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Abstract: Learning persistence is a critical element for successful online learning. The evidence
provided by psychologists and educators has shown that students’ interaction (student-student
(SS) interaction, student-instructor (SI) interaction, and student-content (SC) interaction)
significantly affects their learning persistence, which is also related to their academic emotions.
However, few studies explore the relations among students’ interaction, academic emotions
and learning persistence in online learning environments. Furthermore, no research has
focused on multi-dimensional students’ interaction and specific academic emotions. Based on
person-environment interaction model and transactional distance theory, this study investigates
the relationship between students’ interaction and learning persistence from the perspective of
moderation and mediation of academic emotions including enjoyment, boredom, and anxiety. Data
were collected from 339 students who had online learning experience in China. AMOS 22.0 (IBM,
Armonk, NY, USA) and SPSS 22.0 (IBM, Armonk, NY, USA) were employed to analyze the mediating
and moderating effects of academic emotions, respectively. The results revealed that students’
interaction and academic emotions directly related to learning persistence. Specifically, enjoyment,
anxiety and boredom had significant mediating and moderating effects on the relationship between
students’ interaction and learning persistence. Based on these findings, we further discussed the
theoretical and practical implications on how to facilitate students’ learning persistence in online
learning environments.

Keywords: learning persistence; students’ interaction; academic emotions; mediating effect;
moderating effect

1. Introduction

As a common way of learning, online learning has attracted lots of scholarly interest. Based
on the well-established fact that online learning suffers from a low level of learning persistence,
the question then arises as to how learning engagement and persistence are facilitated in online
learning environments. This is a critical problem that remains unsolved [1]. Previous research has
indicated that learning persistence had a great positive influence on boosting learning performance
and achievement [2,3]. However, there still exists a research gap of investigating the mattering factors
and driving mechanism promoting students’ learning persistence in online learning environments,
which provides theoretical ground and practical reference for facilitating students’ learning persistence
in the future. Transactional distance theory, developed from the work of Moore [4], is an applicable
theoretical foundation to explain the antecedents and driving mechanism of learning outcomes, because
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students’ interaction has been proven to be a crucial predictor of learning persistence and academic
achievement [5]. In addition, students’ interactions have a close relationship with emotional and social
engagement [6] and sense of community [7], which is of great significance in effectively promoting the
learning persistence [8]. According to the types of the interaction in online learning environments,
the most eye-catching interaction is classified into three types, namely student-student (SS) interaction,
student-instructor (SI) interaction, and student-content (SC) interaction [9–11]. These three types of
interaction can provide emotional, instructional, and organizational support, further facilitating social
engagement [6] and learning persistence [12]. Despite the significance of three types of interaction,
very few empirical studies have explored the roles of three types of interaction for learning persistence
in an online learning environment.

Prior studies stated that different types of academic emotions play crucial roles in students’
interaction and learning persistence [13]. For example, Huang et al. [14] revealed that positive academic
emotions (e.g., enjoyment, happiness) might lead to more interaction between instructors and students.
In contrast, negative academic emotions (e.g., anxiety, boredom) might hinder learning engagement [15].
As for learning persistence, Hwang [16] and Oh et al. [17] addressed that students’ interaction was
associated with anxiety and learning persistence in online learning environments. Similarly, Baker
et al. [18] found that a great variation in students’ academic emotions may significantly affect their
learning persistence. Based on previous research results, academic emotions were identified as the
main antecedence for students’ learning persistence. Besides, students’ academic emotions were
employed as the moderators and mediators in the proposed research model to further explore the
relationship between students’ interaction and learning persistence.

Few studies, however, have empirically explored the relationships among students’ interaction,
academic emotions and learning persistence. The objective of this paper is to investigate the influence
of students’ interaction on learning persistence from the perspective of moderation and mediation
of academic emotions (enjoyment, anxiety and boredom) in online settings. To address these issues,
three research questions are explored in this article: (1) How are students’ interaction and academic
emotions (enjoyment, anxiety, and boredom) related to learning persistence in online learning? (2) Do
academic emotions (enjoyment, anxiety, and boredom) mediate the relationship between students’
interaction and learning persistence in online learning? (3) Do academic emotions (enjoyment, anxiety,
and boredom) moderate the relationship between students’ interaction and learning persistence in
online learning?

2. Theoretical Background

The person-environment interaction model [19] and transactional distance theory [20] focus on
the relationships among students’ interaction, academic emotions, and learning persistence. A brief
review of them is described in this section.

2.1. Person-Environment Interaction Model

The interaction between an individual and an environment is considered as an extremely
critical factor in understanding individuals and determining their behaviors [21]. The model of
person-environment interaction proposed by Moos [22] focused on the bi-directional relationship
between people and environments that is correlated to a range of various states in the psychological
and physical domains, such as cognitive [23] and motivation [24]. In an online learning environment,
based on person-environment interaction theory, Neufeld et al. [21] proposed that academic
constructs (e.g., learning persistence and engagement) reflected the interaction between a student
and his or her educational environment. Adopting the person-environment fit theory, Martin
and Rimm-Kaufman [6] revealed that the lack of alignments between the needs of individual
students and their learning environments results in the lower emotional and social engagement.
In addition, by integrating the theoretical grounds of contemporary integral approaches and doctrine
of reciprocal determinism, Dębek [25] extended an integrative transactional framework to elaborate
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the person-environment interaction including emotions, behaviors, and learning persistence. In line
with the person-environment interaction theory, this study thereby theoretically proposed that
students’ interaction and academic emotions could facilitate students’ learning persistence in online
learning environments.

2.2. Transactional Distance Theory

Transactional distance theory is a well-established contemporary theory on the interplay between
individuals, environments, and interaction patterns [26]. In online learning environments, this
theory addresses the relationship between interaction patterns and pedagogical subjects [9]. It also
specifically distinguishes three major aspects of interaction, namely SS interaction, SI interaction, and SC
interaction. Those three types of interaction are seen as a necessary condition for offering worthwhile
and meaningful online learning environments [27]. Gokool-Ramdoo [28] assumed that students’
interaction could lead to an effective educational transaction and facilitate learning persistence. He
also highlighted that emotional factors (e.g., enjoyment, anxiety) should be considered. However, prior
studies have been mainly confined to the macro dimension of emotional or interactional engagement.
There is thus an urgent need to explore students’ learning persistence from the perspective of students’
multi-dimensional of interaction and academic emotions to improve students’ engagement and
persistence. The provenances of the two theories mentioned above are different and complementary.
They both affirm that students’ interaction, academic emotions and learning persistence are interrelated
in online learning environments.

3. Literature Review

3.1. Learning Persistence

Learning persistence refers to students’ willingness to complete learning objects and tasks, such
as obtaining degrees or completing courses content, which requires students to overcome obstacles
that occur in the online learning process [2]. It has been recognized as a significant factor in successful
learning. Related to learning persistence, Wong [29] articulated that students’ learning persistence or
dropout was related highly to academic achievements. In the same vein, Fang et al. [30] used math
learning log data to explore the relationship between patterns of persistence-related learning behaviors
and academic performance during learning. Furthermore, Zhai et al. [31] proposed that students’
perceived satisfaction may significantly predict learning outcomes and behavioral intention of persisting
with learning. It is therefore reasonable to assume that learning persistence is a valuable indicator
for predicting learning outcomes and achievement. In addition to the relations between learning
persistence and academic performance, we must also be aware of direct relations among factors such as
students’ interaction and academic emotions in online learning environments. Oh and Lee [17] stated
that three types of students’ interaction built a crucial relationship between learning-related anxiety
and intention to persist among e-learning students with visual impairment. To conclude, previous
findings suggested that learning persistence was a considerable factor in online learning environments.

3.2. Student Interaction in Online Learning

Students’ interaction is a key source of success in education context [6]. The conceptual framework
of interaction developed by Moore posits three types of interaction, SS interaction, SI interaction, and
SC interaction. According to the person-environment interaction model, students’ interaction has long
been considered as one of the main pedagogical issues [32]. The interaction functions among student,
instructor and content are complementary in online educational practice because interaction among
students is supported by instructor facilitation and support, which in turn, centers on content [33].
Based on the person-environment interaction model and transactional distance theory, we, therefore,
drew on the three types of interaction of Moore.
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Numerous studies have shown a high prevalence of SS interaction in online learning
environments [34]. SS interaction results from participation, communication and discussion between
students in asynchronous or synchronous communication without the direct involvement of instructors.
A study by Gray and DiLoreto [35] explained that students who had greater interaction with others
in an online course achieved higher levels of perceived learning. Gašević et al. [36] proposed that
graduate students could reach higher levels of knowledge construction and learning outcomes
in student-student discussions. Borokhovski et al. [37] highlighted that the relationship between
student-student interaction and collaborative learning in Interactive learning environments. Moreover,
Kyei-Blankson et al. [38] concluded that student-student interaction was the most important form
of interaction.

As SI interaction is a critical component of the online learning process [39], instructors provide
motivational and emotional support in a way that can enhance and maintain the student’s interest. This
is consistent with the fact that the most significant variable in an online course is students’ interaction
with the instructor [40]. In addition, Dwyer [41] emphasized that student-instructor interaction could
reap persistence and academic benefits. Moreover, Molinillo et al. [42] suggested that social presence
and teacher-student interaction had a positive influence on students’ active learning, both directly and
indirectly, through emotional engagement. A study by Cho and Jonassen [43] revealed that students
who enjoyed interacting with others were more likely to have a high self-efficacy for interaction with
their instructor. Overall, instructors can develop close interaction relationships and promote deeper
levels of learning in online learning environments [44].

With the development of online learning, scholarly interest in SC interaction has also increased.
Interaction with content refers to a one-way process of elaborating and reflecting on the subject
matter or the course content. SC interaction may include reading informational texts, using study
guides, discussing questions, and completing assignments. Through the interaction with content,
students cognitively elaborate, organize, and reflect on the new knowledge by integrating previous
knowledge [10]. Abulibdeh and Hassan [45] considered that SC interaction was the vital predictor of
students’ academic achievement. Similarly, Ertmer et al. [46] agreed that one of the major success factors
of online courses was effective SC interaction. In particular, Krudysz and McClellan [47] indicated
that more focus on SC interaction could minus the loss in educational effectiveness. The ample
aforementioned studies have discussed that all types of interaction promote learning engagement
and persistence. Those findings provide a better perspective for exploring the relationships between
students’ interaction and learning persistence.

3.3. Academic Emotions

Online learning is laden with intense emotional experience [48]. An increasing number of
empirical studies have examined a range of academic emotions related to online learning. According to
the control-value theory [49], academic emotions can be distinguished along dimensions of activation
(activating vs. deactivating), valence (positive vs. negative), and object focus (activity vs. outcome).
Although several different academic emotions can be induced in online learning conditions, the present
study emphasizes the detailed effects of academic emotions (enjoyment, anxiety, and boredom)
because they are the most frequently and intensely academic emotions experienced in online learning
environments [13].

Enjoyment, anxiety, and boredom can be described as the major dimensions of academic emotions.
As an activating positive activity-related emotion, enjoyment reinforces task activity, focuses attention
on the task, and predicts students’ elaboration and metacognition positively [50], leading to the use
of learning strategies [51] and even self-regulation [52]. Anxiety, defined as an activating negative
outcomes-related emotion, was the most often reported emotion in many studies [53]. Academic anxiety
arises when students believe their cognitive and/or motivational skills may be overwhelmed by the
demands of a highly valued academic situation [54]. Numerous studies have demonstrated that
anxiety was negatively correlated with learning performance [55] and self-efficacy [56]. Being treated
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as a deactivating unpleasant activity-related emotion, boredom undermines task incentives disrupts
attentional focus [57] and leads to lower levels of motivation [58] and metacognition [59]. As stated in
the literature, academic emotions (enjoyment, anxiety, and boredom) have different effects on academic
performance and achievement.

Academic emotions are momentous factors in online learning environments. However, it is not
probing the roles of different academic emotions in the relationship between students’ interaction and
learning persistence.

3.4. Academic Emotions as Mediator and Moderator in Online Learning

Conforming to the social cognitive model, academic emotions act as mediators or moderator
role in a learning process. You and Kang [60] examined the role of academic emotions (enjoyment,
anxiety, and boredom) in the relationship between perceived academic control and self-regulated
learning in online learning. The results supported that enjoyment had a mediating effect on the
relationship between perceived academic control and self-regulated learning. Boredom and anxiety
showed significant moderating effects on the relationship between perceived academic control and
self-regulated learning and students who experienced low boredom/anxiety with high perceived
academic control demonstrated high self-regulated learning. Similarly, Villavicencio and Bernardo [61]
contended that enjoyment and pride both moderated the relationship between self-regulation and
grades. For students who report higher levels of pride/enjoyment, self-regulation was positively
related to grades. For students who had lower levels of pride, self-regulation was not related to grades.
For those who reported lower levels of enjoyment, self-regulation was negatively associated with
grades. Adapting transactional distance theory, Oh and Lee [17] described the buffering effect of three
types of interaction in the relationship between learning-related anxiety and intention to persist with
e-learning. The results indicated that students with higher levels of anxiety tended to have lower levels
of intention to persist with e-learning.

Little research has addressed the mediating or moderating effect of academic emotions in the
relationship between students’ interaction and learning persistence. As such, this study aims to
examine the effect of academic emotion, by regarding it as a third variable in the relationship between
students’ interaction and intention to persist with online learning.

3.5. Research Hypotheses

Based on the above-mentioned theories and literature, we aim to explore the relationship among
students’ interaction, academic emotions and learning persistence in this study. As shown in Figure 1,
three types of students’ interaction are hypothesized as playing a direct role in students’ academic
emotions and their learning persistence. We hypothesized that three types of interaction play a positive
role in predicting enjoyment and relate negatively to anxiety and boredom. We also hypothesized that
three types of students’ interaction have positive relationships with their learning persistence. Also,
based on theoretical background and literature review, three types of students’ interaction are assumed
to predict learning persistence through the mediation or moderation of academic emotions. In addition,
enjoyment is hypothesized as having positive relationships with learning persistence. On the contrary,
anxiety and boredom are hypothesized as having negative relationships with learning persistence.
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4. Method

4.1. Participants and Procedure

The study sample included 339 (response rate: 84%) participants who had online learning
experience from five universities in China. Generally, the participants who had online learning
experience need to watch the weekly scheduled online lecture videos and to complete the assignments.
When a student posted a question related to the lectures, others and the instructors could start a
discussion or reply to the question on the forum.

Participants were required to complete the questionnaire anonymously and voluntarily. All
participants knew the research background and purposes, and provided their written informed consent
before completing the measures in the study. In order to make sure everyone treated the survey
seriously, the researchers offered a pen in return. In addition, this study has gained the approval from
the ethical committee of five universities in China. The sample demographics are shown in Table 1.

Table 1. Sample demographics (n = 339).

Variables Classification Total (%)

Gender
Male 103 (30.4%)

Female 236 (69.6%)

Age

Less than 18 7 (2.1%)
18–25 282 (83.2%)
26–30 41 (12.1%)

More than 30 9 (2.6%)

Major

educational technology 145 (42.8%)
computer science 113 (33.3%)
communication 40 (11.8%)

business 26 (7.5%)
medicine 15 (4.6%)

Educational level

undergraduate 149 (44%)
master 134 (39.5%)

doctoral 11 (3.2%)
other 45 (13.3%)
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4.2. Instruments

Three separate scales, namely the Online Interaction Scale (TOIS), the Online Emotional Scale
(TOES), and the Online Learning Persistence Scale (OLPS), were utilized to measure students’ interaction,
academic emotions, and learning persistence in the online learning environment. All the items in
Chinese used a 5-point Likert scale ranging from 1 (completely disagree) to 5 (completely agree).
Brief descriptions of the three scales are provided as follows.

4.2.1. The Online Interaction Scale (TOIS)

A 19-item, three-factor scale used in this study was modified from that of Kuo [10] for investigating
students’ interaction. The scale consisted of three distinct interaction subscales: student-student
interaction with eight items (e.g., “I got lots of feedback from my classmates”), student-instructor
interaction with six items (e.g., “I had numerous interactions with the instructor during the class”),
and student-content interaction with five items (e.g., “Online course materials stimulated my interest
for this course”).

4.2.2. The Online Learning Persistence Scale (OESE)

The online learning persistence scale (OESE) developed by Shin [62] was adopted in this study
to estimate students’ learning persistence in an online learning environment. The scale consisted of
five items. A sample of such items was that “I will finish my online course no matter how difficult it
may be.”

4.2.3. The Online Emotion Scale (OLES)

The Online Emotion Scale (OLES) was adapted from the Achievement Emotions Questionnaire
(AEQ) [63] for measuring academic emotions. Based on the literature review, we chose three emotional
variables (enjoyment, anxiety, and boredom) that were relevant to online learning. Specifically, a
four-item enjoyment subscale measured students’ enjoyment, with a sample item of “I enjoy my online
course”. A four-item boredom subscale was used, such as “Because I am so bored during the online
lecture, I frequently check the time”. A four-item was finally for assessing students’ anxiety. For
example, “I was worried that I might say something wrong, so I’d rather not express my opinion.”

4.3. Data Analysis

In order to analyze the collected data, we used SPSS 22.0 (IBM, Armonk, NY, USA) and AMOS
22.0 (IBM, Armonk, NY, USA) [64]. First, the basic descriptive statistics of all the measured variables
were conducted as a preliminary analysis. We then computed Cronbach’s alpha and used the data
from the confirmatory factor analysis (CFA) to obtain the value of Composite Reliability (CR) and the
Average Variance Extracted (AVE) [65]. Second, we utilized structural equation modelling (SEM) to
test the mediation effects of enjoyment, anxiety, and boredom in the relationship between students’
interaction and learning persistence. This was achieved by following the two-step approach that
estimated the measurement model and the path analysis results [66]. Using the hierarchical regression
analysis in IBM SPSS, we finally performed a series of moderation analysis in order to validate the
moderating effect of enjoyment, anxiety, and boredom.

According to the goodness-of-fit indices [67], chi-square (χ2), and chi-square divided by degrees
of freedom (χ2/df ), we verified the results by using the goodness of fit index (GFI), the comparative fit
index (CFI), the standardized root mean square residual (SRMR) and the root mean square error of
approximation (RMSEA). For both CFI and GFI, values with being greater than 0.90 indicate a good fit,
while values below 0.08 for RMSEA and SRMR indicate an acceptable fit.
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5. Results

5.1. Reliability and Validity of Measures

We calculated the descriptive statistics of each latent variables, the skewness and kurtosis
coefficients ranging from −0.67 to 1.45, and the results supported the univariate normality assumption.
In order to obtain good internal consistency and convergent effect, we conducted CFA to test the
adequacy of latent variables. Due to different cross-cultural backgrounds, the items of three instruments
were deleted based on the three criteria: (1) all of the item factor loadings should be higher than 0.6;
(2) the values of the CR should exceed 0.8; (3) the values of AVE should exceed 0.5 [65], with each
construct still having at least 3 items. As listed in Table 2, the Cronbach’s alpha (α) coefficients for all
of these latent variables ranged from 0.78 to 0.96, the CR coefficients exceeded 0.70 (0.76–0.96), and
Cronbach’s α and the CR of all the latent variables were higher than 0.70. All of these indicated that
the internal consistency of all latent variables was high. In addition, the AVE exceeded 0.50 (0.50–0.85),
implying that the measurement had a good convergent effect.

Table 2. Descriptive statistics and Cronbach’s α, CR, AVE of the variables (n = 339).

Variables SS
Interaction

SI
Interaction

SC
Interaction Enjoyment Anxiety Boredom Learning

Persistence

Mean 3.32 3.25 3.50 3.36 2.74 3.60 3.58
SD 0.71 0.71 0.72 0.80 0.76 0.89 0.67

Skewness −0.34 −0.29 −0.67 −0.45 0.30 −0.53 −0.25
Kurtosis 0.52 0.90 1.45 0.47 0.01 0.35 0.41

α 0.90 0.86 0.80 0.90 0.78 0.96 0.81
CR 0.89 0.86 0.80 0.90 0.76 0.96 0.83

AVE 0.50 0.50 0.58 0.68 0.52 0.85 0.62

5.2. The Fitness of Model

First, we performed CFA to measure the fitness indices of the measurement model of each scale
respectively. The CFA of students’ interaction revealed that the three-factor model fit the data well
(χ2/df = 2.030, CFI = 0.961, GFI = 0.933, RMSEA = 0.055, and SRMR = 0.049). The fitness indices of the
three-factor model for the academic emotions (χ2/df = 2.669, CFI = 0.977, GFI = 0.947, RMSEA = 0.070
and SRMR = 0.051) indicated a good model fit.

Then, the full measurement model included three latent constructs (students’ interaction, academic
emotions and learning persistence), seven latent variables and 31 observed variables. The measurement
model indices showed an excellent fit to the data: χ2/df = 2.429, CFI = 0.924, GFI = 0.958, RMSEA = 0.056
and SRMR = 0.050.

As shown in Figure 2, standardized factor loadings, which represented the relationships between
each indicator and the corresponding latent variable, ranged from 0.59 to 0.95, indicating that all the
latent constructs were well represented by their indicators. The correlations between latent variables
were all significant (p < 0.001), except for the relationship between student-student interaction and
anxiety (r = −0.058), and student-instructor interaction and anxiety (r = −0.033).
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5.3. Mediating Effects of Emotions

In the section, we performed SEM to explore respectively the mediating effect of enjoyment,
anxiety, and boredom on the relationship between students’ interaction and learning persistence.

5.3.1. Mediating Effects of Enjoyment on Students’ Interaction and Learning Persistence

We corroborated the initial hypotheses on the relationships among students’ interaction, enjoyment
and learning persistence. Both SS and SC interactions positively predicted enjoyment (B = 0.27, p < 0.001
for SS and B = 0.53, p < 0.001 for SC) and learning persistence (B = 0.31, p < 0.001 for SS, and B = 0.31,
p < 0.001 for SC). So did SI interaction for enjoyment only (B = 0.26, p < 0.001). In addition, enjoyment
predicted learning persistence (B = 0.22, p < 0.001) positively. Further, we tested the mediating
effect of enjoyment by analyzing the indirect effect of students’ interaction on learning persistence.
In particular, we measured the indirect effect using a bootstrapping method, with a bootstrapped
95% confidence interval. The results are summarized in Table 3. As shown in the table, both SS and
SC interactions positively predict learning persistence both directly (B = 0.308, p < 0.001 for SS, and
B = 0.314, p < 0.001 for SC) and indirectly (B = 0.057, p < 0.05 for SS, and B = 0.115, p < 0.01 for SC),
mediated by enjoyment. These results indicate that partial mediation exists between SS interaction, SC
interaction and learning persistence.

Table 3. Direct, indirect effects on students’ interaction and learning persistence (n = 339).

Mediator Predictor→ Criterion Direct Effect (p) Indirect Effect

Sum (p) a CI b

Enjoyment
Partial mediation

SS interaction→ learning persistence 0.308 *** 0.057 * 0.006, 0.150
SC interaction→ learning persistence 0.314 *** 0.115 ** 0.017, 0.241

Boredom
Partial mediation

SC interaction→ learning persistence 0.357 *** 0.075 * 0.011, 0.168

Notes: (a) The probability associated with the sum of standardized indirect effects was estimated using the
two-sided bias-corrected confidence interval bootstrap test of AMOS 22 (confidence level = 95%; samples = 5000).
(b) CI = Confidence Interval. * p < 0.05; ** p < 0.01; *** p < 0.001.
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5.3.2. Mediating Effects of Anxiety on Students’ Interaction and Learning Persistence

We verified the initial hypotheses on the relationships among students’ interaction, anxiety
and learning persistence. Learning persistence was positively predicted by SS interaction (B = 0.36,
p < 0.001), SI interaction (B = 0.17, p < 0.01), SC interaction (B = 0.42, p < 0.001). Particularly, anxiety
negatively predict learning persistence (B = −0.18, p < 0.01). We also found that the three types of
students’ interaction did not predict the mediating variable (anxiety) significantly. Therefore, we
concluded that anxiety had no mediating effects between the relationship of students’ interaction and
learning persistence in online learning environments. This is because there is an insignificant effect
between the independent variable and mediator as suggested by Baron and Kenny [67].

5.3.3. Mediating Effects of Boredom on Students’ Interaction and Learning Persistence

For testing the hypotheses on the relationships among students’ interaction, boredom and learning
persistence, we have the following results. Learning persistence was positively predicted by SS
interaction (B = 0.35, p < 0.001), SI interaction (B = 0.16, p < 0.01), and SC interaction (B = 0.36,
p < 0.001). Specifically, boredom negatively predicted learning persistence (B = −0.17, p < 0.01), while
SC interaction negatively predicts boredom. The mediating effect of boredom was further examined
by analyzing the indirect effect of SC interaction on learning persistence. Table 3 summarizes the
results. Mediated by boredom, SC interaction positively predicted learning persistence both directly
(B = 0.357, p < 0.001) and indirectly (B = 0.075, p < 0.05). These results indicate that partial mediation
exists between SC interaction and learning persistence.

5.4. Moderating Effects of Emotions

Using the hierarchical regression, we examined the respective moderating effect of enjoyment,
anxiety, and boredom on the relationship between students’ interaction and learning persistence.
As suggested by Aiken et al. [67], we first centralized the predictor and moderator variables by
plus-minus one standard deviation (±1SD) of their respective mean. For testing the moderation effect,
the variables were then entered into the model in the following three steps. Step 1 was the predictor
three types of students’ interaction (SS interaction, SI interaction and SC interaction). Step 2 was the
moderator of academic emotions (enjoyment or anxiety or boredom), followed by the interaction term
in step 3. Hierarchical regression was conducted three times for three moderation models showed
in Table 4. Models 1–3 captured the moderation effect for enjoyment on the relationship of students’
interaction and learning persistence. Models 4–6 for anxiety on the relationship of students’ interaction
and learning persistence and Models 7–9 for boredom on the relationship of students’ interaction and
learning persistence.

5.4.1. Moderating Effects of Enjoyment on Students’ Interaction and Learning Persistence

In order to examine whether enjoyment moderated the relationship between students’ interaction
and learning persistence, we used three types of interaction as the predictor variable, learning
persistence as the dependent variable, and enjoyment as the moderator. As shown in Table 4, the results
indicated that the predicted interaction terms between SI interaction and enjoyment were significant.
This means that enjoyment significantly moderated the association between SI interaction and learning
persistence. The result also showed that enjoyment was not a significant moderator for the relationship
between SS interaction and learning persistence. Neither was for the relationship between SC interaction
and enjoyment.
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Table 4. Moderating effort of academic emotions on students’ interaction and learning persistence.

Learning Persistence

Variables
Model 1 Model 2 Model 3

Variables
Model 4 Model 5 Model 6

Variables
Model 7 Model 8 Mode l9

Standardized Coefficient (Beta) Standardized Coefficient (Beta) Standardized Coefficient (Beta)

Independent
Variables

Independent
Variables

Independent
Variables

SS 0.308 *** 0.265 *** 0.225 *** SS 0.308 *** 0.301 *** 0.264 *** SS 0.308 *** 0.295 *** 0.272 ***
SI 0.081 0.022 0.020 SI 0.081 0.083 0.087 SI 0.081 0.079 0.112
SC 0.326 *** 0.238 *** 0.255 *** SC 0.326 *** 0.320 *** 0.304 *** SC 0.326 *** 0.269 *** 0.247 ***

Moderator Moderator Moderator
Enjoyment

(EN) 0.226 *** 0.234 *** Anxiety
(AN) −0.136 *** −0.145 *** Boredom

(BO) −0.153 *** −0.170 ***

Interaction
Variable

Interaction
Variable

Interaction
Variable

SS × EN −0.037 SS × AN −0.164 *** SS × BO −0.204 ***
SI × EN 0.172 *** SI × AN −0.178 *** SI × BO −0.100
SC × EN −0.016 SC × AN −0.018 SC × BO −0.051

R 0.578 0.602 0.617 R 0.578 0.589 0.613 R 0.578 0.595 0.611
R2 0.334 0.362 0.381 R2 0.334 0.347 0.376 R2 0.334 0.354 0.373

∆R2 0.334 0.028 0.019 ∆R2 0.334 0.013 0.029 ∆R2 0.334 0.019 0.020
F 56.093 *** 47.418 *** 29.135 *** F 56.093 *** 47.225 ** 41.189 ** F 56.093 *** 45.692 *** 28.167 ***

Note: N = 339. SS: student-student interaction; SI: student-instructor interaction; SC: student-content interaction; EN: enjoyment; AN: anxiety; BO: boredom. ** p < 0.01; *** p < 0.001.
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For elaborating on the moderating effect of enjoyment clearly, we obtained the simple regression
slopes. It depicts the predicted relationship between the predictor variable and the dependent variable
at the low and high levels of the moderator. With applying the plotting method recommended by
Hayes et al. [68], ±1SD the mean was generally expressed at high and low levels. As shown in
Figure 3, the slopes were different between the low and high enjoyment. This indicated that the
association between SI interaction and learning persistence differed significantly at different levels
of enjoyment. In particular, students who perceived high enjoyment and SI interaction showed high
learning persistence
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5.4.2. Moderating Effects of Anxiety on Students’ Interaction and Learning Persistence

The moderation analysis examined whether anxiety moderated the relationship between students’
interactions and learning persistence. As reported in Table 4, the results indicated that the predicted
interaction terms between SS interaction and anxiety, as well as between SI interaction and anxiety,
were significant. It is interesting to note that anxiety was not a significant moderator of the relationship
between SC interaction and learning persistence.

In order to further examine the moderation effect of anxiety, we illustrated the simple regression
slopes in Figures 4 and 5 as before. The results demonstrated significant relationships between SS
interaction and learning persistence at high and low levels of anxiety. In particular, the strength of the
association between SS interaction and learning persistence increased as anxiety decreased. As for the
relationship between SI interaction and learning persistence, the learning persistence of students who
perceived a high level of anxiety was lower for those with lower SI interaction.
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5.4.3. Moderating Effects of Boredom on Students’ Interaction and Learning Persistence

To test the moderating effects of boredom between three types of interaction and learning
persistence, we performed the same moderation analysis. As shown in Table 4, the results demonstrated
that boredom significantly moderated the association between SS interaction and learning persistence.
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Once again, simple regression slopes were plotted in Figure 6 in order to further interpret the
moderating effects of boredom. The slopes revealed that the association between SS interaction and
learning persistence differed significantly in low and high levels of boredom. In particular, students
with a high level of boredom and the low SS interaction experienced lower learning persistence.
The result also suggested that boredom was not a significant moderator of either the relationship
between SI interaction and learning persistence, or the relationship between SC interaction and
learning persistence.
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6. Discussion

In this study, we aimed to investigate the relationships among students’ interaction, academic
emotions (enjoyment, anxiety, and boredom) and learning persistence in online learning environments.
Our research elaborated three types of interaction and contributed to theoretically and empirically
identifying different roles of academic emotions between students’ interaction and learning persistence.
Overall, the study suggested that three types of interaction and academic emotions could effectively
catalyze learning persistence and engagement in online learning environments. Those statistics results
were consistent with previous research [15,41].

6.1. Relationships Among Students’ Interaction, Academic Emotions and Learning Persistence

For academic emotions, this study showed that all of the three types of interaction had a positive
association with enjoyment experiences. The results corroborated and built on previous studies
of students’ interaction in the online learning environment. According to the person-environment
interaction model, for example, Caldwell [69] found that high levels of interaction between students and
their environments (peers, instructors, and content) could produce an enjoyable learning atmosphere.
We also found that only SC interaction negatively predicted boredom. This finding was consistent
with that by Putwain et al. [13]. If learning materials are simple, students could be bored. In addition,
students’ enjoyment positively predicted learning persistence. On the contrary, anxiety and boredom
negatively predicted students’ learning persistence. These findings are consistent with those of
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Putwain [13] and Yang [15]. As stated before, students’ academic emotions should be considered to be
critical in predicting their learning persistence.

6.2. Academic Emotions as Mediators

In line with our hypothesis, enjoyment mediated the relationships between SS interaction and
learning persistence. The results were consistent with previous studies on highlighting the peers’
ability for the students’ learning persistence. Students were required to communicate and discuss
with their peers in online learning environments to form positive attitudes [70]. Also, we found that
enjoyment mediated the relationships between SC interaction and learning persistence. A possible
explanation for this result might be that online learning environments may provide students with the
platform to interact with the content of learning materials. As such, students cognitively elaborate,
organize, and reflect on the new knowledge with their enjoyable experience. Finally, we found boredom
could mediate the relationship between SC interaction and learning persistence. As a deactivating
emotion, boredom leads learners to be disengaged [49]. Thus, Instructors need to assign interesting
and challenging tasks to students.

6.3. Academic Emotions as Moderators

Another aim of this study was to estimate the moderation effect of academic emotions. Our
moderation analysis indicated that the experience of enjoyment could moderate the relationship
between SI interaction and learning persistence. The results further showed that students who
perceived a high level of enjoyment, learning persistence were higher for those who reported a
higher level of SI interaction. This is particularly important because enjoyment could strengthen
the relationship between student and instructor so as to catalyze learning persistence or learning
engagement [42].

In addition, our results demonstrated that anxiety moderated the relationship between SS
interaction and learning persistence, as well as the association with SI interaction and learning
persistence. Meanwhile, we also found that students who experienced low anxiety with high SS/SI
interaction demonstrated high learning persistence. The finding supported Oh and Lee’s [17] study
in the sense that students with higher levels of anxiety tended to have lower levels of their learning
persistence. The high level of interaction with the instructor or students was not sufficient to facilitate
learning persistence. This was perhaps because anxiety, an activating negative emotion, was induced
if students may be struggling to build the relationships with instructors and peers as a result of the
lack of immediate feedback in an online learning environment [71].

Another potentially important finding is that boredom moderated the relationship between SS
interaction and learning persistence. The results also demonstrated that student who perceived a
high level of boredom with low SS interaction demonstrated a low level of learning persistence. It
is consistent also with the previous research concluded that a relationship between SS interaction
and learning persistence varies greatly according to different levels of their boredom. Moreover,
boredom has recently been identified as frequently experienced and extremely damaging emotion
in an online learning environment [72]. Collectively, these findings validate the assumption that
boredom (a negative deactivating emotion) may be associated more with the relationship between
the SS interaction and learning persistence than anxiety (a negative activating emotion). This may be
partial because negative deactivating emotions have stronger and potentially more harmful effects on
learning persistence [64].

It is important to highlight that the moderating effect of academic emotions between SC interaction
and learning persistence is slight. The lack of the significant moderating effect of academic emotions
may be caused by several factors. According to the interaction equivalency theorem [73], in a case
where no detrimental effects are on learning, and one of the types of interaction is at a high level,
the other two types of interaction can be then at lower levels or even eliminated. In addition, it is



Int. J. Environ. Res. Public Health 2020, 17, 2320 16 of 21

not always easy to discern SC interaction. Other variables such as SS interaction or student-system
interaction may be tied [74].

7. Practical Implications

The present findings have several practical implications. According to the person-environment
interaction model and transactional distance theory, students’ interaction and academic emotions are
two of the main sources of learning persistence.

First, academic emotions in this study have both mediation and moderation effects on the
relationship between students’ interaction and learning persistence. The mediating and moderating
effects may afford a possible interpretation for the non-significant relationship observed or mixed
results [50]. This suggests that researchers should consider the joint relationship between academic
emotions and students’ interaction when examining the relationship between students’ interaction and
learning persistence.

Second, not only students’ interaction but also enhancing positive emotions and declining negative
emotions are required to improve learning persistence. From mediation analysis, enjoyment mediated
the relationships between SS interaction, SC interaction and learning persistence. Boredom mediated
the relationships between SC interaction and learning persistence. From moderation analysis, the
relationship between students’ interaction and learning persistence differ substantially with different
levels of academic emotions. However, the finding showed that having a high level of students’
interaction was not sufficient to enhance learning persistence. The students who experienced high
negative academic emotions (anxiety and boredom) and interacted with others at the high levels
did not exhibit their high learning persistence. Therefore, reducing students’ negative emotions and
enhancing positive emotions is of significance to promote their learning persistence [75].

Third, our results demonstrated that academic emotions (enjoyment, anxiety and boredom)
produced the different mediating and moderating effect in the online learning process. Therefore,
it is important to make diverse implications corresponding to a specific emotion. According to
Pekrun’s [49] taxonomy of academic emotions, enjoyment is an activating positive activity-related
emotion, which has a positive moderating relationship between SI interaction and learning persistence
in the online learning process. In addition, enjoyment also mediate the relationships between SS
interaction, SC interaction and learning persistence, Therefore, greater attention to enjoyment should
be paid. Contrastingly, anxiety is regarded as an activating negative outcomes-related emotion, which
leads to lower learning persistence for online students. In online learning environments, it is necessary
to provide personalized, process-related assistance about learning material to reduce students’ anxiety.
Boredom is treated as a deactivating unpleasant activity-related emotion, which leads students to
be disengaged. Instructors need to provide interesting and useful learning tasks to their students so
that communications among them can happen. Overall, increasing positive emotions and decreasing
negative emotions are a fruitful way to buffer learning persistence and engagement.

Finally, the importance of providing interactional support to students should be emphasized. An
instructor should focus more on students-oriented interactions by providing feedback on students’
work and informing their progress. In this way, the students are encouraged to actively participate in
their course discussions [76]. Generally, the instructor should help students study in harmony and
enjoy their learning activities so as to avoid or minimize negative emotions. As such, various modern
communication technologies such as e-mails, online forums and social media can be employed to build
a sense of an online community [77]. These technologies make it possible to create an atmosphere of
the ease of interaction that allows students to persist with their learning. In a word, not only students’
academic emotions but also supportive interaction is malleable characteristics of learning persistence
in online learning environments.
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8. Conclusions and Limitations

This study provides a new perspective on understanding the mechanisms that underlie the
relationship between students’ interaction, academic emotions and learning persistence. According to
the person-environment interaction model and transactional distance theory, we attempt to establish
the links among students’ interaction, academic emotions, and learning persistence. Our results have
shown that academic emotions act as moderator and mediator between students’ interaction and
learning persistence in online learning environments. To summarize, the present study offers empirical
support for the relationship among students’ interaction, academic emotions and learning persistence.
Meanwhile, the study further highlights the mediating and moderating effects of academic emotions
when exploring the strength of relations between students’ interaction and learning persistence in an
academic setting.

However, some of our findings should be interpreted with caution, as a result of the following
limitations. First, the cross-sectional and correlational design used in this study does not consider a
definitive determination of the causal relationships between variables. Although several empirical
studies provide support for the proposed model, we cannot exclude the possibility of reciprocal
relationships between variables Future research would design experiments and use qualitative methods
for exploring the relationship among students’ interaction, academic emotions and learning persistence.

Second, the sample size of our research was relatively small. A larger number of samples could
certainly increase the statistical power. Moreover, the generalization of our results could be limited as
a result of our samples from universities, majors, and learning subjects only. Thus, our future studies
should focus on hierarchical data to reduce the generalization error of the results.

Finally, our survey data relied on self-report instruments, which may result in the same-source
bias. The results of this study could be further verified by using diverse methods such as interviews,
open-ended questionnaires, and physiological data. The construct of emotion could be reported by
biofeedback and physiological data, for example.
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