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Abstract: Lead smelting slag (LSS) has been identified as general industrial solid waste, which
is produced from the pyrometallurgical treatment of the Shuikoushan process for primary lead
production in China. The LSS-based geopolymer was synthesized after high-energy ball milling.
The effect of unconfined compressive strength (UCS) on the synthesis parameters of the geopolymer
was optimized. Under the best parameters of the geopolymer (modulus of water glass was 1–1.5,
dosage of water glass (W(SiO2+Na2O)) was 5% and water-to-binder ratio was 0.2), the UCS reached
76.09 MPa after curing for 28 days. The toxicity characteristic leaching procedure (TCLP) leaching
concentration of Zn from LSS fell from 167.16 to 93.99 mg/L after alkali-activation, which was below
the limit allowed. Meanwhile, C-S-H and the geopolymer of the hydration products were identified
from the geopolymer. In addition, the behavior of iron was also discussed. Then, the hydration
process characteristics of the LSS-based geopolymer were proposed. The obtained results showed that
Ca2+ and Fe2+ occupied the site of the network as modifiers in the glass phase and then dissociated
from the glass network after the water glass activation. At the same time, C-S-H, the geopolymer
and Fe(OH)2 gel were produced, and then the Fe(OH)2 was easily oxidized to Fe(OH)3 under the
air curing conditions. Consequently, the conclusion was drawn that LSS was an implementable raw
material for geopolymer production.
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1. Introduction

China has been the largest producer and consumer of lead in the world for years [1,2]. At present,
primary lead production in China is performed via traditional sintering blast furnace smelting,
the Shuikoushan process, the Isa smelt system, the Kaldo converter lead smelting process and the
Queneau-schuhmann-lurgi lead smelting process [3,4]. Among them, the Shuikoushan process is
the main primary lead smelting technology in China, due to its advantages of being energy saving
and having a higher metal recovery and longer furnace life [1,5]. In lead smelting, the molten slag is
then commonly treated by water quenching to obtain lead smelting slag (LSS), which contains a high
content of iron, silicon, calcium and aluminum oxides [6]. For each ton of metallic lead production,
100–350 kg of LSS is generated [7,8]. As a result, a huge amount of LSS is generated from primary lead
production. The LSS contains quantities of minor and trace heavy metals [9,10]. It can contaminate the
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environment through leaching if it is not constrained [11–14]. In consequence, how to deal with LSS is
a serious problem for lead smelters.

Traditionally, LSS was either recycled back into the smelting process or disposed of in piles on
site [15]. In recent years, LSS has been used as an aggregate in concrete production [16] and also used
in value-added streams, such as in cement clinker production and heavy clay production [17–20].
Additionally, the immobilization of LSS with a coal fly ash-based geopolymer has been investigated in
some recent studies [21,22]. However, the consumption of LSS is limited in these treatments. Therefore,
a method that can increase the value-added of IRLSS as well as deal with it in large capacity needs to
be developed.

Unlike other applications, the production of a geopolymer primarily based on LSS is possible. The
geopolymer has emerged as an alternative to ordinary Portland cement owing to its superior durability
and environmental performance [23]. Because of these advantages, the geopolymer has found a variety
of applications, such as transportation, industrial, agricultural, residential and mining [24–26]. Besides
these, one of its major newer applications is in waste management, especially in the immobilization
of toxic metals, such as Zn, Cu, Cd, Cr and Pb [27–29]. A geopolymer is defined as a synthetic
alumino–silicate material and is generated from the reaction of solid alumino-silicate with a highly
concentrated aqueous alkali hydroxide or silicate solution [17]. A number of materials have been
investigated as candidates for geopolymer production, such as blast furnace slag [30], metakaolin [31],
fly ash [32], kaolinitic clays [33], municipal solid waste incineration fly/bottom ashes [34,35] and red
mud [36]. However, to our knowledge, there are few correlated studies concerning the geopolymer
based on LSS.

Geopolymers are inorganic polymers and are constituted of alternating SiO4 and AlO4 tetrahedra
chains connected by a shared oxygen atom and balanced by cations [37]. The presence of iron can
substitute for Al and may play important roles in the structure and properties of geopolymers [38,39].
In our previous study, LSS was pretreated as a geopolymer precursor through the high-energy ball
milling activation process. It could be used as a geopolymeric solidification/stabilization (S/S) reagent
for municipal solid waste incineration fly ash (MSWI FA) [40]. However, to our knowledge, LSS
contains a great amount of iron and the behavior of iron in the LSS based geopolymer has not yet
been studied. It is necessary to explore the possibility of LSS as a high-performance alkali-activated
slag-based cement.

In the present work, the LSS was mixed with water glass for a geopolymer production with a
large consumption of LSS. The unconfined compressive strength (UCS) was optimized and the toxicity
characteristic leaching procedure (TCLP) was performed. The hydration products were analyzed
with x-ray diffractometry (XRD), Fourier transform infrared (FTIR) and Mössbauer. Finally, the
hydration process characteristics of the LSS-based geopolymer were proposed and the behavior of iron
was discussed.

2. Materials and Methods

2.1. Materials

The LSS used in the experiments was obtained from a lead smelting company in the south of
China. The LSS was dried to a constant weight (±0.1 g) at 105 ◦C. The LSS was milled under the
ball-to-material weight ratio of 5 in planetary ball milling at 400 rpm for 3 hours and passed through
a 45 µm mesh sieve [41]. The particle size of the LSS powder was analyzed by laser granulometry.
As shown in Figure 1, the LSS powder had a particle size of between 0.92 and 41.84 µm. The size of
the particles was distributed in three concentrated areas of approximately 1.18, 4.32 and 13.50 µm.
The median particle size (D50) of 5.28 µm indirectly reflected that some small particles might be
agglomerated into large particles. The chemical compositions of the LSS (Table 1) were detected using
x-ray fluorescence (XRF).
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Figure 1. Particle size distribution of the lead smelting slag (LSS) after ball milling.

Table 1. Chemical compositions of the LSS (wt.%).

Element Fe2O3 SiO2 Al2O3 CaO MgO ZnO MnO2 Na2O Cr2O3 CuO PbO As2O3 NiO2

LSS 23.01 32.23 5.51 24.58 4.54 5.19 2.06 1.62 0.29 0.32 0.08 0.02 0.17

The water glass (SiO2 = 26.5%, Na2O = 8.3%, molar ratio of SiO2/Na2O is 3.3 and density is
1.371 g/cm3) was provided by Shandong Usolf Chemical Technology Co., Ltd. Other chemicals were
analytical grade and were purchased from Sinopharm Chemical Reagent Co., Ltd.

2.2. Experimental Procedure

The milled LSS, water glass and deionized water were mixed and stirred evenly in proportion.
Then, the slurry was poured into a steel mold (20 × 20 × 20 mm), uniformly shaken, covered with a
plastic film and then cured for 24 hours in a cement concrete standard curing box at a 95% relative
humidity at 20 ± 2 ◦C. The matrices were demolded and cured again for different time under the same
conditions. Afterwards, the unconfined compressive strength (UCS) of the matrices was measured
after curing for 3 and 28 days.

In the experiment, the UCS was taken as an index to optimize the optimal parameters of the
LSS-based geopolymer. The influences of the modulus (Ms) of water glass, dosage of water glass
(WNa2O + SiO2) and water-to-binder ratio on the UCS were investigated. The formulation design of the
LSS-based geopolymer experiments is presented in Table 2.

Table 2. The formulation design of the LSS-based geopolymer experiments.

Item LSS /wt.% W(SiO2+Na2O)/wt.% Ms (SiO2/Na2O) Water-To-Binder (g/g)

R1 95 5 0.5 0.2
R2 95 5 1 0.2
R3 95 5 1.5 0.2
R4 95 5 2 0.2
R5 95 5 2.5 0.2
W1 98 2 1 0.2
W2 92 8 1 0.2
W3 89 11 1 0.2
W4 86 14 1 0.2
M1 95 5 1 0.175
M2 95 5 1 0.225
M3 95 5 1 0.25
M4 95 5 1 0.275

Notice: binder = LSS + WSiO2 + Na2O = 100%.
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2.3. Tests

2.3.1. UCS Test

The UCS tests were performed according to the GB/T17671-1999. The UCS tests of each sample
were performed on three cubes as parallel experiments. All the samples were tested after curing for 3
and 28 days. The UCS of the matrices was tested using an unconfined compression machine (TYA-300B,
Wuxi Xinluda Instrument Co., Ltd., Wuxi, China) with a loading rate of 2.4 kN/S.

2.3.2. Leaching Test

The TCLP was used to evaluate the leaching ability of heavy metals for the samples. An acetic
acid solution with a pH of 2.88 ± 0.02 was selected as the leaching solution [42]. Amounts of 3.0 g
of the crushed matrices (<9.5 mm) and 60 mL of the leaching solution were poured into the sealed
polyethylene vessels and then shaken on a shaker with a speed of 30 rpm for 18 h. The leachates were
filtered with a 0.45 µm membrane filter. Finally, the heavy metals concentrations in the filtrates were
analyzed using an inductively coupled plasma-atomic emission spectroscopy (ICP-AES, IRIS Intrepid
II XSP). All of the above experiments were carried out in triplicate and the results were calculated to
obtain the average values.

2.3.3. Other Tests

The XRF can provide qualitative and semi-quantitative analyses of elements in solid samples. A
sample of the LSS was ground to ensure that the particle size was less than 45 µm and then analyzed by
XRF (S4-Pioneer, Bruker Ltd., Karlsruhe, Germany). The crystallographic composition of the samples
was characterized by x-ray diffraction (XRD, D/max2550 VB + 18 KW) at a speed of 10◦ min−1 in a
2θ range from 10◦ to 70◦. 57Fe Mössbauer spectra were collected in a standard transmission geometry
using a standard constant acceleration EG&G spectrometer with a 57Co(Rh) source. Measurements
were performed with a constant acceleration at 20 ◦C and the calibration was referenced to metallic
iron foil. Absorbers were prepared with 1.5 g of the sample powder in a lead sample holder.

3. Results and Discussion

3.1. Strength Optimization of LSS-Based Geopolymer

3.1.1. Effect of Modulus of Water Glass

The effects of the modulus of water glass on the UCS of the LSS based geopolymer are shown in
Figure 2. As observed in Figure 2, the UCS was a non-monotonous function of the modulus of water
glass. The UCS of the geopolymer increased as the modulus of water glass increased from 0.5 to 1, and
reached a maximum value of 73.6 MPa after hydrating for 28 days. Further increasing the modulus of
water glass to 2 resulted in the UCS decreasing remarkably. This is because OH− is used for leaching
soluble Si and Al from slag [43]. Moreover, the dissolution rate of Si and Al increases with the increase
in OH− concentration. Soluble Si is essential for C-S-H and geopolymer gels production. Therefore,
increasing the modulus of water glass is equivalent to increasing the content of soluble Si per volume.
However, when the modulus of water glass was excessively low, the NaOH in the aqueous solution
was superfluous and the frost phenomenon appeared easily. The frost phenomenon could result in
many large voids in the geopolymer [44] and a lower UCS. In conclusion, the optimum modulus of
water glass was 1–1.5.

3.1.2. Effect of Dosage of Water Glass

Figure 3 presents the effect of the water glass (W(SiO2+Na2O)) dosage on the UCS of the LSS-based
geopolymer. The results show that the UCS increased drastically from 2.32 to 74.45 MPa as the dosage
of water glass increased from 2% to 5%. Then, the UCS decreased slowly as the dosage of water glass
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increased from 5% to 14%, because the concentration of OH- increased as the dosage of water glass
increased and accelerated the hydration degree of the LSS. Therefore, increasing the water glass dosage
could increase the amount of gels per volume for geopolymer production. This resulted in the UCS
of the geopolymer increasing. However, when the dosage of water glass was excessive, the frost
phenomenon also occurred, the same as it did when the modulus of water glass was excessively low. It
became more serious when the dosage of water glass and curing time increased. Therefore, the UCS of
the LSS-based geopolymer cured for 28 days was lower than that of the geopolymer cured for 3 days,
and an optimum modulus of water glass of 5% was selected.

Figure 2. The effect of the modulus of water glass on the unconfined compressive strength (UCS).

Figure 3. The effect of the water glass dosage on the UCS.

3.1.3. Effect of Water-To-Binder Ratio

As shown in Figure 4, the effect of the water-to-binder ratio on the UCS of the LSS-based
geopolymer was studied in the range of 0.175 to 0.275. The UCS decreased almost linearly as the
water-to-binder ratio increased. According to the results, the optimum water-to-binder ratio was
0.2. Using this value, the UCS of the LSS based geopolymer reached 76.09 MPa after curing for
28 days. Essentially, the geopolymer matrix consisted of two solid phases after alkali-activation
(i.e., non-dissolved granules of the LSS and gels). When the water-to-binder ratio increased, the
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concentration of OH− was reduced, resulting in both the hydration degree of the LSS and the gels
per volume of the produced geopolymer being reduced. In addition, the porosity of the matrix also
increased. Due to these two aspects, the UCS of the geopolymer decreased when the water-to-binder
ratio increased.

Figure 4. The effect of the water-to-binder ratio on the UCS.

3.2. Hydration Characteristics Analysis

3.2.1. Hydration Products Analysis

The XRD patterns of LSS and the LSS based geopolymer (R2) cured for 28 days are shown in
Figure 5. The initial LSS pattern mainly consisted of an amorphous phase with some crystalline phases
of predominantly magnetite (Fe3O4) and a little wuestite (Fe0.872O). The broad and diffuse peaks
from the initial LSS around 28–35o (2θ) reflected the short-range order of the CaO–Al2O3–MgO–SiO2

glass structure [45]. This is a common feature of an amorphous phase and is an indication of a rather
reactive phase.

Figure 5. XRD patterns of the initial LSS and LSS based geopolymer (R2) after being hydrated for
28 days.

The XRD pattern of the LSS based geopolymer was slightly different from that of the initial LSS.
The broad and diffuse peaks for the geopolymer at around 28–35o (2θ) became wider than those for the
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initial LSS, indicating that the geopolymer was generated. In addition, some weak peaks of calcium
silicate hydroxide (C-S-H) were detected. The results were consistent with those of Li et al. [46–48].
Meanwhile, a new phase of iron hydroxide also appeared. However, the peak intensities of magnetite
and wuestite were almost unchanged in the LSS based geopolymer compared with the initial LSS,
indicating that magnetite and wuestite may not take part in the hydration reaction.

The conclusions of the XRD were strengthened by the analysis of the FTIR (Figure 6). The spectrum
of the initial LSS was composed of a broad band at 946 cm−1, ascribed to ν3(Si–O) stretching modes, and
another located at 507 cm−1, which was assigned to ν4(O–Si–O) bending modes of the SiO4 tetrahedral.

Figure 6. FTIR patterns of the initial LSS and LSS based geopolymer (R2) after being hydrated for
28 days.

For the LSS-based geopolymer, the spectrum had a sharp and intense absorption band at 1455 cm−1,
attributed to the stretching vibrations of O–C–O bonds [43]. This absorption band indicated the presence
of carbonates. Calcium carbonate could be the main carbonate compound, mainly because calcium
ions in the pore fluid in the hardened body easily react with CO2 in the air to form CaCO3 during
the curing process. The ones referred to as asymmetric stretching Si–O–Si vibrations (970–1090 cm−1)
comprise the major sign of geopolymerization, according to Panias et al. [43]. The band at 978 cm−1

was attributed to the ν3(Si–O) stretching vibration in the geopolymer and was narrower and higher
than anhydrous slag, indicating that the polymerization degree of the Si-O bond increased and that
a short-range order was formed in the structure of the geopolymer. This was associated with the
ν3(Si–O) stretching vibrations in geopolymer gel [49,50]. Finally, the absorption band was observed in
the spectrum of the geopolymer at the wave number 466 cm−1. This was assigned to the ν4(O–Si–O)
band and attributed to the formation of the C-S-H phase [51].

3.2.2. Iron Behavior Analysis

Figure 7a shows the Mössbauer spectrum of the initial LSS at room temperature. It consisted of
two distinct isomer shifts (IS) and quadrupole splitting (QS). One was equal to Fe3+(IS = 0.78 mm/s
and QS = 1.21 mm/s). The value of the IS may be characterized by the Fe3+ with distorted tetrahedral
symmetry [52,53]. The QS value of Fe3+ was a little larger than 1.2 mm/s, indicating the presence of a
larger distortion of FeO4 tetrahedra. The linewidth value of iron oxide presented in a glass network is
generally larger than 0.4 mm/s [52,53]. The linewidth values of Fe3+ and Fe2+ were 0.9 and 0.64 mm/s
from the LSS, respectively, indicating that partial iron was present in the glass phase. The IS value
of Fe2+ was 1.02 mm/s, indicating a distorted octahedral symmetry [52]. The QS value (1.99 mm/s)
of Fe2+ was much smaller than those for typical distorted tetrahedral Fe(II). It may be that the Fe2+

occupied the site of the network as a modifier, as well as Ca2+, Na+, K+, etc. The LSS contained many
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Ca and Fe but the content of Na and K was low, according to the XRF analysis (Table 1). Therefore, Fe
and Ca became the main network modifier in the glass phase.

Figure 7. Mössbauer spectrums of the initial LSS (a) and LSS based geopolymer (R2) after being
hydrated for 28 days (b).

The Mössbauer spectrum of the LSS based geopolymer is shown in Figure 7b. The variation of
the distortion of FeO4 tetrahedra was embodied in the QS. It can be seen that the QS values of Fe2+

decreased from 1.99 to 1.59 mm/s. These smaller QS values of Fe2+ indicated a lessened distortion
of the Fe(II)O4 tetrahedra, which showed that Fe2+ dissociated from the glass phase and Fe(OH)2

appeared. The structural relaxation was embodied in the linewidth, as can be seen in Table 3. The
linewidth values of Fe3+ in the LSS were reduced from 0.9 to 0.28 mm/s after the alkali-activation. The
decrease in linewidth indicated that the homogeneity of the Fe–O bond length and O–Fe–O bond angle
increased for the weak crystal phase of Fe(OH)3. This dissociated Fe2+ from the glass network and
caused it to be oxidized to Fe3+ under the air conditions.

Table 3. Mössbauer parameters of the initial LSS (a) and LSS based geopolymer (R2) after being
hydrated for 28 days.

Sample IS(mm/s) QS(mm/s) <H>(kOe) RA(%) Linewidth(mm/s) Specie

Initial LSS (a) 0.78 1.21 - 32 0.90 Fe3+

1.02 1.99 - 68 0.64 Fe2+

LSS based
geopolymer

(R2) (b)

0.11 0.17 - 19.7 0.28 Fe3+

0.44 1.17 - 14.5 0.28 Fe3+

1.30 1.59 - 65.8 0.28 Fe2+

By comparing the phase changes between the LSS and LSS-based geopolymer and analyzing the
iron behavior, we have deduced that the hydration process characteristics could be described as below.
The Ca–O bond and Fe–O bond were broken in the glass network phase under the action of OH- to
form Ca(OH)2 and Fe(OH)2, respectively, because the bond energy between the network modifier and
oxygen was lower than others were. Meanwhile, the [SiO4] was depolymerized from high degree
polymerization to a lower one and became a monomer in the end. A small amount of high degree
polymerization of [AlO4] was also depolymerized to a monomer in the same way as [SiO4]. Then, the
C-S-H and geopolymer gels were produced. However, Fe(OH)2 was not detected in the LSS-based
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geopolymer and some weak peaks of Fe(OH)3 were detected. The reason for this was that the Fe(OH)2

was easily oxidized to Fe(OH)3 under the air curing conditions.

3.3. Heavy Metals Solidification

Table 4 lists the concentrations of the main heavy metals of leachates from the initial LSS and
geopolymer (R2) cured for 28 days via the TCLP test. Compared with the initial LSS, Hg, Ag and Se
were also not detected in the leachate. The concentrations of Be, Cr and Pb did not change substantially
and all were far below the limits allowed. The concentrations of Cd and Ba decreased significantly
and were below the limits allowed. Moreover, the leachate concentration of Zn for R2 was 93.99 mg/L,
which was slightly below the limit allowed. The arsenic concentration in the leachate for R2 was below
the limits and increased slightly compared with the initial LSS. Therefore, we can conclude that the
LSS-based geopolymer has a certain capacity for the immobilization of Zn.

Table 4. Toxicity characteristic leaching procedure (TCLP) results of the LSS and geopolymer (R2) cured
for 28 days.

Element Zn Cd Ni Cu As Ba Be Cr Pb Ag Se Hg

Limits 100 1 5 100 5 100 0.02 5 5 5 1 0.1
LSS 167.16 0.22 0.45 0.07 0.05 12.53 0.01 0.01 0.15 ND ND ND

geopolymer (R2) 93.99 0.07 0.11 0.02 0.09 4.72 0.01 0.01 0.15 ND ND ND

C-S-H, the geopolymer and Fe(OH)3 have a good ability to immobilize Zn, Cd, Ni, As, etc. [54–59].
Liu et al. [60] reported that the immobilization capacity of C-S-H for Cu2+ and Cd2+ was better than for
Zn2+, and that the low Ca/Si of C-S-H could fix Zn2+ better than the high Ca/Si of C-S-H. Therefore, the
immobilization effect was better for Cu2+ and Cd2+ than for Zn2+. The Ca/Si of C-S-H in the LSS-based
geopolymer was about 0.8, which suggested a good adsorption of Zn2+. Due to the combined actions
of these hydration products, Zn and other heavy metals were immobilized effectively.

4. Conclusions

High-energy ball milling was used to activate the potential water-hardness properties of LSS.
Afterwards, the LSS-based geopolymer was synthesized via water glass activation. The effect of UCS
on the synthesis parameters of the LSS-based geopolymer was optimized. Under the best parameters
of the binder (modulus of water glass was 1-1.5, dosage of water glass (W(SiO2 + Na2O)) was 5% and
water-to-binder ratio was 0.2), the UCS reached 76.09 MPa after curing for 28 days. Meanwhile, the
TCLP leaching concentration of Zn from the LSS fell from 167.16 to 93.99 mg/L after the alkali-activation,
which was a significant reduction and slightly below the limit allowed.

Moreover, the C-S-H and geopolymer phases of the hydration products were identified in the
LSS-based geopolymer. The behaviors of iron were also discussed. Then, the hydration process
characteristics were proposed. The results indicated that calcium and partial iron performed as network
modifiers in the glass network phase. The glass phase was dissociated with water glass and then Ca2+

and Fe2+ were dissolved to produce C-S-H, the geopolymer and Fe(OH)2. However, the Fe(OH)2

was easily oxidized to Fe(OH)3 under the air curing conditions. In consequence, we can draw the
conclusion that LSS is an implementable raw material for geopolymer production or high-performance
alkali-activated cement.
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