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Abstract: As a significant ecological corridor from west to east across China, the Yangtze River
Economical Belt (YREB) is in great need of green development and transformation. Rather than only
focusing on the overall growth of green productivity, it is important to identify whether the technical
change is biased towards economic performance or green performance in promoting green productivity.
By employing the biased technical change theory and Malmquist index decomposition method,
we analyze the green biased technical change in terms of industrial water resources in YREB at the
output side and the input side respectively. We find that the green biased technical change varies
during 2006–2015 at both the input side and output side in YREB. At the input side, water-saving
biased technical change is generally dominant compared to water-using biased technical change
during 2006–2015, presenting the substitution effects of non-water production factors. At the output
side, the economy-growth biased technical change is the main force to promote green productivity,
whereas the role of water-conservation biased technical change is insufficient. The green performance
at the output side needs to be strengthened compared to the economic performance in YREB. A series
of water-related environmental policies introduced in China since 2008 have promoted the green
biased technical change both at the input side and the output side in YREB, but the policy effects at
the output side is still inadequate compared to that at the input side. The technological innovation in
sewage treatment and control need to catch up with the economic growth in YREB. Our research
gives insights to enable a deeper understanding of the green biased technical change in YREB and
will benefit more focused policy-making of green innovation.

Keywords: green biased technical change; green productivity; industrial water resources; Yangtze
River Economic Belt

1. Introduction

The Yangtze River Economic Belt (hereafter, YREB) is one of the most active areas in economic
and social development in China, and is also an important ecological corridor from west to east across
China. In recent years, China has exerted great efforts in environmental protection and ecological
civilization construction. The quality of water resources in YREB has improved steadily, but the
ecological system in YREB is still weak and the risk of pollution is still high. Water protection in YREB
still has a long way to go especially considering the balance of economic development and water
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protection. Since 2008, the Chinese government has issued a series of water environmental laws and
policies such as the “Amendment of China Water Pollution Prevention and Control Law”, “Opinions on
Implementing the Strictest Water Resources Management System” and the “Water Pollution Prevention
and Control Action Plan”, which have imposed the strictest requirements on water conservation in
China. Under the influence of new water-related regulations and policies, the discharge of pollutants
from industrial sewage in China has continued to decrease. Figure 1 reveals the total chemical oxygen
demand (COD) discharge of sewage in China’s top 10 water-intensive industries (including industries
of textiles, paper-making, metal smelting, chemical, power generation, etc.). According to Figure 1,
the COD discharge of sewage in the top 10 water-intensive industries across China in 2015 has dropped
over 50% compared to that in 2005. However, as the overall COD discharge is still large, the task of
controlling industrial sewage and related pollutants remains severe. YREB is a cluster area for China’s
water-intensive industries. For example, according to China’s industry statistical yearbooks, since 2005,
the yearly output value of chemical fiber products in YREB has accounted for more than 70% of the
total amount in China. This has brought tremendous pressure on industrial water using and sewage
discharge in YREB. According to Figure 2, in each year of 2005, 2010 and 2015, the amount of industrial
water consumption in YREB has accounted for over 60% of the total amount in China, and the amount
of industrial COD discharge has accounted for over 30% of the total amount in China. It is urgent
to promote green productivity and green transformation development in terms of industrial water
resources in YREB.
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Figure 1. Total chemical oxygen demand (COD) discharge in industrial sewage of top 10 water-intensive
industries in China. Data sources: China Environmental Statistical Yearbook (2005–2015).
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Figure 2. Proportion of total industrial water consumption and COD discharge in the Yangtze River
Economic Belt (YREB) compared to nationwide. Data sources: China Environmental Statistical Yearbook
(2005–2015).

A program released by the Chinese government in 2016 called “innovation-driven industrial
transformation and upgrading in YREB” has emphasized the important role of innovation strategy
for the green transformation and development of YREB. Although economic performance and green
performance are usually in contradiction, the innovation-driven strategy can achieve synergy between
economic performance and green performance. Green TFP (total factor productivity) is an important
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indicator for measuring the coordinated development of economic growth and environmental protection.
However, there exist different technological directions or bias for improving green TFP. Some regions
may prefer to choose neutral or less green technologies as long as they can promote the rapid growth
of economy. Even if the green performance does not increase much, the overall green productivity can
be promoted by the economic performance. While other regions may prefer to choose more green
technologies, which can vigorously improve the green performance. Even if the economic growth
is slow, the overall green productivity can be promoted by the improvement of green performance.
For YREB, although the economic performance and green performance are both important, which one
is the main driver for green productivity growth may vary in different regions and at different times.
For example, some areas with severe environmental problems should be strongly encouraged to
adopt the environmentally biased technical change mode. Rather than only focus on the overall
growth of green productivity, it is necessary to distinguish whether technical change is biased towards
economic performance or green performance in promoting green productivity. By employing the
biased technical change theory and Malmquist index decomposition method, we analyze the green
biased technical change in terms of industrial water resources in YREB from the output side and the
input side respectively. Our research will benefit more focused policy-making of green innovation.

2. Literature Review

Technical change is biased when it increases the marginal product of one production factor
more than another [1]. The concept of biased technical change originates from early “induced
innovation” literature proposed first by Hicks [2], who points out that technical change tends to
save more expensive production factors. Acemoglu [1,3] develops the biased technical change
theory from the induced innovation theory by laying out the micro-foundations in the framework of
endogenous technical change models, and making the biased technical change theory widely used,
especially in explaining the skill wage with the skill-biased technical change. Simultaneously, the
green biased technical change and its impact on environmental protection and economical growth
is getting more and more attention. Popp [4,5] documents the impact of energy prices on patents
for energy-saving innovations, finding that higher energy prices are associated with a significant
increase in energy-saving innovations, and the ignorance of biased technical change might overstate
the costs of environmental regulation. Acemoglu et al. [6] introduce biased technical change under
an endogenous growth model with environmental constraints, suggesting that the combination of
research subsidies and carbon taxes can be an optimal strategy to redirect technical change toward
cleaner technologies. Acemoglu et al. [7] further develop an endogenous growth model in which clean
and dirty technologies compete in production, finding that if dirty technologies are more advanced, the
transition to clean technology can be difficult. Calel et al. [8] find that the EU emissions trading scheme
has increased low-carbon innovation among regulated firms by as much as 10%, while not crowding out
patenting for other technologies. Aghion et al. [9] find a sizable impact of carbon taxes on the direction
of innovation in the automobile industry. Some researches study the green biased technical change
in China. Among them, Wang et al. [10] estimate China’s biased technical change under environmental
constraints from 2004 to 2015, finding that although the rapid accumulation of capital leads to technical
progress that is biased toward capital, technical progress in the labor bias can significantly increase
green total factor productivity. Jiang et al. [11] split the industry performance into economic and
environmental dimensions, finding that technical and scale inefficiencies are relatively higher for
environmental sub-technology compared to the economic sub-technology in China. Peng et al. [12]
find that the output-biased technical change is the significant contributor to the technical change in the
Chinese energy industry from 2006 to 2016.

Our research is also closely related to literature on the green total factor productivity in terms of
water resources. With the growth of the global population and economic development, the paradox
between water-using and water-protection has been increasing considerably. The World Economic
Forum [13] has identified the water supply crises as one of the top three global risks. More and
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more researchers are focusing on water-using and water-treatment efficiency. The related research
includes water efficiency in industry [14,15], agriculture [16,17], domestic water [18,19] and the
comprehensive water efficiency including both industrial and domestic water [20,21]. Among them,
research into water efficiency and protection in industry has gained the most attention, especially
in newly industrialized countries. According to the forecast of OECD (Organization for Economic
Cooperation and Development) [22], global manufacturing water demand is projected to increase
fourfold during 2000–2050. The synergy among industrial economic growth, industrial water demand
and water protection plays an important role in sustainable industrial economic development,
which is of more significance for China due to its rapid industrial economic growth in the last three
decades under the pressure of limited water resources. The industrial green water productivity is a
comprehensive productivity indicator that considers both industrial economic growth and industrial
water related activities. According to the definition of total-factor water efficiency by Hu et al. [23], the
industrial green water productivity is defined as the industrial productivity considering the industrial
water input and the non-expected output of wastewater related pollutant discharge, as well as the
conventional production inputs and outputs. Among the literature in Chinese industrial green water
productivity, some scholars have studied the time and space distribution of green water productivity
across China [14,15]. Some research is relevant to the two-stage productivity of industrial water
consumption and industrial wastewater treatment [24]. Technical change is one of the main drivers
to influence productivity, which can be estimated by decomposing the total factor productivity [25].
Moro et al. [26] find a rapid Chinese technological catching up of water innovation in the last three
decades using patent data. Yet the properties of technical change in terms of water resources and
their influence on the industrial green water productivity need to be further studied. Jin et al. [27]
show that the impact of technological innovation on green industrial water productivity is different
spatially in China. As the Yangtze River Economic Belt (YREB) is an important ecological corridor
from west to east across China, some studies focus on the green productivity and technical change
in YREB. Xing et al. [28] explore the total factor ecological efficiency in YREB based on a proposed
Shephard energy distance function. Peng et al. [29] find out the environmental governance efficiency
for the Yangtze River urban agglomeration is basically driven by technical progress. Wang and
Yang [30] explore the mechanism of three innovation factors including innovative human capital, R&D
fund, and fixed assets to the technological innovation performance in the Yangtze River Delta region.
Our research focuses on the green bias of technical change in terms of industrial water resources in
YREB using a non-parametric approach, which has received less scrutiny in the existing research.

There are generally two types of methods for measuring biased technology change in the
existing research. One is the parameter method, by setting different production function models
and solving the parameters, and then calculating the index of biased technical change [1,31].
Parametric methods can conduct conventional tests of hypotheses, and can accommodate the effects
of data noise, but they need to assume specific forms of production functions. The second one is the
non-parametric approach employing data envelopment analysis method (DEA) or Malmquist index
decomposition method, which decomposes the technical change index into the input-biased technical
change index, the output-biased technical change index and the neutral technical change index [32–34].
The second method can deal with multiple inputs and multiple outputs simultaneously without
giving specific production function forms, which fully takes into account the diversity of production
technology in the economy. Weber and Domazlicky [33] and Barros and Weber [35] illustrate the
criteria to identify which input or output is favored in the biased technical change with input-based
Malmquist index. Färe et al. [36] demonstrate the criteria for identifying the direction of input bias in
the biased technical change with output-based Malmquist index. There is still a lack of criteria for
identifying the direction of output bias in the biased technical change with the output-based Malmquist
index method according to the existing research literature. Given that the output-based Malmquist
index is widely used in the study of productivity growth and technical change [37–39], we demonstrate
the criteria for identifying the directions of both the output and input bias in the biased technical change
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with the output-based Malmquist index method. We employ the Shephard radial distance function to
calculate the Malmquist index because it is the analytical basis in constructing the identifying criteria
for the biased technical change with the Malmquist index method [33]. Some scholars try to use this
kind of identifying the criteria with non-radial distance functions. For example, Li et al. [40] use the
directional distance function with undesired output to analyze the green biased technical progress
in terms of water resources across China on the basis of Weber and Domazlicky’s research [33]. The
directional distance function with an undesired output is a non-radial distance function. Although
the non-radial distance function is employed to calculate the Malmquist index, a radial distance
function is actually employed to derive the identifying criteria for biased technical change based on
that Malmquist index in their research. This causes a contradiction in their method. According to the
present literature, whether the identifying criteria for biased technical change based on the Weber
and Domazlicky’s method [33] applies to non-radial distance function has not yet been sufficiently
proven. This paper employs the Shephard radial distance function to construct the identifying criteria
for biased technical change with the output-based Malmquist index, and then uses this framework and
the biased technical change theory to study the green biased technical change in YREB in terms of
water resources.

The growth of green productivity can be driven by the economic performance as well as the
green performance. Some regions can realize the growth of green productivity mainly by higher
economic performance, which can offset the relatively lower green performance. On the contrary,
some other regions can realize the growth of green productivity mainly by higher green performance,
which can offset the relatively lower economic performance. The different dominance between
economic performance and green performance depends on the different bias of technical change.
The technical change can be divided into two modes including economically biased technical change
and green biased technical change. In the economically biased technical change mode, neutral or less
green technologies are more preferred as long as they can promote the rapid growth of economy to offset
the relatively low green performance, while in the green biased technical change mode, more green
technologies are preferred, which can vigorously improve the green performance. By analyzing the two
different kinds of technical change, we can further reveal the characteristics of green bias in the process
of green economic transformation rather than only focus on the overall growth of green productivity.
In our research, we will discuss the green biased technical change in terms of industrial water resources
in YREB. Has the technical change contributed to the green productivity growth in YREB in terms of
industrial water resources? Is the technical change biased to economic performance or water-related
green performance in YREB? What is the difference in the green biased technical change at the input
side and the output side respectively in YREB? We will employ the biased technical change theory and
Malmquist index decomposition method to explore these questions.

The structure of this paper is organized as follows. Section 2 provides a summary of current related
research, including the research of biased technical change and the green total factor productivity in
terms of water resources. Section 3 illustrates the measuring methods, variable indicators and data
resources, as well as the demonstration of identifying criteria for biased technical change. Section 4
presents and analyzes the results of green productivity and the directions of biased technical change in
terms of water resources in YREB. Conclusions and policy implications are presented in Section 5.

3. Model and Data

3.1. Model for Measuring Biased Technical Change

The DEA method has been widely used to estimate the Shephard output distance function [41],
which can serve as a measure of output technical efficiency [42] and equals the ratio of actual outputs of
a DMU (decision-making unit) to the potentially optimal outputs of DMUs in the production frontier
holding inputs constant. The output technical efficiency for DMU “k” can be obtained by solving the
following linear programming problem,
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n represents the N non-negative

inputs in period t, and yt
m represents the M non-negative outputs produced in period t. λt

i are the
intensity variables in period t, which are non-negative.

Following Färe et al. [25], the output technical efficiency growth can be estimated using
the output-based Malmquist index (hereafter MI) as shown in Formula (2). This index can be
decomposed into two indices measuring efficiency change (hereafter EC) and technical change
(hereafter TC). The efficiency change measures the “catching up” to the production frontier, reflecting
the change of organizational management ability, while the technical change measures the shift of
the production frontier from one period to another, reflecting the level of technical progress. As the
product of EC and TC, the MI index reflects the overall technical efficiency growth of each DMU.
According to Färe et al. [25], the output-based Malmquist index and the decomposition indices take
the following form

MIt,t+1
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(
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t+1(xt+1,yt+1)
Dot+1(xt,yt)

×
Do

t(xt+1,yt+1)
Dot(xt,yt)

)1/2
=

Do
t+1(xt+1,yt+1)
Dot(xt,yt)

×

(
Do

t(xt,yt)
Do t+1(xt,yt)

×
Do

t(xt+1,yt+1)
Do t+1(xt+1,yt+1)

)1/2

= ECt,t+1
× TCt.t+1

(2)

Furthermore, Färe and Grosskopf [32] decomposed the TC index into three separate indices
including output-biased technical change (OBTC), input-biased technical change (IBTC) and
the magnitude of technical change (MATC). These indices can disclose the tilted effects of the
production frontier, measuring the contribution of three types of technical change including
output-biased technical change, input-biased technical change and neutral technical change to the
overall technical change and productivity growth. The three indices take the following forms:

OBTC =

√
Dot(xt+1,yt+1)

Dot+1(xt+1,yt+1)
×

Dot+1(xt+1,yt)

Dot(xt+1,yt)
;

IBTC =

√
Dot(xt+1,yt)

Dot+1(xt+1,yt)
×

Dot+1(xt,yt)

Dot(xt,yt)

MATC =
Do

t(xt,yt)

Dot+1(xt,yt)

(3)

If OBTC > 1, it means that the bias of output promotes technical progress and productivity growth,
otherwise it leads to technical regress and productivity decline. OBTC = 1 means that there is no
bias among outputs. If IBTC < 1, it indicates that the bias of input promotes technical progress and
productivity growth, otherwise it leads to technical regress and productivity decline. IBTC = 1 indicates
that there is no bias among inputs; MATC represents the magnitude of Hicks’ neutral technical progress.
MATC > 1 means that the neutral technology promotes technical progress, and vice versa leads to
technical regress. The Meanings of OBTC, IBTC and MATC are shown in Table 1.

Table 1. Output-biased technical change (OBTC), input-biased technical change (IBTC) and magnitude
of technical change (MATC).

Index >1 <1 =1

OBTC Output-biased technical progress Output-biased technical regress No output-biased technical change
IBTC Input-biased technical progress Input-biased technical regress No input-biased technical change

MATC Neutral technical progress Neutral technical regress No neutral technical change
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However, the indicator of OBTC or IBTC can only disclose whether the outputs or inputs are
biased and whether the bias promotes technical progress, it can not directly indicate which output or
input is biased. Weber and Domazlicky [33] and Barros and Weber [35] illustrate how to identify the
directions of input bias and output bias in the biased technical change. In their analysis, the identifying
criteria for biased technical change are on the ground of the input-based Malmquist productivity index.
Färe et al. [36] demonstrate the criteria for identifying the direction of input bias in the biased technical
change with the output-based Malmquist productivity index. We illustrate how to identify the
directions of both the output and input bias in the biased technical change with the output-based
Malmquist productivity index, then employing the identifying criteria to analyze the industrial
green biased technical change in terms of water resources in China’s Yangtze River Economic Belt.
The identifying criteria are shown in Table 2, which is derived from Figures 3 and 4.

Table 2. Identifying criteria for biased technical change.

Output-Biased Technical Change Input-Biased Technical Change

Output Mix OBTC>1 OBTC<1 Input Mix IBTC>1 IBTC<1

(y1/y2)
t=2 > (y1/y2)

t=1 y1-producing y2-producing (x1/x2)
t=2 > (x1/x2)

t=1 x1-using, or x2-saving x2-using, or x1-saving

(y1/y2)
t=2 < (y1/y2)

t=1 y2-producing y1-producing (x1/x2)
t=2 < (x1/x2)

t=1 x2-using, or x1-saving x1-using, or x2-saving
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Figure 3 illustrates the construction of the output-biased technical change index. The production
possibility frontier in period t is represented as Pt(x), the inputs x can produce the outputs y,
which include y1 and y2. We assumed there exists technical progress from period 1 to period 2.
Technical progress is Hicks’ neutral if the MRTy2y1 (marginal rate of transformation) between two
outputs of y1 and y2 remains constant. In this scenario, the production possibility frontier P1(x) in
period 1 will move in parallel to P2(x) in period 2. If the technical progress leads to an output bias,
the production possibility frontier will tilt when moving from period 1 to period 2. According to
Weber and Domazlicky [33] and Barros and Weber [35], if the MRTy2y1 increases, the production
possibility frontier in period 2 will be P21(x), indicating that the technical progress is biased towards
y1, or y1-producing biased technical change. Otherwise, if MRTy2y1 decreases, the production
possibility frontier in period 2 will be P22(x), indicating that the technical progress is biased towards y2,
or y2-producing biased technical change. Now suppose that the output mix (y1, y2)t for a DMU is
at point “a” in period 1 and at point “b” in period 2, that means (y1/y2)

t=2 > (y1/y2)
t=1, and suppose

that the production possibility frontier is P1(x) in period 1 and P21(x) in period 2 which means there
exists y1-producing biased technical change. In this situation, the Shephard output distance function
in period 1 is Do

1(x, y1)= oa/oc, and in period 2 is Do
2(x, y2)= ob/og. The two inter-period input

distance functions are calculated as Do
2(x, y1)= oa/od and Do

1(x, y2)= ob/of, then according to the

Formula (3), the OBTC index of DMU can be calculated as OBTC =
√

ob/o f
ob/og ×

oa/od
oa/oc =

√
og/o f
od/oc > 1,

so given that OBTC > 1 and (y1/y2)
t=2 > (y1/y2)

t=1, the technical change is biased towards y1. This
is in the first situation. In the second situation, suppose that the outputs mix (y1, y2)t for the DMU
in each period and the production possibility frontier P1(x) in period 1 stay the same as the first
situation, but the production possibility frontier in period 2 shifts to P22(x), which means there exists
y2-producing biased technical change. In this situation, the OBTC index of DMU can be calculated

as OBTC =
√

ob/o f
ob/og ×

oa/oe
oa/oc =

√
og/o f
oe/oc < 1, so given that OBTC <1 and (y1/y2)

t=2 > (y1/y2)
t=1, the

technical change is biased towards y2. In the third situation, if the production possibility frontier
is P2 (x) in period 2, then the OBTC = 1, so given that OBTC = 1, technical change is neutral. The
identifying criteria for output bias above are based on (y1/y2)

t=2 > (y1/y2)
t=1, or the output y1 is

increasing compared to y2 with time, which means the position of axis “ob” in period 2 is above
the position of axis “oa” in period 1 as displayed in Figure 3. Oppositely, if (y1/y2)

t=2 < (y1/y2)
t=1,

the position of axis “ob” in period 2 would be underneath the position of axis “oa” in period 1. By
exchanging the angle of axis “oa” and axis “ob” in Figure 3, it is not difficult to work out the identifying
criteria on the condition of (y1/y2)

t=2 < (y1/y2)
t=1, which are opposite to those on the condition of

(y1/y2)
t=2 > (y1/y2)

t=1. All the possible identifying criteria for the output-biased technical change are
summarized in the left part of Table 2.

To investigate the input-biased technical change displayed in Figure 4, we rewrote the IBTC index
in Formula (3) by the Shephard input distance function. Under the condition of constant returns
to scale, the Shephard input distance function equals the reciprocal of the Shephard output distance
function [43]. That is, DI

t(xk
t, yk

t) = DO
t(xk

t, yk
t)
−1. Therefore, given constant returns to scale we can

rewrite the IBTC index in Formula (3) as

IBTC =

√
DIt+1(xt+1, yt)

DIt(xt+1, yt)
×

DIt(xt, yt)

DIt+1(xt, yt)
(4)

Figure 4 illustrates the construction of input-biased technical change index. The isoquant curve in
period t is represented as Lt(y), the inputs x can produce the outputs y. There are two kinds of inputs
including x1 and x2. We assumed there exists technical progress from period 1 to period 2. If the
technical progress is Hicks’ neutral, or the MRSx2x1 (marginal rate of substitution) remains constant,
the isoquant curve L1(y) in period 1 will move in parallel to L2(y) in period 2. If the technical progress
leads to input bias, the isoquant curve will tilt when moving from period 1 to period 2. If the MRSx2x1
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increases, the isoquant curve in period 2 will be L21(y), indicating that the technical progress is biased
towards saving x1, or x2-using biased technical change. Otherwise, if MRSx2x1 decreases, the isoquant
curve in period 2 will be L22(y), indicating that the technical progress is biased towards saving x2,
or x1-using biased technical change. Now suppose that the input mix (x1, x2)t for a DMU is at point
“a” in period 1 and at point “b” in period 2, which means (x1/x2)

t=2 > (x1/x2)
t=1, and suppose that

the isoquant curve is L1(y) in period 1 and L21(y) in period 2, which mean there exists x2-using or
x1-saving biased technical change. In this situation, The Shephard input distance function in period
1 is DI

1(x1, y)= oa/oc, and in period 2 is DI
2(x2, y)= ob/og. The two inter-period input distance

functions are calculated as DI
2(x1, y)= oa/oe and DI

1(x2, y)= ob/of. Then according to the Formula

(4), the IBTC of the DMU can be calculated as IBTC =
√

ob/og
ob/o f ×

oa/oc
oa/oe =

√
o f /og
oc/oe < 1. So, given that

IBTC < 1 and (x1/x2)
t=2 > (x1/x2)

t=1, the technical change is biased towards x2-using or x1-saving. This
is in the first situation. In the second situation, suppose that the input mix (x1, x2)t for the DMU in each
period and the isoquant curve L1(y) in period 1 stay the same as the first situation, but the isoquant
curve in period 2 shifts to L22(y), which means there exists x1-using or x2-saving biased technical

change. In this situation, IBTC of the DMU can be calculated as IBTC =
√

ob/og
ob/o f ×

oa/oc
oa/od =

√
o f /og
oc/od > 1,

so given that IBTC >1 and (x1/x2)
t=2 > (x1/x2)

t=1, the technical change is biased towards x1-using or
x2-saving. In the third situation, if the isoquant curve is L2 (y) in period 2, then OBTC = 1, so give that
IBTC = 1, the technical change is neutral. The identifying criteria above for input bias are based on
the condition of (x1/x2)

t=2 > (x1/x2)
t=1, or the input ratio of x1 and x2 is increasing with time, which

means the position of axis “ob” in period 2 is above the position of axis “oa” in period 1 as displayed in
Figure 4. Oppositely, if (x1/x2)

t=2 < (x1/x2)
t=1, the position of axis “ob” in period 2 would be underneath

the position of “oa” in period 1. By exchanging the angle of axis “oa” and axis “ob” in Figure 4, it is
not difficult to work out the identifying criteria for input bias on the condition of (x1/x2)

t=2 < (x1/x2)
t=1,

which are opposite to those on the condition of (x1/x2)
t=2 > (x1/x2)

t=1. All the possible identifying
criteria for the input-biased technical change are summarized in the right part of Table 2.

It should be noted that the identifying criteria for biased technical change in Table 2 are derived from
the output-based Malmquist productivity index as by Fare et al. [36]. The results are a little different to
those of Weber and Domazlicky [33] and Barros and Weber [35]. The criteria for biased technical change
constructed by Weber and Domazlicky [33] and Barros and Weber [35] are derived from the input-based
Malmquist productivity index, which is the reciprocal of output-based Malmquist productivity index
given constant returns to scale. Therefore, in our research, OBTC > 1 or IBTC >1 indicates a biased
technical progress rather than biased technical regress as in their research. After controlling this
difference, the identifying criteria of Table 2 is substantially consistent with those of Weber and
Domazlicky [33] and Barros and Weber [35].

The economic meaning for the identifying criteria of output-biased technical change in Table 2 can
be well explained. Under the y1-producing biased technical change mode, only if the growth rate of
output y1 from period 1 to period 2 is higher than that of output y2 can the productivity be promoted by
the output-biased technical change (OBTC > 1), otherwise, the productivity will decrease (OBTC < 1).
In short, the structure of output mix needs to match the inner request of the output-biased technical
change in order to promote the productivity. The economic meaning is similar for the identifying
criteria of input-biased technical change. Under the x1-using or x2-saving technical change mode,
only if the saving speed of input x2 from period 1 to period 2 is faster than that of input x1 can the
productivity be promoted by the input-biased technical change (IBTC > 1), otherwise the productivity
will decrease (IBTC < 1). In short, the structure of input mix needs to match the inner request of the
input-biased technical change in order to promote the productivity.

3.2. Indicators and Data

In our research, two output indicators were considered including the industrial added value and
COD clean index.
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Industrial added value: The industrial added value represents the economic output of the
industrial economic development. It is measured by the added value of industrial enterprises above
the designated size in each provincial region across China. It is deflated by the deflator of the industrial
producer price index and denoted at the price of 2005.

COD clean index: COD clean index is constructed to measure water conservation performance,
which is related to the COD emission (chemical oxygen demand) among industrial sewage in provincial
regions across China. Since COD emission is an undesirable or negative output, it is necessary to
transform the negative index to a positive index in order to use the Shephard radial distance function
and the identifying criteria of biased technical change in Table 2, which is derived on the assumption
of Shephard radial distance function. One main method for transforming a negative indicator to a
positive indicator is to transform the negative indicator to the form of additive inverses (-y), and add
to the additive inverses a sufficient large positive constant c, then construct the transformed positive
indictor y’ by y’= −y + c [44,45]. The advantage of this transformation method is that it does not
change the internal linear structure of the original data. In order to ensure that y’ is positive, we let
c = ymax + ymin, where y represents the COD emission of each DMU. With y’ = −y + c, the maximum
value of original COD emission is reversed to the minimum value, and the original minimum is
reversed to the maximum. After that, the COD clean index is constructed by (y’/y’min) × 100. The COD
clean index is the desirable or positive output index. The larger the COD clean index, the cleaner the
industrial sewage.

There are three input indicators, including capital stock, labor and water consumption.
Capital stock: Capital stock is measured by the stock of physical assets investment of industrial

enterprises above the designated size in provincial regions across China, calculated by the perpetual
inventory method [46] as Kit = Iit + (1 − δ)Ki,t−1, where Kit represents capital stock of region i in
period t, Iit represents capital flow of region i in period t, δ represents the economic depreciation rate.
The initial capital stock in 2005 is presented by the net value of physical assets in 2005. As to the
economic depreciation rate δ, we assumed a value of 11.6%, which is estimated by Shan et al. [47] and
has been widely adopted in estimating the capital stock in China. The capital stock is deflated by the
deflator of the capital investment price index at the price of 2005.

Labor: Labor represents the input of human resources in industrial production. It is represented by
the annual average number of employees in industrial enterprises above designated size at provincial
level across China.

Water consumption: Water consumption represents the input of water in industrial production.
It is measured by the industrial water consumption of industrial enterprises above the designated size
at the provincial level across China.

The data for the industrial index, such as the industrial added value, physical assets investment
and industrial labor are extracted from China Industry Statistical Yearbook from 2005 to 2015 and the
related provincial statistical yearbooks in China. The data for environmental index, such as the water
consumption and the COD emission among industrial sewage are taken from China Environmental
Statistical Yearbook from 2005 to 2015. The price index is from the China Statistical Yearbook from
2005 to 2015.

4. Results and Discussion

4.1. The Descriptive Statistics of Variables

The study employed relevant input–output data for the period 2005–2015 to calculate the green
productivity change index and decomposition index from 2006 to 2015. The left side of Table 3 presents
the descriptive statistics from 30 provincial regions during 2005 to 2015 across mainland China (except
for Tibet due to incomplete data), the right side of Table 3 presents the descriptive statistics from 11
provincial regions in YREB. According to Table 3, the provincial average water consumption level in
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YREB was higher than that nationwide in China, and the provincial average COD Clean Index level in
YREB was similar to that nationwide.

Table 3. Descriptive statistics of variables (2005–2015).

Stage Variable National YREB a

Mean Std. Dev. Max Min N Mean Std. Dev. Max Min N

Input Water (B Ton) 4.604 4.501 23.900 0.240 330 7.561 4.986 23.900 1.838 121
Capital (B CNY) 552.562 496.809 3042.125 29.729 330 588.161 512.524 3042.125 110.012 121
Labor (M People) 2.955 3.226 15.680 0.116 330 3.324 2.867 11.539 0.666 121

Output Industrial GDP
(B CNY) 569.279 609.286 3195.246 15.250 330 594.690 552.280 2916.019 58.585 121

COD Clean
Index 11528 2205 14341 100 330 11546 1714 14167 7312 121

a YREB means the Yangtze River Economic Belt.

4.2. Industrial Green Productivity Change in Terms of Water Resources in YREB

Firstly, the DEA scores that represent the green productivity in terms of water resources in each
province of YREB during 2006–2015 were estimated. These estimates in YREB represent the relative
productivity level compared to the production frontier nationwide in China. Then, based on these
estimates, the MI (Malmquist index) in YREB as well as the decomposition index during the period of
2006–2015 were estimated. According to Table 4, the average DEA score during 2006–2015 was 0.72,
which means that given the input level, the industrial green output level in YREB was 72% of the
potentially maximum output level in the production frontier nationwide, and there was still a space
of 28% for the green productivity improvement for YREB. During 2006–2015, the average MI index
was greater than 1, indicating that the green productivity of water resources in YREB was generally
increasing. From the perspective of the MI’s decomposition index, the average TC index was greater
than 1 during 2006–2015, indicating that during 2006–2015, the technical change generally promoted the
green productivity of industrial water resources in YREB. According to the decomposition index of TC,
the average values of OTBC (output-biased technical changes index), ITBC (input-biased technical
change index) and MATC (neutral technical change index) were all greater than 1 from 2006 to 2015,
indicating that all three types of technical change exist simultaneously. Although the neutral technical
change had a greater impact on the productivity, technical change had also experienced an output bias
and input bias, and these biases generally promoted the productivity during 2006–2015.

Table 4. Data envelopment analysis (DEA), Malmquist index (MI) and the decomposition index.

Year DEA MI EC TC OBTC IBTC MATC

2006–2010 0.741 1.064 0.978 1.087 1.013 1.017 1.055
2011–2015 0.699 1.019 0.985 1.034 1.015 1.009 1.010
2006–2015 0.720 1.041 0.982 1.060 1.014 1.013 1.032

Figures 5 and 6 show the dynamics of the MI index and the decomposition index during 2006–2015.
According to Figure 5, although the MI index was fluctuating during 2006–2015, it was greater than 1
in most years, indicating that the green productivity was increasing in most years since 2006. TC index
was greater than 1 in most years, but the growth rate was slowing down after 2011. The trend of TC
index was similar to that of MI index, which means the technical change was the main factor affecting
productivity change.
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Figure 6. Annual biased technical change index.

Figure 6 shows the dynamics of biased technical change index, including OBTC, IBTC and MATC.
According to Figure 6, although less fluctuating compared to the MATC index, the OBTC index and
the IBTC index all present the volatility, and they were greater than 1 in most years from 2006 to 2015.
Figure 6 revealed consistent findings with Table 4. Although the neutral technical change had a greater
impact on the productivity change, the technical change had also experienced the input and output
bias simultaneously, and the biased technical change had increased the productivity in most years
from 2006 to 2015.

4.3. Output-Biased Technical Change

The green biased technical change in terms of industrial water resources at the output side
in YREB was discussed in this section. Firstly, based on the identifying criteria for output-biased
technical change in Table 1, the numbers of provincial regions in YREB that experience yi-producing
biased technical change were sorted out each year from 2006 to 2015. Then, taking two years as a
statistical period, the proportions of provincial regions in YREB that experience yi-producing biased
technical change were calculated. In addition, the overall proportions that experience yi-producing
biased technical change from 2006 to 2015 were also calculated. The overall results of output-biased
technical change are presented in Table 5. In Table 5, y1 represents the industrial GDP, y2 represents
the COD clean index. The larger the COD clean index, the higher the water conservation performance.
Technical change biased to y1 indicates that under this kind of technical change mode, focusing more
on economic growth than water protection can promote productivity (OBTC > 1), otherwise the
productivity will decline (OBTC < 1). This kind of output-biased technical change (y1-producing)
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can be called economy-growth biased technical change. Under the economy-growth biased technical
change, the growth of green productivity is mainly driven by economic performance rather than water
protection performance. On the other hand, technical change biased to y2 means that under this kind
of technical change mode, focusing more on water protection performance than economic growth
can promote productivity (OBTC > 1), otherwise the productivity will decline (OBTC < 1). This kind
of output-biased technical change (y2-producing) can be called water-conservation biased technical
change. Under the water-conservation biased technical change, the growth of green productivity is
mainly driven by water protection performance rather than economic performance.

According to Table 5, there were three main findings. Firstly, the proportion of regions in YREB
with the economy-growth biased technical change was higher than that with the water-conservation
biased technical change during the period of 2006–2015 as a whole. The total number of regions with
the economy-growth biased technical change accounted for 46% of all the regions during 2006–2015,
while the total number of regions experiencing water-conservation biased technical change only
accounted for 28%. Secondly, the proportion of regions with OBTC > 1 was more than that with
OBTC < 1 in most two-year periods, which means the output-biased technical change (including
both two types of output-biased technical change) was generally boosting the productivity in YREB.
Finally, within the regions where OBTC > 1, the proportion of regions with economy-growth biased
technical change was larger than those with the water-conservation biased technical change in each
two-year period, which means the economy-growth biased technical change is the main force to
promote productivity, whereas the role of water-conservation biased technical change was insufficient.
Green technology innovations in industrial sewage control and treatment need to catch up with the
economic growth in YREB.

Figure 7 reveals the dynamics of output-biased technical change in the YREB from 2006 to 2015.
In general, the proportion of water-conservation biased technical change and economy-growth
biased technical change both present great fluctuations. Since 2008, the proportion of regions in
YREB experiencing water-conservation technical change increased rapidly, but it declined in the
period of 2012–2013, and then increased again. As far as the regulations are concerned, with the
implementation of the “ Amendment of China Water Pollution Prevention and Control Law” in
2008, the water-conservation biased technical change was promoted due to more concerns about
the water protection performance in YREB, but the impact of new regulation was limited with time.
After 2012, policies such as the “Opinions on Implementing the Strictest Water Resources Management
System” and the “Water Pollution Prevention and Control Action Plan” once again promoted the
water-conversation biased technical change. So, the trend of water-conversation biased technical change
in YREB was in line with the release time of water-related environmental policies and regulations
from 2008, which indicates that China’s water-related environmental policies and regulations from
2008 had positively influenced the propensity of water-conversation biased technical change in YREB.
However, in general, due to the great pressure of GDP growth, the economy-growth biased technical
change mode is more prevalent than the water-conservation biased technical change model after 2011.
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Table 5. Output-biased technical change (%) a.

(y1/y2)
t+1>(y1/y2)

t (y1/y2)
t+1<(y1/y2)

t (y1/y2)
t+1>(y1/y2)

t (y1/y2)
t+1<(y1/y2)

t

2006–2007 OBTECH > 1 45 (y1-producing) 0 (y2-producing) 2012–2013 OBTECH>1 73 (y1-producing) 0 (y2-producing)
OBTECH < 1 28 (y2-producing) 0 (y1-producing) OBTECH < 1 0 (y2-producing) 0 (y1-producing)

Neutral 27 Neutral 27
2008–2009 OBTECH > 1 36 (y1-producing) 0 (y2-producing) 2014–2015 OBTECH > 1 36 (y1-producing) 14 (y2-producing)

OBTECH < 1 36 (y2-producing) 0 (y1-producing) OBTECH < 1 0 (y2-producing) 18 (y1-producing)
Neutral 28 Neutral 32

2010–2011 OBTECH > 1 23 (y1-producing) 9 (y2-producing) 2006–2015 y1-producing 46
OBTECH < 1 50 (y2-producing) 0 (y1-producing) y2-producing 28

Neutral 18 Neutral 26
a y1 represents the industrial GDP, y2 represents the COD clean index.
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4.4. Input-Biased Technical Change

In this section, the green biased technical change in terms of industrial water resources at the input
side in YREB is discussed based on the identifying criteria for input-biased technical change in Table 1.
Table 6 shows the proportion of provincial regions in YREB that experience xi-using (or xj-saving)
biased technical change during 2006–2015 by pairwise comparison of three input factors including
industrial water consumption (x1), capital (x2) and labor (x3). Technical change biased towards xi

indicates that under this kind of technical change mode, relatively more use of xi and saving xj could
increase productivity (IBTECH > 1), otherwise the productivity would decline (IBTECH < 1).

Table 6. Input-biased technical change (%) a.

(x1/x2)t+1>(x1/x2)t (x1/x2)t+1<(x1/x2)t (x1/x3)t+1>(x1/x3)t (x1/x3)t+1<(x1/x3)t (x2/x3)t+1>(x2/x3)t (x2/x3)t+1<(x2/x3)t

2006–2007 IBTECH > 1 9 (x1-using) 18 (x2-using) 14(x1-using) 14 (x3-using) 27 (x2-using) 0 (x3-using)
IBTECH < 1 14 (x2-using) 23 (x1-using) 5 (x3-using) 32 (x1-using) 18 (x3-using) 19 (x2-using)

Neutral 36 35 36

2008–2009 IBTECH > 1 5 (x1-using) 41(x2-using) 9 (x1-using) 36 (x3-using) 32 (x2-using) 14 (x3-using)
IBTECH < 1 9 (x2-using) 23 (x1-using) 5 (x3-using) 27 (x1-using) 18 (x3-using) 14 (x2-using)

Neutral 22 23 22

2010–2011 IBTECH > 1 14(x1-using) 32 (x2-using) 18 (x1-using) 27(x3-using) 27 (x2-using) 27 (x3-using)
IBTECH < 1 18 (x2-using) 32 (x1-using) 18 (x3-using) 32 (x1-using) 27 (x3-using) 14 (x2-using)

Neutral 4 5 5

2012–2013 IBTECH > 1 5 (x1-using) 36 (x2-using) 9 (x1-using) 32 (x3-using) 41 (x2-using) 14 (x3-using)
IBTECH < 1 5(x2-using) 54 (x1-using) 14 (x3-using) 45 (x1-using) 36 (x3-using) 9(x3-using)

Neutral 0 0 0

2014–2015 IBTECH > 1 9 (x1-using) 59 (x2-using) 23 (x1-using) 45 (x3-using) 55 (x2-using) 14 (x3-using)
IBTECH < 1 0 (x2-using) 23 (x1-using) 5 (x3-using) 18 (x1-using) 23(x3-using) 0 (x3-using)

Neutral 9 9 8

2006–2015
x1-using 39 x1-using 45 x2-using 47
x2-using 46 x3-using 40 x3-using 38
Neutral 15 Neutral 15 Neutral 15

a x1 represents industrial water consumption, x2 represents capital, x3 represents labor.

(1) As to the pair of water consumption (x1) and capital (x2), according to Table 6, the total
number of regions experiencing capital-using biased technical change accounted for 46% of all the
regions during 2006–2015, whereas the total number of regions experiencing water-using biased
technical change only accounted for 39%. So, taking the 10 years as a whole, most of the regions
experience the capital-using biased technical change rather than the water-using biased technical
change. Furthermore, within regions where IBTC > 1, the proportion of regions with capital-using
biased technical change was larger than those with water-conservation biased technical change in
each two-year period, which means the capital-using or water-saving biased technical change is the
dominant force to promote productivity from 2006 to 2015. Since 2008, the Chinese government has
issued a series of important water protection policies. The cost of industrial wastewater treatment and
penalty has been increasing, accordingly raising the cost of industrial water consumption. As a result,
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more and more provinces in YREB have begun developing or adopting new technologies to use more
capital and save water. This has promoted the capital-using biased technical change or water-saving
biased technical change, as well as the green productivity in YREB.

Figure 8 reveals the dynamics of input-biased technical change regarding the pair of water
consumption and capital during the period 2006–2015. Generally, except for the period of 2012 to 2013,
the capital-using technical biased change mode is dominated compared to the water-using technical
biased change mode. Yet the capital-using biased technical change mode is not as popular as before
from 2010 to 2013. The global financial crisis since 2008 has a greater impact on China’s foreign trade
industry, leading to a decline in the marginal output of capital for several years [48]. Although the
costs related to industrial water use are also increasing due to more strict water regulation since 2008,
the relative attractiveness of capital factor is still insufficient compared to other factors such as water.
So, the capital-biased technical biased change mode in YREB lacks attractiveness for several years
after 2010. However, after 2013, with water regulation becoming more stringent in China, and the
global economy gradually recovering from the global financial crisis, the capital-biased technical biased
change mode regains its popularity in YREB.
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(2) As to the pair of water consumption (x1) and labor (x3), according to Table 6, the total number
of regions experiencing water-using biased technical change accounted for 45% of all the regions
during 2006–2015, and the total number of regions experiencing labor-using biased technical change
accounted for 40%. So, taking 10 years as a whole, the water-using biased technical change was slightly
dominant compared to the labor-using biased technical change.

However, according to Figure 9, the dynamic analysis shows that the proportion of regions
experiencing labor-using biased technical change was catching up from 2008. With the increasingly
rigorous water regulation, the cost of industrial water was not as cheap as before, the cost advantage of
water factor over labor factor in the industrial production was decreasing, more enterprises were seeking
technologies to use more labor and save water. Therefore, the labor-using biased or water-saving
biased technical change was catching up from 2008 to 2015 in YREB.

Furthermore, within regions where IBTC > 1, the proportion of regions with labor-using biased
technical change was larger than those with water-using biased technical change in each two-year
period from 2008, which means the labor-using or water-saving biased technical change was becoming
the dominant force to promote productivity from 2008 to 2015.

(3) In terms of capital (x2) and labor (x3), according to Table 6, the proportion of regions experiencing
capital-using biased technical change accounted for 47% of all the regions during 2006–2015, whereas the
proportion of regions experiencing labor-using biased technical change accounted for 38%. So, during
2006–2015, the industrial technical change was generally biased towards capital compared to labor in
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YREB area. The results were consistent with the existing research, which indicate that Chinese industrial
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5. Conclusions

The Yangtze River Economical Belt (YREB) is a significant ecological corridor from west to
east across China. Although the economic performance and green performance are both important
in YREB, the dominance between them varies in different regions and at different times. Rather than
only focusing on the overall growth of green productivity, it is necessary to identify whether the
technical change is biased towards economic performance or green performance in promoting the
green productivity in YREB. Using biased technical change theory and Malmquist index decomposition
method, we analyzed the green biased technical change in terms of industrial water resources in YREB
at the output side and the input side respectively. We found that the green biased technical change
varied during 2006–2015 at both sides in YREB. At the output side, the output-biased technical change
in YREB shows that the technical change was more biased to economic growth than water resources
protection in YREB. The economy-growth biased technical change was the main force to promote
green productivity, whereas the role of water-conservation biased technical change was insufficient.
The green performance at the output side needs to catch up with the economic performance in YREB. As
to the input side and the input-biased technical change, the pair comparison of capital and water shows
that a majority of regions in YREB experience capital-using or water-saving biased technical change
during the period of 2006–2015. With respect to the pair comparison of labor and water, although
the water-using biased technical change was slightly dominant during the period of 2006–2015, the
labor-using or water-saving biased technical change was catching up from 2008. Combining the
analysis of both the input bias and the output bias of technical change, it is shown that a series of
water environmental policies introduced in China since 2008 had begun to impact the input side of the
industrial production with water-saving effects in YREB, but the policy effects were not enough from
the perspective of the output side. The technological innovation in terms of industrial sewage control
and treatment need to catch up with the economical growth.

The green technological innovation and green productivity were becoming the main driver for
the sustainable development in China. Green biased technical change should be strengthened
in the YREB in order to let the green performance catch up with the economic performance
in YREB. Some regions with severe water pollution should focus on water-conservation biased
technical change, which means that they can achieve the simultaneous development of environmental
protection and economic growth while putting water environmental protection first. Both science
and technology policies and environmental policies should be employed. In terms of the science and
technology policies, university-industry R&D cooperation in the field of green technology should
be encouraged. Consistently strengthening intellectual property protection on green technology is
also important. As to the environmental policies, more stringent legislation and enforcement related to
environmental protection is necessary to incentivize the creation and adoption of green technological
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innovation. By these policies and activities, green biased technical change can be significantly advanced
to implement the green transformation of industrial economy in China’s Yangtze River Economic Belt.
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