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Abstract: The main aim of this study is to assess groundwater potential of the DakNong province,
Vietnam, using an advanced ensemble machine learning model (RABANN) that integrates Artificial
Neural Networks (ANN) with RealAdaBoost (RAB) ensemble technique. For this study, twelve
conditioning factors and wells yield data was used to create the training and testing datasets for the
development and validation of the ensemble RABANN model. Area Under the Receiver Operating
Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate
and compare performance of the ensemble RABANN model with the single ANN model. Results of
the model studies showed that both models performed well in the training phase of assessing
groundwater potential (AUC ≥ 0.7), whereas the ensemble model (AUC = 0.776) outperformed the
single ANN model (AUC = 0.699) in the validation phase. This demonstrated that the RAB ensemble
technique was successful in improving the performance of the single ANN model. By making
minor adjustment in the input data, the ensemble developed model can be adapted for groundwater
potential mapping of other regions and countries toward more efficient water resource management.
The present study would be helpful in improving the groundwater condition of the area thus in
solving water borne disease related health problem of the population.

Keywords: groundwater potential mapping; ensemble modeling; spatial modeling; machine learning

1. Introduction

Groundwater is one of the major natural resources due to its importance for residential, agricultural,
and industrial water supply [1–3]. With the rapid population growth, industrial development,
and increased domestic use, most of the countries of the world will face the fresh water shortage
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problem by 2025 [4]. Economic and demographic developments in the world in general and in Vietnam,
in particular, are causing ever-increasing water demands [5]. Given the increased demand for water
for various purposes (e.g., agriculture, industry, and human consumption), most of the groundwater
water reservoirs have been over-exploited [6]. Thus, identifying areas with high groundwater storage
potential is important for effective water resource management.

Groundwater potential refers to the possibility of groundwater occurrence or the amount of
groundwater storage across an area [7,8]. Over the past few years, many efforts have been made to
assess the groundwater potential in different regions of the world by different researchers [7,9,10].
In these studies, Geographic Information Systems (GIS) and remote sensing-based approaches have
been effectively applied for mapping of groundwater potential. However, the models used in these
studies are based on expert opinion or traditional weighted methods; thus, the effectiveness of the
assessment of groundwater potential was subjective and not adequately accurate.

In recent years, with the help of advance information technology, machine learning has been
introduced and applied to solve a lot of real-world problems including groundwater potential
mapping [11]. Recently Pal et al. [12] applied the machine learning methods namely Random Forest (RF),
Radial Basis Function Classifier (RBFC) and Artificial Neural Network (ANN) to assess the capacity of
the groundwater potential in the Tangon watershed in eastern Indian and Bangladesh. Naghibi et al. [13]
applied the Boosted Regression Tree (BRT), Classification And Regression Tree (CART), and RF model to
map the groundwater potential in the Koohrang Watershed of Iran.

More recently, different hybrid ensemble machine learning models which combine a base model
with the optimization algorithms or ensemble techniques have been proposed for achieving higher
reliability in groundwater potential mapping. Miraki et al. [14] developed an ensemble model (RS-RF)
using a combination of RF and Random Subspace ensemble technique to assess the groundwater
potential in the Qorveh-Dehgolan plain, Kurdistan province, Iran, and reported that the RS-RF model
is a promising tool for mapping of groundwater potential. Al-Fugara et al. [15] combined Support
Vector Machine (SVM) and Genetic Algorithm (GA) to build a hybrid model for mapping groundwater
potential in the Jerash and Ajloun region of Jordan. Naghibi et al. [16] used Adaboost, Bagging,
Generalized Additive to optimize Naïve Bayes for better performance of groundwater potential
modeling. In recent study, Banadkooki et al. [17] proposed to use the whale optimization algorithm for
optimizing a base ANN model for groundwater potential mapping and demonstrated the enhanced
predictive performance of the hybrid model.

In general, machine learning methods and their derived hybrid and ensembles models are
promising for the development of reliable groundwater potential maps. Therefore, in this study,
the main aim is to assess the groundwater potential using a hybrid model (RABANN) which is a
combination of the ANN—a popular machine learning model, and an ensemble technique, namely
RealAdaBoost (RAB). The main difference of this study compared with previous published works is
that this is the first time an ensemble classifier framework of the RAB and the ANN was constructed
to improve the performance of groundwater potential mapping. With this objective, the DakNong
province of Vietnam was selected as the study area where groundwater problem exists and sufficient
hydrology and geo-environmental data is available, and where no advanced modeling technique
and approach was applied to assess groundwater potential. Area Under the Receiver Operating
Characteristic (ROC) curve (AUC) and several statistical performance measures were used to validate
and compare performance of the ensemble RABANN model with the single ANN model. Weka open
source software and standard GIS software were used for the development of the models and
visualization of the potential maps, respectively.
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2. Study Area

The DakNong province (11◦45′ to 12◦50′N latitude, 107◦13′ to 108◦10′ E longitude) is a transitional
area between the two sub-regions of the central highlands and the southeast part of Vietnam (Figure 1).
This province has an average elevation of about 650m above mean sea level, some places have higher
elevation up to 1982 m. This province has a diverse topography, strongly divided with high mountains
with large, sloping, fairly flat highlands alternating with low-lying plains. Low valley topography,
with a slope of 0–3◦ mainly distributed along the Krong No and Serepok rivers. The plateau terrain
has an average elevation of 700 m, with a slope of about 5–10◦.

Int. J. Environ. Res. Public Health 2020, 17, 2473 3 of 22 

2. Study Area 

The DakNong province (11°45‘ to 12°50’N latitude, 107°13’ to 108°10‘E longitude) is a 
transitional area between the two sub-regions of the central highlands and the southeast part of 
Vietnam (Figure 1). This province has an average elevation of about 650m above mean sea level, 
some places have higher elevation up to 1982 m. This province has a diverse topography, strongly 
divided with high mountains with large, sloping, fairly flat highlands alternating with low-lying 
plains. Low valley topography, with a slope of 0–3° mainly distributed along the Krong No and 
Serepok rivers. The plateau terrain has an average elevation of 700m, with a slope of about 5–10°. 

The climate regimes having the common characteristics of the tropical equatorial monsoon 
climate. Each year has two distinct seasons: the rainy season from April to the end of November, 
concentrating over 90% of the annual rainfall; dry season from December to the end of March next 
year, the rainfall is insignificant. The annual average temperature is 22–23 °C, the highest 
temperature is 35 °C. The average annual rainfall is 2513 mm. The precipitation mainly concentrates 
in the month of August and September. 

 
Figure 1. Location map of the study area. Figure 1. Location map of the study area.



Int. J. Environ. Res. Public Health 2020, 17, 2473 4 of 20

The climate regimes having the common characteristics of the tropical equatorial monsoon
climate. Each year has two distinct seasons: the rainy season from April to the end of November,
concentrating over 90% of the annual rainfall; dry season from December to the end of March next
year, the rainfall is insignificant. The annual average temperature is 22–23 ◦C, the highest temperature
is 35 ◦C. The average annual rainfall is 2513 mm. The precipitation mainly concentrates in the month
of August and September.

Hydro-geologically, there are three main types of aquifer presenting in Dal Lak province (Figure 2)
namely Quaternary, Pliocene—Pleistocene Basalt Complex, and Jurassic:

(i) Quaternary aquifer comprises of alluvium (gravel, pebbles, grit, sand, clay) along the main
rivers and large streams with an area of about 27.16 km2. Its thickness varies from 5 to 20 m, average
5 to 7 m. This aquifer is of unconfined type. Water depth varies from 0.0 to 10.7 m, average 2 to 4 m.
Water levels fluctuate almost in phase with the fluctuating cycle of rainfall. In general, the level of
water richness of this aquifer is classified as poor to medium. In many places, the water dried up
during the dry season. This shows that the groundwater of the aquifer is limited and can only be
exploited for residential areas on a small scale.Int. J. Environ. Res. Public Health 2020, 17, 2473 5 of 22 
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(ii) Pliocene—Pleistocene Basalt complex aquifer comprises of different types of basalt rocks
(weathered, dense and vesicular) and occupies about 3936.53 km2 area. Its thickness varies from 27
to 502 m, the average thickness is about 100 m. Water flows in the basaltic complex through joints,
cracks, interconnected vesicles and cavities and also through weathered rock zones. Thickness of
permeable zones forming aquifer varies from 20 to 100 m. Groundwater occurs in unconfined condition.
In general, this aquifer has average water permeability and storage; and water is of good quality.

(iii) Jurassic aquifer occupies an area of about 2116.78 km2. Lithological composition of this aquifer
is mainly sandstone, siltstone, limestone, and schist. The thickness of the aquifer varies from 17.5
to 79.6 m, average 40 m. Water exists in the form of fissures—seams and is often discontinuous.
Regarding hydraulic properties, water is of non-pressurized type (unconfined aquifer), sometimes
with local pressure. In general, this aquifer is widely distributed, but the level of permeability and
water content is poor, not uniform.

3. Materials and Methods

3.1. Data Used

Sub-surface and surface data is required for assessing groundwater potential of an area [18,19].
In this study, in total 72 wells groundwater data including yield data was used in conjunction with
twelve groundwater potential influencing factors, namely infiltration, rainfall, river density, Stream
Power Index (SPI), Sediment Transport Index (STI), Topographic Wetness Index (TWI), elevation,
aspect, slope, curvature, soil, and land use were used. A 30-m resolution Digital Elevation Model
(DEM) collected from United States Geological Survey (https://earthexplorer.usgs.gov) was used for the
construction of topographical (i.e., elevation, aspect, slope, and curvature) and hydrological (SPI, STI,
and TWI) maps. Land use map (1:100,000) was collected from the DakNong Department of Natural
Resources and Environment. Geology (1:100,000) and average daily rainfall maps were obtained from
the hydrogeological map of South Central and Central Highland Vietnam. More detail, topography
is very important as groundwater table generally follows surface topography. Run-off flows from
higher elevation to lower elevation, therefore, elevation is considered as one of the most important
factors in groundwater potential mapping. Curvature of the ground is important as concave surface
are more suitable for holding the surface water thus helps in recharging the area. Aspect give direction
of slope and thus provide information of incidence of rainfall [20–23]. Slope provide important
information of runoff and accumulation of water thus of recharge. The slope has the tendency of
inverse proportionality with the groundwater potential [24]. TWI presents the topography-hydrology
relationships of the landscape, and is typically used to quantify topographical control on hydrological
process [25,26]. SPI and STI describe erosive processes that are caused by surface runoff and are
proxies for the intermediate scale topographic position (ridge, slope, or valley bottom) and the stream
capacity of the landscape [27,28]. In general, the regions with higher SPI and STI values have higher
potential for groundwater occurrence because they have higher water table [29]. River density presents
the drainage capacity which is inverse proportionality of the soil infiltration [10,30,31]. Rainfall is
one of the most important factors in groundwater potential model because the more precipitation
region are likely to have more groundwater potential [9]. Opposite to rainfall, river density has a
reverse relationship with groundwater potential [32] because when the drainage density is lower, the
infiltration and recharge are greater [29]. Land use presents the influence of human activities on the
landscape evolutions [33–35]. Soil type indicates the filtration rate and, therefore, is another important
factor for groundwater potential [36,37]. The maps for the groundwater influencing factors are shown
in Figure 3.

https://earthexplorer.usgs.gov
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(d) Stream Power Index (SPI), (e) Sediment Transport Index (STI), (f) Topography Wetness Index (TWI),
(g) elevation, (h) aspect, (i) curvature, (j) slope, (k) soil, and (l) land use.

3.2. Methods Used

3.2.1. Artificial Neural Networks

Artificial Neural Networks (ANN) is one of the efficient modeling techniques for finding the
hidden patterns from data by mimicking human brain action. The ANN enables the transmission
of information from one multivariable space to another multivariable space [38]. It is a widely used
approach for pattern recognition and classification problems [39–41]. The data statistical distribution is
independently performed by the ANN and specific statistical parameters are not required for obtaining
the estimation results. This model is a universal approximator that performs parallel processing of the
information from the data to approximate a large class of functions with a high degree of accuracy.
This method utilizes the characteristics of the data for the procedure and, therefore, avoids any prior
assumption in the model building. The ANN is a three-layered network connected by acyclic links.
The input-output relationship in the ANN can be given as follows [42]:

yt = w0 +

q∑
j=1

ω j.g(w0, j +

p∑
i=1

wi, j .yt−i) + zt (1)

where yt is output, yt−i is input, and wi,j (i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) and wj (j = 0, 1, 2, . . . , q) are
the model parameter, p is the number of input nodes, and q is the number of hidden nodes.

The ability to process large datasets and achieving accurate estimations using small training data
are the main advantages of the ANN. Fundamentals of the ANN and reviews of its applications can be
found in the literature [43–45].
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3.2.2. RealAdaBoost

RealAdaBoost (RAB) is an ensemble learning technique algorithm developed in 1999. In this
algorithm, two discrete values are grouped together on the output of continuous confidence [46].
It uses repeated execution of weak learning algorithms by calling it to find a small number of weak
classifiers and then combining them into a strong one with the objectives of partition determinations on
all the data to raise the accuracy of any learning model [47]. In this algorithm, the weak classification
was evaluated confidence using the map from space to space with real value instead of the Boolean
prediction [48]. The proven advantages of the RAB ensemble technique motivated us to use this
technique in combination with the ANN for developing the ensemble RABANN model for groundwater
potential mapping.

3.2.3. Validation Methods

Validation performance is a critical step in a modeling procedure, for which several statistical
indices has been suggested and used [13,14,49–52]. In this study, we used Area Under Receiver
Operating Characteristic (ROC) curve (AUC) [39,53–56], Root Mean Squared Error (RMSE) [57–64],
Kappa, Accuracy (ACC), Specificity (SPF), Sensitivity (SST), Negative predictive value (NPV), and
Positive predictive value (PPV) [65–69]. Detail description of these indices is presented in published
literature [61,70–77]. In general, lower RMSE and higher values of AUC, Kappa, ACC, SPF, SST, NPV,
and PPV indicate higher model performance [57,58,65,78–82]. Mathematically, these performance
indices are given by [60,77,83–87]:

PPV =
TP

TP + FP
(2)

NPV =
TN

TN + FN
(3)

SST =
TP

TP + FN
(4)

SPE =
TN

TN + FP
(5)

ACC =
TP + TN

TP + FN + FP + TN
(6)

Kappa =
Pobs − Pexp

1− Pexp
(7)

AUC =
(
∑

TC +
∑

TD)

(A + B)
(8)

RMSE =

√√√
1
N

N∑
i=1

(yi − yi)
2 (9)

where TP is true positive, TN is true negative FP is false positive, FN is false negative, TC is the number
of correctly classified pixels, TD is the number of incorrectly classified pixels, A is the total number of
groundwater pixels, B is the total number of non-groundwater pixels, N is the number of samples in
the dataset, yi is the predicted value of the ith sample, and yi is the measured value of the ith sample.

3.2.4. Modeling Methodology

Groundwater potential models were developed in four main steps (Figure 4): (1) Collection of data
from various sources (e.g., available literature, government, and field survey), (2) Development of the
models, (3) Validation of the models, and (4) Generation and analysis of the groundwater potential maps.
The main step was the development of the models that was conducted in several phases. We first
randomly divided the well data (72 locations) into two sets such that one set with 70% of locations
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(~50) was used for training the models and the remaining locations (~30% = 22 locations) were used
for the validation [34,74,88–90]. Regarding the set of influencing factors, we used correlation-based
feature selection method [91] to measure the average merit of each factor for mapping the groundwater
potential. We next overlaid the training and validations datasets with each one of the influencing factors
to extract the factor values for generating the final training and validations datasets [92–94]. Using these
datasets, groundwater potential mapping was formulated as a binary classification procedure, in
which the goal was to distinguish between potential and non-potential groundwater classes. Well yield
of 0.001 m3/s was used as a threshold value to separate non-potential groundwater classes. Finally,
the two predictive models based on the ANN and RAB techniques were developed: the single ANN
model and the ensemble RABANN model. The single ANN model was constructed with twelve
input layers, ten nodes in the hidden layer, and two output layers. Using the ANN as a base model,
the ensemble RABANN model was developed where RAB was used as a learning technique to optimize
the training dataset used for training the base ANN model.
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After successful training the two models, they were validated and compared using the validation
methods described in Section 3.2.3. In the final step of modeling methodology, the maps for the
groundwater potential of the study were produced and classified into very high, high, moderate, low,
and very low potential classes.

4. Results and Discussion

4.1. Factor Importance

Quantifying the importance of the twelve influencing factors using the correlation-based feature
selection method [91] ranked the factors in terms of their average merit (AM) and revealed that
elevation, SPI, STI, river density, aspect, and infiltration with AM >0.1 are the most important factors
for the development of groundwater models for our study area (Table 1). Although not very significant,
the other factors with AM <1 can be useful for developing the models. Therefore, we opted to use
all twelve factors for the modeling process. An examination of the corresponding literature reveals
that influencing factors for groundwater potential mapping are area-specific and cannot be exactly
compared with other regions. For example, Bui et al. [29] identified TWI, distance from rivers, and
SPI as the most important factors for groundwater potential in the Chilgazi watershed, Iran, whereas
Chen et al. [95] reported that lithology, elevation, and SPI were the factors that contributed the most to
groundwater potential in the Ningtiaota region, China. In contrast to Bui et al. [29], Chen et al. [95],
and our results, Kalantar et al. [96] reported on the disadvantage of SPI for groundwater potential
modeling in the Haraz watershed, Iran. These differences call for additional research for identifying
factors that contribute the most to groundwater potential modeling and mapping in different regions.

Table 1. Factor ranks extracted using correlation-based feature selection method.

Rank AM Factor

1 0.31322 Elevation
2 0.26063 SPI
3 0.21741 STI
4 0.17321 River density
5 0.17194 Aspect
6 0.15272 Infiltration
7 0.07527 Landuse
8 0.07062 Slope
9 0.04683 Curvature

10 0.0371 TWI
11 0.02007 Soil
12 0.00438 Rainfall

AM: average merit; SPI: stream power index; STI: sediment transport index; TWI: topography wetness index.

4.2. Model Performance

Based on application of different statistical indices, the single ANN model and the ensemble
RABANN were validated and compared for recognizing the general pattern of groundwater potential
(i.e., training performance) and predicting future groundwater occurrences in the study area. In the
training phase, the RABANN achieved the highest values of TP (26), TN (27), PPV (96.30%),
NPV (93.10%), SST (92.86%), SPF (96.43%), ACC (94.64%), and Kappa (0.893) indices, and lowest FP (1),
FN (2), and RMSE (0.224) (Table 2). These results revealed that the ensemble RABANN model correctly
classified 93.1% of all pixels in potential class, classified 95.2% of all pixels in non-potential class,
classified 92.86% of groundwater pixels into the potential class, classified 96.43% of non-groundwater
pixels in the non-potential class, classified ~94.64% of all training pixels, with a perfect (Kappa = 0.893)
agreement between predicted and observed well locations.

In the case of predicting future groundwater occurrences (i.e., validation performance), once again
our ensemble model outperformed the single ANN model by achieving the highest values of TP (8),
TN (8), PPV (61.54%), NPV (72.73%), SST (72.73%), SPF (61.54%), ACC (66.67%), and Kappa (0.338)
indices, and lowest FP (5), FN (3), and RMSE (0.504) (Table 2).
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The ROC methods further demonstrated that the ensemble RABANN model have higher training
(AUC = 0.953 vs. AUC = 0.81) and validation (AUC = 0.776 vs. AUC = 0.699) performances than the
single ANN model (Figure 5).

Overall, our results show that the RAB ensemble techniques performed well in improving the
performance of the base ANN model. These results are in line with previous works that demonstrated the
advantages of ensemble modeling approaches over single simple modeling. For example, J48 decision
tree integrated with Bagging [97] and Naïve Bayes tree integrated with Random Subspace [98] for
landslide prediction, RF integrated with different ensemble techniques for gully erosion [31], and
alternating decision tree integrated with AdaBoost [29], fisher’s linear discriminant function integrated
with Bagging [99], RF integrated with Random Subspace [14], and decision stump with different
ensemble techniques for groundwater potential mapping [100].

Table 2. Training and validation performances of the models.

No Index
Training Validation

ANN RABANN ANN RABANN

1 TP 22 26 8 8
2 TN 26 27 7 8
3 FP 5 1 6 5
4 FN 3 2 3 3
5 PPV (%) 81.48 96.30 57.14 61.54
6 NPV (%) 89.66 93.10 70.00 72.73
7 SST (%) 88.00 92.86 72.73 72.73
8 SPF (%) 83.87 96.43 53.85 61.54
9 ACC (%) 85.71 94.64 62.50 66.67

10 Kappa 0.713 0.893 0.260 0.338
11 RMSE 0.369 0.224 0.555 0.504

ANN: artificial neural network; RABANN: the ensemble model of RAB and ANN; TP: true positive; TN: true negative;
FP: false positive; FN: false negative; PPV: positive predictive value; NPV: negative predictive value; SST: sensitivity;
SPF: specificity; ACC: accuracy; RMSE: Root Mean Squared Error.
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4.3. Groundwater Potential Mapping

The ultimate outcomes of the single ANN and ensemble RABANN models were generation of
two groundwater potential maps (Figure 6). These maps were classified into five classes: very low,
low, moderate, high, and very high potential for groundwater occurrences. Reliability analysis of the
maps was carried out using frequency ratio and showed that most of high yield well locations were
observed in very high groundwater potential classes, indicating that the models performed well in
classifying the study area with respect to well locations (Figure 7).
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5. Conclusions

Determination of the area with high groundwater potential is one of the important steps in land
use planning and water resource management. Up to now, there was no systematic effective scientific
study to evaluate groundwater potential of the DakNong province. Therefore, we addressed this gap
and developed an ensemble modeling approach to achieve the most accurate and reliable estimate
of groundwater potential of this province. In this study, we used an advanced ensemble machine
learning model (RABANN) that integrates ANN with the RAB ensemble technique. Apart from
providing a distribution map of groundwater potential for the study area, the significances of our
study is that it contributes to literature: (1) identifying factors that contribute most to groundwater
potential, (2) illustrating the effectiveness of ensemble modeling for groundwater potential, and (3)
improving the training and validation performances of the base ANN up to 17 and 11%.

The advantages of such modeling studies for water resource management are: (1) delineating
the landscapes in terms of groundwater potential, (2) strengthening of the decision-making process,
(3) incorporating different stakeholders into the decision-making process, (4) suggesting an effective
organizational framework for water consumptions, (5) developing monitoring systems for the protection
of water resources, and (6) promoting water-saving agricultural facilities, and (7) reorganizing the
industrial structure to compress the high water-consumption industries.

The present study is multidisciplinary approach, based on the algorithms used for the diagnosis
in Medical and health field, thus new hybrid artificial intelligence approach developed in this study
can also be used in the medical and health field with suitable modifications.
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