily average PM2.5 concentration (DAPC) data from January 2015 to December 

2017 at 256 observation stations in the study area and surrounding areas. Data of monthly average 
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PM2.5 concentrations (MAPC) were generated by averaging the DAPC. Spatial distribution of 

observation stations is shown in Figure 1. Among 256 observation stations, 83 were used for 

constructing the PM2.5 estimation model, and the remaining were used to verify the accuracy of the 

estimation results.  

The latest C6 version of daily AOD (DAOD) was used to construct PM2.5 concentration 

estimation model. The C6 version DAOD had higher spatial resolutions (3 km) compared with the 

previous C5 version. Data of DAOD of Aqua (DAODA) and DAOD of Terra (DAODT) from January 

2015 to December 2017 were collected from the website https://ladsweb.modaps.eosdis.nasa.gov/. 

According to practical situations in the study area, air temperature (AT), wind speed (WS) at 10 

m, surface pressure (SP), and boundary layer height (BLH) were chosen to assist the estimated spatial 

distribution of PM2.5 concentration (Table 1). These data came from the ERA-Interim reanalysis data 

(http://apps.ecmwf.int/datasets/) of the European Centre for Medium-Range Weather Forecast, with 

a spatial resolution of 0.125°. 

Table 1. Definition of the variables used in the study. 

Variable Definition Unit  

AT Air temperature at 2 m K 

WS Wind speed at 10 m m/s 

BLH Boundary layer height m 

SP Surface pressure Pa 

PD person density person/km2 

PGRP Per capital gross regional product yuan 

UR Urbanization rate % 

PSIGDP The proportion of secondary industry in GDP % 

ISDE Industrial smoke (dust) emissions ton/year 

NIEDS The number of industrial enterprises above designated size unit 

Socioeconomic data were collected from the China Statistics Yearbook, China City Statistics 

Yearbook and statistical yearbooks of provinces and regions in the study area 

(http://data.cnki.net/Yearbook). Six factors were chosen: person density (PD), per capita gross 

regional product (PGRP), urbanization rate (UR), the proportion of secondary industry in GDP 

(PSIGDP), industrial smoke (dust) emissions (ISDE), and the number of industrial enterprises above 

designated size (NIEDS) (Table 1). All PGRP data were transformed uniformly to a constant price in 

2015. Additionally, logarithmic transformations were performed on all socioeconomic data to 

eliminate their heteroscedasticity. 

3. Methodology 

3.1. PM2.5 Estimation 

Due to the impact of clouds, rain, and other weather conditions, there are a lot of gaps (no data 

region) in DAOD data. Therefore, it was necessary to fill the missing data gaps. DAOD data were 

constructed based on the complementarity between DAODT and DAODA on spatial coverage and 

significant correlation. The data were filled as follows:  

DAODT and DAODA of a month were used to establish the relationship: 

DAODT� = a�,� + b�,� ∗ DAODA,� + �� (1) 

DAODA� = a�,� + b�,� ∗ DAODT� + �� (2) 

where m refers to month. aT,m, bT,m, aA,m and bA,m are regression coefficients between DAODT and 

DAODA. εT and εA are error terms. 
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Next, the missing data gaps of DAODT and DAODA were reconstructed based on the acquired 

relationships in Equations (1) and (2), generating reconstructed DAODT (RDAODT) and 

reconstructed DAODA (RDAODA). For example, if DAODT has a value Vtest at location Ltest, but 

DAODA does not, we can use Vtest and Equation (2) to estimate the value of DAODA at location Ltest. 

In this way, DAOD was estimated as (RDAODT + RDAODA)/2 because Aqua and Terra measure 

AOD in the morning and afternoon, respectively. Finally, the monthly DAOD averages were 

calculated, which were used to generate the monthly average AOD data (MAOD). 

Although AOD is an indicator of PM2.5 concentration, PM2.5 concentration is also significantly 

influenced by air temperature, precipitation, and other climatic factors [34,35]. This study used 

MAOD, AT, WS, BLH, and SP as the auxiliary variables to estimate the spatial distribution of PM2.5 

concentration. We assumed that the relationship between PM2.5 concentration and auxiliary variables 

changes with time and space and the following model was constructed: 

MAPC�
�(�) = α�(�) + ��,�(�) ∗ MAOD�(�) +���,�(�) ∗ AUX�,�

�

���

(�) (3) 

where MAPC�
� is the estimated average PM2.5 concentration during the month m. u refers to spatial 

position. αm is intercept, and βm,0 and βm,i are coefficients of MAOD� and other auxiliary variables 

AUXm,i. n is a variable with a value range of < =4. When n = 0, no climatic factor is chosen. When n = 

4, the AT, WS, BLH, and SP were all used to construct the model. 

With regards to the temporal heterogeneous relationship between PM2.5 and auxiliary variables, 

the auxiliary variables of the model were chosen based on the following criteria with consideration 

to temporal changes of the relationship between PM2.5 and auxiliary variables: (1) the chosen auxiliary 

variables were significantly correlated with PM2.5; (2) the chosen auxiliary variables improved the 

interpretation of the model to PM2.5 variation. In the views of the spatial heterogeneous relationship 

between PM2.5 and auxiliary variables, a local regression method, geographically weighted regression 

(GWR) [36], was applied to assess and describe the relationship.  

For each month, observations of the training stations were used to construct the PM2.5 estimation 

model, and observations from the validation stations were used to validate the accuracy of the 

estimated result (Figure 1). Some statistical indexes, including correlation coefficient, mean absolute 

error (MAE), and root-mean-square error (RMSE), were chosen to evaluate the effectiveness of the 

proposed model. 

3.2. Effect of Economic and Social Factors on PM2.5 Concentration 

Socioeconomic data from the statistical yearbook were based on city-scale annual statistics. 

Hence, the derived MAPC data should be processed accordingly, which generated the city-scale 

annual average PM2.5 concentration (AAPC). The logarithms of AAPC were calculated to ensure 

consistency with the pre-processing of Socioeconomic data. 

The PM2.5 distribution presented strong trans-regional characteristics and inevitably affected 

nearby regions. Global Morans’ I analysis [37] was used to measure the spatial correlation of PM2.5 

concentrations. In addition, local Morans’ I analysis [37] was applied to describe the spatial 

heterogeneity of PM2.5 concentrations in different geographical units. 

The effects of socioeconomic factors on PM2.5 concentration in the urban scale were analyzed by 

a spatial panel model [38,39]: 

����� = ��������

�

���

+ φ + ������ +����

�

���

��X��� + �� + �� + ϕ��

ϕ�� = λ����

�

���

ϕ�� + ���，���~�(0, �
�)

 (4) 

where i refers to city and t is the year. yit is the explained variable, which is equal to AAPC of city i in 

year t. lnXit is the explanatory variable which refers to socioeconomic factors, and β is the 

corresponding coefficients. µi is the spatial effect and ηt is the time-period effect. wi,j refers to elements 
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in the spatial weight matrix W. ρ is the spatial autoregression coefficient of dependent variables. γ 

denotes the spatial autocorrelation vector of explanatory variables. λ is the spatial autocorrelation 

coefficient of the error term. 

When γ = λ = 0, the Equation (4) is simplified to a spatial panel lag model (SPLM): 

��y�� = �����

�

���

+ φ + ������ + �� + �� + ���, ���~�(0, �
�) (5) 

When ρ=γ=0, the Equation (4) is simplified to a spatial panel error model (SPEM): 

��y�� = φ + ������ + �� + �� + ϕ��

ϕ�� = λ����

�

���

ϕ�� + ���，���~�(0, �
�)

 (6) 

When λ=0, the Equation (4) is simplified to a spatial panel Dubin model (SPDM): 

��y�� = ��������

�

���

+ φ + ������ +����

�

���

��X��� + �� + �� + ���, ���~�(0, �
�) (7) 

4. Results and Discussion 

4.1. Construction of the Estimation Model 

Auxiliary variables were chosen monthly according to the selection criteria in Section 3.1 (Table 

2). The estimation models of all months involved MAOD, which again confirms that AOD was a good 

indicator of PM2.5 concentration. The number of other chosen auxiliary variables changes with time, 

indicating that although PM2.5 concentration was greatly affected by the climatic conditions, there 

was a significant temporal change in sensitivity. This validates the justifiability of the proposed 

assumption. Many studies [6,40] have reported that precipitation affects PM2.5 concentration, and the 

effect is more significant in the time dimension or in the large spatial range. However, in this study, 

we constructed an estimation model for each month, which reduces the effect in the time dimension. 

Next, unlike other statistical methods, GWR is a local spatial regression method—only the data 

within the local range participates in the model construction, thereby weakening the effect in the 

large spatial range. As a result, precipitation was excluded in this study. This is consistent with other 

studies [41–43] that build PM2.5 estimation models based on GWR. 

Table 2. Variable selection of monthly average PM2.5 concentration (MAPC) estimation model for 

2015–2017. 

Month Monthly average AOD data (MAOD) AT WS BLH SP 

201501 √     

201502 √ √    

201503 √    √ 

201504 √    √ 

201505 √ √    

201506 √ √    

201507 √ √ √  √ 

201508 √  √  √ 

201509 √    √ 

201510 √ √   √ 

201511 √    √ 

201512 √ √ √  √ 

201601 √ √   √ 

201602 √   √ √ 
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201603 √ √ √  √ 

201604 √ √  √ √ 

201605 √ √   √ 

201606 √ √   √ 

201607 √ √ √  √ 

201608 √   √ √ 

201609 √ √   √ 

201610 √  √   

201611 √  √ √  

201612 √  √   

201701 √  √ √ √ 

201702 √ √  √  

201703 √ √ √   

201704 √ √   √ 

201705 √ √  √  

201706 √ √   √ 

201707 √  √   

201708 √  √   

201709 √  √   

201710 √  √ √  

201711 √  √ √  

201712 √   √ √ 

The proposed spatiotemporal heterogeneous model (SHM) was compared with the uniform 

relationship model (UM) based on multiple linear regression. The construction accuracy of the 

estimation model throughout the study period is shown in Figure 2. UM showed a relatively lower 

goodness of fit and high temporal fluctuation, with minimum and maximum values of R2 being 0.17 

and 0.67, respectively. Comparatively, SHM increased interpretation to changes in PM2.5 

concentration. Its average of R2 (0.77) was significantly higher than that of UM (0.45), while its average 

of RMSE (8.87 μg/m3) was considerably smaller than that of UM (13.81 μg/m3). In addition, SHM 

demonstrated better stability. All these indicate that it is necessary to consider the spatial 

heterogeneity of the relationships between PM2.5 and auxiliary variables. 

 

Figure 2. R2 and root-mean-square error (RMSE) values of the derived uniform relationship model 

(UM) and spatiotemporal heterogeneous model (SHM) for MAPC over the study area during 2015–

2017. 

4.2. Accuracy Validation and Estimation Results 

The validation of estimated MAPC in the study area during 2015–2017 is shown in Figure 3. R, 

MAE and RMSE of UM were 0.89, 11.25 μg/m3, and 15.55 μg/m3, respectively. In contrast, SHM 

significantly increased the estimation accuracy of MAPC, increasing the correlation coefficient by 3% 

and decreasing MAE and RMSE by as much as 18% and 16%, respectively. As expected, the proposed 

model achieved a higher estimation accuracy of AAPC than UM. The correlation coefficient of the 
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proposed model increased by 5%, while the MAE and RMSE decreased by as much as 19% and 17%, 

respectively (Figure 4). Huang et al. [44] estimated 1 km MAPC in North China from 2013–2015, with 

RSME of 14.89 μg/m3. Ma et al. [45] produced China’s 10 km MAPC from 2014 to 2017 using a two-

stage statistical model, with R2 ranging from 0.75 to 0.81. Wei et al. [46] estimated China’s 1 km MPAC 

in 2016 by using a space-time random forest approach, with R2 of 0.73 and RMSE of 14.88 μg/m3. 

Therefore, the overall accuracy of SHM is satisfying. 

 

Figure 3. Scatterplots between estimated MAPC and ground observation by using SHM (a) and UM 

(b) over the study area during 2015–2017. 

 

Figure 4. Scatterplots between estimated annual average PM2.5 concentration (AAPC) and ground 

observation by using SHM (a) and UM (b) over the study area during 2015–2017. 

Taking MAPC in 2016 as examples, their spatial distributions are shown in Figure 5. There is a 

significant spatiotemporal variation in PM2.5 concentration. In terms of spatial variation, high MAPC 

in the southeast region of the study area from January–April was observed, whereas PM2.5 

concentration in the northwest region towards the central area was relatively higher from May–

December. With regards to temporal variation, PM2.5 concentrations in January, February, November, 

and December were significantly higher than those in other months. The reason behind this may be 

related to indoor heating and climatic conditions. Some studies have reported that the burning of 

biomass and fossil energy for heating in winter generated huge PM2.5 emissions [47,48]. Dust storms, 

which frequently occur in North China in late winter and spring, is another major contribution that 

aggravates PM2.5 concentrations [49]. The lowest average MAPC (40.33 μg/m3) occurred in August, 

and the highest (138.49 μg/m3) was in December. The AAPC in the study area during 2015–2017 is 

shown in Figure 6. Generally, AAPC decreased from the central areas of Shijiazhuang, Baoding, 

Hengshui, and Xingtai to surrounding areas, accompanied with obvious concentration 

characteristics. The average APPC decreased from 77.3 μg/m3 in 2015 to 64.85 μg/m3 in 2017.  
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Figure 5. Spatial distribution of MAPC in each month of 2016. 

 

Figure 6. Spatial distribution of AAPC in 2015, 2016, and 2017. 
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4.3. Spatiotemporal Analysis of City-Scale PM2.5 Concentration 

Spatiotemporal variations of city-scale AAPC in the study area are shown in Figure 7. The AAPC 

in Taiyuan, Yangquan, Changzhi, and Jincheng changed slightly, but AAPC in the other cities 

decreased year by year, especially in Hengshui, Liaocheng, Dezhou, and Jinan. This might be related 

to the relatively high PM2.5 pollution present in these cities. Nevertheless, AAPC in all cities were still 

higher than the national environmental air quality standard of 35 μg/m3 (GB3095-2012), and much 

higher than the health standard recommended by the WHO of 10 μg/m3. This demonstrated that 

more work is required to control PM2.5 concentrations in the study area. 

 

Figure 7. AAPC of 28 cities during 2015–2017. 

Figure 8 shows the spatial correlation of city-scale AAPC in the study area. Global Moran’s I 

indexes were positive during 2015–2017 and all passed the significance test of 0.05, indicating that 

AAPC had significant spatial positive correlation and evident spatial concentration. Moreover, the 

Global Moran’s I decreased gradually, indicating that the concentration degree of AAPC decreased 

year by year. 

 

Figure 8. Global Moran’s I scatterplots of AAPC of 28 cities in 2015, 2016, and 2017. 

To further identify the local aggregation pattern of city-scale AAPC, the local Moran’s I analysis 

was performed (Figure 9). The AAPC was dominated by high-high (HH) and low-low (LL) 

aggregation types; however, high-low (HL) or low-high (LH) types were not found. This indicated 

that AAPC in the study area had a local spatial positive correlation. HH-type regions, also known as 

the high-value aggregation region of AAPC, stably locate in the study area center, whereas the 
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distribution of LL-type regions is unstable. The LL-type regions were concentrated in the west of the 

study area during 2015–2016, but in the northeast region of the study area in 2017. 

 

Figure 9. Local indicators of spatial association maps of city-scale AAPC for 2015, 2016, and 2017. 

4.4. Effects of Socioeconomic Factors on PM2.5 Concentration 

A series of tests were required to select the optimal analysis model. Firstly, to determine whether 

the spatial panel model should be applied, the Lagrange Multiplier (LM), and robust LM (RLM) tests 

were applied to assess the spatial correlation of the errors of the classic panel model. The LM error, 

LM lag, and RLM error under each condition (unfixed effects, spatial fixed effects, time-period fixed 

effects, and spatial and time-period fixed effects) all passed the 5% significance test (Table 3), 

indicating a significant spatial correlation of the errors in the classic panel model. Hence, the spatial 

panel model should be applied. The likelihood ratio (LR) tests of spatial fixed effects and time-period 

fixed effects both exceeded the 1% significance level, which proved the superiority of spatial and 

time-period fixed effects to the spatial fixed effects or time-period fixed effects. Subsequently, a 

spatial panel Durbin model with spatial and time-period fixed effects was constructed to test whether 

it could be simplified into SPLM or SPEM (Table 4). The Hausman test was significant at the 1% level, 

indicating that the model with random effects was rejected; the Wald and LR tests were significant 

at the 1% level. Therefore, the spatial panel Dubin model could not be simplified.  

Table 3. Diagnostic tests for non-spatial panel model. 

Diagnostic Tests No fixed effects (FE) Spatial FE Time FE Two-Way FE 

LM test spatial error 15.9629 *** 23.8827 *** 11.4793 *** 23.9171 *** 

RLM test spatial error 8.4256 *** 27.7504 *** 6.4073 ** 16.7844 *** 

LM test spatial lag 7.6638 *** 5.0589 ** 5.3875 ** 13.1293 *** 

RLM test spatial lag 0.1265 8.9266 *** 0.3154 5.9966 ** 

LR test  182.6997 *** 10.5856 **  

Note: ***, ** and * indicate significance at the 1%, 5%, and 10% levels, respectively. 

Table 4. Diagnostic tests for SPDM with two-way FE. 

Diagnostic Tests Statistics 

Hausman test 148.1871 *** 

Wald test spatial lag 27.9485 *** 

LR spatial lag 25.0216 *** 

Wald test spatial error 35.8282 *** 

LR spatial error 29.7859 *** 

Note: ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 

The spatial panel Dubin model with spatial and time-period fixed effects was chosen to analyze 

how economic and social factors influence PM2.5 concentration. As shown in Table 5, UR has a 

significantly negative effect on PM2.5 concentration, and increasing the UR of a city by 1% could 

decrease PM2.5 concentration in the city by 0.78%. This is because, with the increasing demands for 
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people to live in a heathy environment, China has implemented stricter environmental regulations 

than before. Considering the spatial interaction of UR, the PM2.5 concentration in a city could decrease 

by 2.23% if the UR in the surrounding cities is increased by 1%. Our findings are different from 

studies before 2010 [50], which suggested that UR has a positive effect on PM2.5 concentration. The 

reason behind this is that after China made carbon emission reduction commitments at the 2009 

Copenhagen Climate Conference, the government, enterprises, and society have been vigorously 

promoting ecological sustainability, which effectively curbed the aggravation of air pollution, and 

reduced PM2.5 concentration. 

Table 5. Estimation results of SPDM with two-way FE. 

 Coefficient t Value  Coefficient t Value 

lnPD −0.0141 −0.5963 W*lnPD −0.0243 −0.5542 

lnPGRP 0.7351 * 0.8572 W*lnPGRP 2.7496 * 1.7305 

(lnPGRP)2 −0.0332 * −0.8595 W*(lnPGRP)2 −0.1359 * −1.7796 

lnUR −0.7856 ** −2.1325 W*lnUR −2.2324 *** −3.0512 

lnPSIGDP −0.1035 −1.1761 W* lnPSIGDP 0.3455 1.8127 

lnISDE 0.0095 0.7338 W* lnISDE 0.0432 * 1.9087 

lnNIEDS 0.1491 * 1.7273 W* lnIEDS 0.6736 *** 2.6974 

   W*dep.var. 0.6337 *** 7.6980 

Note: ***, ** and * represent significance at the 1%, 5% and 10% levels, respectively. 

The coefficients of lnPGRP and (lnPGRP)2 were significantly positive and negative, respectively, 

indicating the existence of an inverted U-shaped environmental Kuznets curve (EKC) of PM2.5 

concentration in the study area. With the increase of the per capita income level, the study area 

experienced a process of pollution first and then treatment, resulting in the PM2.5 concentration first 

increasing and then decreasing, which is consistent with some existing research [51–53]. Although 

most cities in the study area except for Beijing, Tianjin, and Qinhuangdao are still in the stage of 

industrialization [54] and have a secondary industry-dominated structure, some cities shut down 

many small-sized, high-pollution, and high-energy-consumption enterprises in order to meet 

environmental quality requirements, and reached the peak of pollution ahead of schedule at the cost 

of low and medium economic growth. This is further demonstrated by the insignificant coefficient of 

PSIGDP. 

Nevertheless, NIEDS has a significant positive effect on PM2.5 concentrations. PM2.5 

concentrations in cities may increase by 0.15% and adjacent areas by 0.67% when NIEDS is increased 

by 1%. This is related to the fact that many NIEDS are resource- and energy-consuming enterprises. 

For example, the Hebei Iron and Steel Group is an ultra-large iron and steel group that ranks as the 

first in China and the second in the world in terms of crude steel output. Such enterprises provide 

important support for local employment and economic development. Given the path-dependence of 

their development, it is difficult to carry out energy saving and emission reduction measures 

immediately and thoroughly [55]. These enterprises will generate a large amount of dust pollution 

during production activities. Accordingly, the PM2.5 concentration of a city is increased 0.043% when 

the ISDE of adjacent cities is increased by 1%. 

In addition to the above socioeconomic factors, the PM2.5 concentration of a city was also 

influenced by those in surrounding cities. The coefficient of the spatial lag term of PM2.5 concentration 

was 0.6337 and passed the 1% significance test, which was mainly due to the transmission and 

diffusion of PM2.5. Wang et al. [56] also reported that the contribution rate of foreign sources to PM2.5 

concentrations in the Beijing–Tianjin–Hebei region was 23.4%. 

To further identify the influence of different social factors, we calculated the direct, indirect, and 

total effects of socioeconomic factors on PM2.5 concentration (Table 6). Among seven factors, the total 

effect of lnPGRP, (lnPGRP)2, lnUR, lnISDE, and lnNIEDS passed the significance test, indicating that 

these five factors influenced the spatiotemporal distribution of PM2.5 concentration in the study area. 

The order of the degree of influence for these five factors was: lnPGRP > lnUR > lnNIEDS > (lnPGRP)2 

> lnISDE. The other factors may not significantly influence PM2.5 concentration. To be specific, lnPGRP 
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and lnUR are primary factors that influenced PM2.5 concentration, and the lnPGRP, lnUR, and 

lnNIEDS have spillover effects on the PM2.5 concentration in surrounding cities. 

Table 6. Decomposed spatial effects of SPDM with two-way FE. 

 Direct Effects t Value Indirect Effects t Value Total Effects t Value 

lnPD −0.0219 −0.6611 −0.0798 −0.6100 −0.1017 −0.6452 

lnPGRP 1.6783 * 1.4878 8.2446 * 1.7204 9.9229 * 1.7623 

(lnPGRP)2 −0.0790 * −1.5492 −0.4014 * −1.8354 −0.4804 * −1.8706 

lnUR −1.5655 *** −3.0675 −6.8348 *** −2.9502 −8.4003 *** −3.0936 

lnPSIGDP −0.0313 −0.2692 0.6839 1.2956 0.6527 1.0645 

lnISDE 0.0234 1.3370 0.1248 * 1.7119 0.1482 * 1.7148 

lnNIEDS 0.3638 ** 2.1617 1.8965 ** 2.4697 2.2603 ** 2.4722 

Note: ***, ** and * represent significance at the 1%, 5%, and 10% levels, respectively. 

5. Conclusions 

This study investigated the effects of socioeconomic factors on the spatiotemporal distribution 

of PM2.5 in Beijing–Tianjin–Hebei and surrounding areas during 2015–2017. First, an estimation 

model considering spatiotemporal heterogeneous relationships was developed to depict the 

spatiotemporal pattern of PM2.5 concentration in the study area. Then, on the basis of analyzing the 

spatiotemporal evolution of PM2.5 concentration, a spatial panel Dubin model was applied to 

determine how socioeconomic factors affect PM2.5 concentration. Major conclusions of this research 

include: 

1. There is a significant spatiotemporal heterogeneous relationship between PM2.5 and the chosen 

auxiliary variables. The developed model can well estimate the spatial distribution of PM2.5 

concentration in the study area, with MAE and RMSE of 9.21 μg/m3 and 13.1 μg/m3, respectively. 

2. PM2.5 concentration in the study area showed significant spatial and temporal changes. Although 

PM2.5 concentration has decreased year by year, it was still higher than the national quality 

standard. Thus, further reduction in PM2.5 concentration remains a huge challenge. 

3. PGRP, UR, and NIEDS were the key factors influencing the spatiotemporal distribution of PM2.5 

concentration in the study area. Specially, there was an inverted U-shaped relationship between 

PGRP and PM2.5 concentrations. In addition, the increase of UR in a city will reduce PM2.5 

concentration not only in its own city but in neighboring cities, while the increase of NIEDS of a 

city will exacerbate PM2.5 concentration in its own city and neighboring cities. 
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