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Abstract: In a large-scale epidemic outbreak, there can be many high-risk individuals to be
transferred for medical isolation in epidemic areas. Typically, the individuals are scattered across
different locations, and available quarantine vehicles are limited. Therefore, it is challenging to
efficiently schedule the vehicles to transfer the individuals to isolated regions to control the spread
of the epidemic. In this paper, we formulate such a quarantine vehicle scheduling problem for
high-risk individual transfer, which is more difficult than most well-known vehicle routing problems.
To efficiently solve this problem, we propose a hybrid algorithm based on the water wave optimization
(WWO) metaheuristic and neighborhood search. The metaheuristic uses a small population to rapidly
explore the solution space, and the neighborhood search uses a gradual strategy to improve the
solution accuracy. Computational results demonstrate that the proposed algorithm significantly
outperforms several existing algorithms and obtains high-quality solutions on real-world problem
instances for high-risk individual transfer in Hangzhou, China, during the peak period of the novel
coronavirus pneumonia (COVID-19).

Keywords: public health emergencies; epidemics; medical isolation; vehicle scheduling; optimization;
water wave optimization (WWO)

1. Introduction

In an outbreak of a severe epidemic, a large number of suspected cases and close contacts of
patients, which we call high-risk individuals, need to be isolated for medical observation as soon as
possible to prevent the spread of the virus carried by them. Another benefit of isolation is to reduce
the mortality, that is, whenever a high-risk individual is diagnosed, he/she can get prompt treatment.
However, high-risk individuals are often scattered in a city, and the number of available quarantine
vehicles that are eligible to transfer high-risk individuals is limited. Therefore, we must efficiently
schedule the vehicles, i.e., assign high-risk individuals to the vehicles and determine the route of each
vehicle (as illustrated by Figure 1), to transfer the individuals to isolated regions as quickly as possible
to control the spread of the epidemic.

The considered problem can be regarded as a variant of the well-known vehicle routing problem
(VRP) [1], which has been widely studied in the fields of computer science and operations research.
Nevertheless, This problem differs from most well-known VRPs in the following aspects:

• The number of high-risk individuals in a location or small area may exceed the capacity of a
vehicle. In such a case, it may require a vehicle to go to the area more than once, or require two or
more vehicles to load the individuals in the area.

• After loading high-risk individuals in an area, if a vehicle still has room, it can either go to another
area to load more individuals or directly go back to the isolated region (some individuals in serious
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condition should be immediately sent to the hospital and are excluded from the individuals to be
transferred).

• The objective of the problem is to reduce the risk of epidemic spread as much as possible,
and hence the objective function should be defined based on the exposure durations of
high-risk individuals.
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Figure 1. An illustration of the vehicle routing problem for transferring high-risk individuals
in epidemics.

Therefore, this problem is significantly more complex than most existing VRPs that are known
to be NP-hard. For large instances of the problem, exact algorithms (such as branch-and-bound) are
often impractical, and traditional metaheuristic algorithms (such as genetic algorithms) also converge
slowly [2]. To handle this difficult problem, we propose a hybrid water wave optimization (WWO) [3]
and neighborhood search algorithm, which adapts the WWO metaheuristic to efficiently explore the
solution space of the problem and utilizes neighborhood search to improve the solution accuracy.
Compared to most existing metaheuristics that require many generations to evolve a large population
to explore the solution space, the proposed WWO algorithm evolves a small population of solutions to
rapidly locate an optimal or near-optimal solution. The neighborhood search method uses a gradual
strategy to further improve the solution accuracy. We demonstrate the efficiency of the proposed
algorithm on real-world instances for transferring thousands of high-risk individuals during the
peak period of the novel coronavirus pneumonia (COVID-19) in Hangzhou city, China. The main
contributions of this paper can be summarized as follows:

• We present a new VRP variant based on the requirements of high-risk individual isolation in
large-scale epidemics.

• We provide a set of rules for scheduling multiple vehicles for high-risk individual transfer.
• We propose an efficient algorithm for the problem, which was used to solve real-world instances

in COVID-19 within a short response time.

The remainder of this paper is structured as follows. Section 2 introduces related work on basic
and emergency VRPs, Section 3 formulates the quarantine VRP for transferring high-risk individuals
in epidemics, which also provides the basic scheduling rules that are useful in practice. Section 4
proposes the hybrid algorithm, Section 5 presents the computational results, and Section 6 concludes
with a discussion.

2. Related Work

First proposed by Dantzig and Ramse [4], VRPs are well-known NP-hard problems that have
been widely studied in the fields of computer science and operations research [1]. Traditional exact
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methods are only applicable to small problem instances [5]. In recent years, considerable efforts have
been devoted to evolutionary algorithms [6–8], including genetic algorithms (GA) [9–13], particle
swarm optimization [14–18], ant colony optimization (ACO) [19–23], artificial bee colony [24–26],
biogeography-based optimization [27,28], etc., for VRPs. Compared to exact algorithms and
construction heuristics, evolutionary algorithms are more capable of jumping out of local optima and
obtaining optimal or near-optimal solutions within an acceptable time by evolving a population of
candidate solutions to simultaneously explore multiple regions of the search space [29].

Emergency VRPs are more challenging because they are needed to be solved within a limited
response time [30]. Daskin and Haghani [31] studied an emergency VRP that extends the basic VRP to
an emergency scene by allowing edge travel times to be normally distributed and the path travel times
of different vehicles to be correlated. In [32] Haghani et al. evaluated different response strategies
including first-called first-served, nearest-origin assignment, and flexible assignment for assigning
response vehicles and guiding those vehicles through non-congested routes. Vargas-Villamil [33]
used mixed-integer nonlinear programming to solve a vehicle routing and dispatching problem
for emergency personnel evacuation from off-shore oil platforms. Wang and Deng [34] studied an
emergency VRP in post-disaster, where customer demands are described as the fuzzy variables;
they proposed a two-stage approach, where the first stage optimizes the vehicle routes to minimize
transportation time, and the second stage uses fuzzy linear programming to minimize transportation
cost. Wohlgemuth et al. [35] considered a dynamic VRP with varying travel times and unknown
orders in the specific environment of emergencies; they used a multi-stage mixed integer programming
method to find solutions that decrease delays and increase equipment utilization. Chini et al. [36]
studied a VRP in both deterministic and stochastic scenarios; they proposed a routing algorithm
for graph-represented mission spaces and a switching algorithm to dynamically change the vehicle
behavior according to the time-variable configuration of both vehicles and targets. Ye et al. [37] studied
an emergency evacuation path planning problem in catastrophic events, which was modeled using
an improved cellular automaton based on ACO. Considering fire evacuation scenarios, Shahparvari
and Abbasi [38] proposed a greedy heuristic method to solve a VRP under uncertainties in evacuee
population, time windows, and bushfire propagation; they applied their approach to a real case study
of the 2009 Black Saturday bushfires in Victoria, Australia.

Exact algorithms are not practical for solving large instances of emergency VRPs. Moreover,
traditional evolutionary algorithms also converge slowly in large search spaces, and therefore studies
on adapting evolutionary algorithms for emergency VRPs are relatively few. Sun et al. [39] proposed an
improved ACO algorithm to solve an emergency VRP, where GA is utilized to optimize the parameters
of ACO. Chen [40] utilized a GA to solve an emergency VRP with strict timeliness requirements.
Du and Yi [41] also tested the performance of GAs for a multi-objective emergency VRP. Nevertheless,
the results showed that classical GAs only perform well on small or medium instances. To solve
emergency transportation that combines cumulative VRP and multi-depot VRP, Wang et al. [42]
proposed an improved ACO algorithm with a smart design of the ant tabus to speed up solution
construction. Recently, Fallahi and Sefrioui [43] studied a problem of scheduling ambulances to bring
the maximal number of alive victims to hospitals; they proposed a memetic algorithm that employs
variable neighborhood search to improve solution accuracy. However, to the best of our knowledge,
there have been no reports of VRPs for transferring high-risk individuals in epidemic areas, mainly
due to the specific characteristics of the problem in the epidemic situation.

3. Problem Description

3.1. Problem Inputs

We consider the problem of routing multiple quarantine vehicles to transfer high-risk individuals
(potential propagators) to an isolated region in epidemic situations. Let A={a1, a2, . . . , an} be the set
of n locations or small areas with high-risk individuals, and bj be the number of high-risk individuals
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in aj (1≤ j≤n). We have a set V={v1, v2, . . . , vm} of vehicles, and the capacity of vi (i.e., the maximum
number of individuals that can be carried by vi) is ci (1≤ i≤m). Based on the distances between the
areas and the velocities of the vehicles, we can obtain the travel time ti,j of each vehicle vi from its
original location to each area aj, the time ti,j,j′ for vi to travel from aj to aj′ , and the time t′i,j for vi to
travel from aj to the isolated region (1≤ i≤m; 1≤ j, j′≤ n). We also have the average time interval
4ti,j between loading two individuals in aj by vi, which depends on the dispersion of individuals in
the area (for example, if individuals are gathered in a community health center, the interval can be
several seconds; if individuals are in different units of a housing estate, the interval can be several
minutes). The inputs indicate that we can use vehicles with different capacities and velocities, and thus
the problem is a heterogeneous VRP. Table 1 lists the variables used in the problem formulation.

Table 1. Mathematical variables used in the problem formulation.

Symbol Description

A Set of areas with high-risk individuals
n Size of A
aj jth area in A (1≤ j≤n)
bj Number of individuals in aj
V Set of vehicles
m Size of V
vi ith vehicle in V (1≤ i≤m)
ci Capacity of vi

cmin Minimum capacity among all vehicles
ti,j Travel time of vi from its original location to aj

ti,j,j′ Travel time of vi from aj to aj′

t′i,j Travel time of vi from aj to the isolated region
4ti,j Average time interval between loading two individuals in aj by vi

xi Sequence of areas assigned to vi
xi,j jth area in xi
yi Sequence of intermediate decisions of vi

yi,j
Boolean variable denoting whether vi goes back to the isolated region
after loading individuals in xi,j

X Vector of sequences {x1, . . . , xi, . . . , xm}
Y Vector of sequences {y1, . . . , yi, . . . , ym}
τi,j First arrival time of vi at xij
τ′i,j Final leave time of vi at xij

ci,j Remaining capacity of vi when it arrives at xij
ki,j Number of times that vi goes back and forth between aj and isolated region
A+ Set of areas, each of which has been assigned to two or more vehicles

V(a) Set of vehicles to which the area a is assigned
Tj Total exposure time of individuals in aj

3.2. Decision Variables and Scheduling Rules

The problem needs to first determine the sequence xi ={xi,1, xi,2, . . . , xi,ni} of areas to be visited by
each vehicle vi, where xi,j is the index of vi’s jth visiting area in A, and ni is the number of areas assigned
to vi. Moreover, as aforementioned, after visiting an area, a vehicle may either go back to the isolated
region or go to the next area, so we also need to determine the sequence yi ={yi,1, yi,2, . . . , yi,ni−1} of
intermediate decisions of vi, where yi,j = 1 indicates that vi will go back to the isolated region after
visiting the jth area of its sequence and yi,j = 0 otherwise. Consequently, a solution to the problem
consists of both the set X={x1, x2, . . . , xm} and set Y={y1, y2, . . . , ym}.

Nevertheless, the decision variables are not completely free. Based on experiences from the
emergency management departments and related studies, we have a set of specific rules for cases where
high-risk individuals in an area cannot be transferred by a vehicle in one round. Let cmin=min1≤i≤m ci,
i.e., the minimum capacity among all vehicles. The first rule is as follows:
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R1. If bj≤ cmin, then the area aj can only be assigned to one vehicle.

Note that the vehicle may still go to aj more than once, in the case when the vehicle goes to aj for
the first time, it has already carried some individuals from other areas and its remaining capacity is
less than bj. In such a case, we have the second rule:

R2. If the area aj is only assigned to the vehicle vi, then vi cannot go to the next area until all individuals
in aj have been loaded.

In other words, if vi cannot transfer all individuals in aj in one round and there is no other vehicle
assigned for aj, then vi should go back and forth between aj and the isolated region until there is no
individual left in aj.

The third rule limits the number of vehicles that can be utilized to transfer high-risk individuals
in an area:

R3. Let k j be a positive integer satisfying (k j−1)cmin<bj≤ k jcmin, then the area aj can be assigned to
at most k j vehicles.

When there are two or more vehicles scheduled to transfer high-risk individuals in an area,
we have the fourth rule:

R4. If an area aj is assigned to two or more vehicles, then the vehicle first arrives at aj should load
individuals in aj as much as possible in the first round.

That is if the available capacity of the vehicle first arrives at aj is not smaller than bj, it should
load all bj individuals; otherwise, should use up its capacity in the first round.

Finally, the fifth rule generalizes the application scope of the above four rules:

R5. Whenever a vehicle has been scheduled, the rules R1–R4 still apply to the remaining subproblem.

In general, we first determine the schedule of the vehicle with the minimum capacity without
violating R1–R4, and then recalculate cmin of the remaining vehicles; this process recursively continues
until all vehicles have been scheduled. For the convenience of applying these rules, without loss of
generality, we assume that all vehicles in V have been sorted in nondecreasing order of ci.

3.3. Solution Evaluation

As our objective is to reduce the transmission risk associated with the individuals during their
exposure, we need to calculate the exposure duration of each high-risk individual, i.e., the time period
before he/she is loaded into a quarantine vehicle. We first consider a simplified version where each
area is only assigned to one vehicle. For each vehicle vi, its arrival time at its first area axi,1 is:

τi,1 = ti,xi,1 (1)

The capacity of vi when it arrives at axi,1 is:

ci,1 = ci (2)

If bxi,1 ≤ ci,1, then vi can load all bxi,1 individuals at a time and then leave the area; otherwise,
according to the rule R2, vi should go back and forth between the area and isolated region for ki,1
times, where

ki,1 = b
bxi,1

ci
c (3)

Here, bxc takes the largest integer smaller than or equal to x, and dxe takes the largest integer
larger than or equal to x.
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Consequently, the time at which vi finally leaves xi,1 is

τ′i,1=

τi,1+(bxi,1−1)4ti,xi,1 , bxi,1≤ ci,1

τi,1+2ki,1t′i,xi,1
+(bxi,1−1)4ti,xi,1 , bxi,1 > ci,1

(4)

The arrival time and capacity at the next area can always be calculated based on the leaving time
and capacity of the previous area:

τi,j+1=

τ′i,j + ti,xi,j ,xi,j+1 , yi,j =0

τ′i,j + t′i,xi,j
+ t′i,xi,j+1

, yi,j =1
(5)

ci,j+1=

{
ci,j − (bxi,j mod ci), yi,j =0

ci, yi,j =1
(6)

The number of times that vi goes back and forth between the next area and isolated region
depends on the intermediate decision and remaining capacity at the previous area:

ki,j+1=


0, yi,j =0∧ bxi,j+1≤ ci,j

1 + b
bxi,j+1−ci,j

ci
c, yi,j =0∧ bxi,j+1 > ci,j

b
bxi,j+1

ci
c, yi,j =1

(7)

By analogy, the time at which vi finally leaves xi,j is

τ′i,j =

τi,j+(bxi,j−1)4ti,xi,j , bxi,j≤ ci,j

τi,j+2ki,jt′i,xi,j
+(bxi,j−1)4ti,xi,j , bxi,j > ci,j

(8)

The total transmission risk is evaluated as the sum of exposure durations of all high-risk
individuals. For each area axi,j , the exposure duration of the first individual is τi,j, each next individual
in the first round needs to wait another period of4ti,xi,j , and the exposure duration of each individual
in subsequent rounds should take the travel time of vi between the area and the isolated region into
consideration. Consequently, the sum of exposure durations of individuals in the area can be calculated
by Equation (9).

Txi,j =

bxi,j

(
τi,j+

bxi,j−1
2 4ti,xi,j

)
, bxi,j≤ ci,j

bxi,j

(
τi,j+

bxi,j−1
2 4ti,xi,j

)
+ ki,jt′i,xi,j

(
2bxi,j−(ki,j+1)ci,j

)
, bxi,j > ci,j

(9)

The main difficulty lies in the case when an area is assigned to two or more vehicles. Let A+ be the
set of such areas and V(a) be the set of vehicles to which the area a is assigned. We use the following
procedure to deal with this difficulty.

1. Initialize Txi,j = 0 for all i and j, and initialize a set A[= {ax1,1 , ax2,1 , . . . , axm,1}, i.e, A[ consists of
the areas to be first visited by the vehicles.

2. Select from A[ the area a∗ with the earliest arrival time.
3. If a∗ /∈ A+, i.e., all b∗ individuals can be loaded in one round, then use Equations (5)–(9) to

calculate the sum of exposure durations of individuals in a∗ and the arrival time and capacity of
the corresponding vehicle at the next area.

4. Otherwise, let vi∗ be the first vehicle arriving at a∗, b∗ be the number of individuals in a∗, j∗ be
the index of a∗ in the sequence of vi∗ , and b′=min(b∗, ci∗), i.e., the number of individuals that
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can be loaded by vi∗ in the current round. We first increase Txi∗ ,j∗ by the exposure durations of
individuals loaded by vi∗ in this round:

Txi∗ ,j∗ =Txi∗ ,j∗+b′
(
τi∗ ,j∗+

b′−1
2
4ti∗ ,xi∗ ,j∗

)
(10)

and then update the number of remaining individuals in a∗ as

b∗=b∗ − b′ (11)

(4.1) If b∗>0, temporally update the arrival time of vi∗ after the current round of transfer:

τi∗ ,1=τi∗ ,1 + (b′−1)4ti∗ ,xi∗ ,j∗ + 2t′i,xi∗ ,1
(12)

and then go to step 2).
(4.2) Otherwise b∗=0, use Equations (5) and (6) to calculate the arrival time and capacity of vi∗ at

the next area.
(4.3) For each other vi′ ∈V(a∗), restore its arrival time at a∗ to the value of the previous round

(if exists, because after returning to the isolated region, vi′ can directly go to the next area
instead of revisiting a∗), and use Equations (5) and (6) to calculate its arrival time and capacity
at the next area.

5. Remove a∗ from both A+ and A[; if a∗ is not the last area in the sequence, add the next area to A[.
6. Go to step 2) until A[ is empty.

For illustration, consider a simple example shown in Figure 2. Suppose that x1 = {1, 2, 3},
y1 = {0, 1}, x2 = {2, 3}, y2 = {1}. According to the above procedure, A[ is initialized as {a1, a2},
for which we have τ1,1 = 5 and τ2,1 = 10. In the first iteration, we select a∗= a1 and i∗= 1, and then
calculate

b′ = 10

T1 = 10(5 + 0.5(10−1)/2)=72.5

τ′1,1 = 5 + 0.5(10−1) = 9.5

τ1,2 = 9.5 + 10=19.5

In the second iteration, we have A[={a2}, a∗= a2 and i∗=2, and then calculate

b′ = 20

T2 = 15(10 + 0.5(20−1)/2)=221.25

τ2,2 = 10 + 0.5(20−1) + 2 × 5=29.5

In the third iteration, we select a∗= a2 and i∗=1, and then calculate

b′ = 5

T2 = 221.25 + 5(19.5 + 0.5(5−1)/2)=323.75

τ′1,2 = 19.5 + 0.5(5−1)=21.5

τ1,3 = 21.5 + 5 + 10 =36.5

As now b∗ = 0, we restore τ2,2 = 10 and recalculate τ′2,2 = 10 + 0.5(20−1) = 19.5 and τ′2,3 =

19.5 + 5 + 10 = 34.5. Similarly, in the remaining iterations, individuals in a3 are first transferred by v2

followed by v1.
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v1 (c1=15) v2 (c2=20) 

Isolated region

a1 (b1=10) a2 (b2=25) 

a3 (b3=25) 

5 10

5 5

10

10
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Figure 2. A simple problem instance with two vehicles and three areas. We assume that the vehicles
have the same velocity, and the label on a line denotes the travel time between two areas; we also
assume that the loading time interval4tj is 0.5 for all three areas.

The objective of the problem is to minimize the sum of exposure durations of all individuals, and
hence the problem are formulated as

min f (X, Y) =
n

∑
j=1

Tj (13)

s.t. Equations (1)–(12)
m⋃

i=1

xi = A (14)

1 ≤ xi,j ≤ n, 1≤ i≤m; 1≤ j≤ni (15)

yi,j ∈ {0, 1}, 1≤ i≤m; 1≤ j≤ni−1 (16)

Due to the inclusion of Y into the decision, the considered problem is significantly more complex
than the basic VRP.

4. Method

In a large-scale epidemic, we often need to schedule multiple vehicles to transfer hundreds to
thousands of high-risk individuals distributed in many areas. The solution space of such a problem
instance is huge, for which exact algorithms such as branch-and-bound can be impractical, and most
metaheuristics for VRPs also converge slowly and cannot produce a satisfactory solution within a
short response time.

To efficiently solve the problem, we adopt the WWO metaheuristic [3], which uses a small-size
population (typically of 5–10 solutions) and hence requires low computational resources. We adapt
the operators of WWO to evolve solutions to the problem, and develop a gradual neighborhood
search method to improve solution accuracy. Algorithm 1 presents the pseudocode of the algorithm
framework and the following subsections describe its operators in detail.
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Algorithm 1: The hybrid WWO and neighborhood search algorithm for the quarantine vehicle
routing problem.

1 Use the procedures described in Section 4.1 to initialize a population P of solutions;
2 while the stopping condition is not met do
3 foreach solution Z=(X, Y) in the population do
4 Calculate the wavelength of Z according to Equation (17);
5 for d = 1 to NX do
6 Let d̂= rand(1, nX);
7 Reverse the subsequence X[d, d̂];

8 Call Algorithm 5 to improve the direction vector Y according to the new sequence vector X;
9 Call Algorithm 4 to improve the new solution Z by balancing the areas among the subsequences;

10 if Z is better than the original solution then
11 Replace the original solution with Z in the population;
12 if Z is the newly found best solution then
13 for i = 1 to m do
14 for k = 1 to dαnie do
15 Clone Z to a new solution Z′;
16 Swap two randomly selected areas in xi;
17 if Z′ is better than the Z then
18 Let Z = Z′;

19 Update the population size;

20 return the best solution found so far.

4.1. Solution Encoding, Initialization, and Improving

In the proposed hybrid algorithm, each solution is represented by two vectors, X={x1, x2, . . . , xm}
(which we call the sequence vector) and Y = {y1, y2, . . . , ym} (which we call the direction vector),
each of which consists of m sub-vectors. To split two adjacent subsequences in X, we insert a symbol
‘0’ between them.

The algorithm starts by randomly initializing a population P of solutions. To create a random
solution, we first generate X as a random permutation of n areas and then randomly select m−1
positions to insert separators ‘0’, and thus obtain m subsequence vectors for m vehicles. As an area
may be assigned to multiple vehicles, we check X and select all areas satisfying bxi,j < ci, the set of
which is denoted by A†. For each aj∈A†, let c(j) be the total capacity of vehicles to which aj has been
assigned, we use (bj−c(j))/bj as the probability that aj will be assigned to more vehicles, and this
probability-based assignment is recursively applied until there are no remaining individuals in aj,
as shown in Algorithm 2.

Next, we generate Y by using the procedure shown in Algorithm 3 to determine the direction yi,j
on each area xi,j (1≤ i≤m). That is, the probability of the vehicle vi goes from aj to the isolated region
is proportional to its loading rate (a fully-loaded vehicle must go to the isolated region).

Usually, a randomly generated solution has much room for improvement. An obvious case is
that when a vehicle has completed its job, another one still has many areas to visit. We use the greedy
procedure shown in Algorithm 4 to tentatively improve a solution by continually moving an area
from the sequence of the vehicle with the maximum completion time to that of the vehicle with the
minimum completion time.
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Algorithm 2: The procedure for assigning the individuals in an area to probably more than one
vehicle.

Input: area aj and vehicle vi to which aj is initially assigned
1 Let b′j = bj − ci, V(aj) = {vi};
2 while b′j > 0 do
3 if rand() > b′j/bj then
4 return;

5 else
6 Randomly select a vehicle vi′ from V\V(aj);
7 Insert aj into xi′ ;
8 b′j ← b′j − ci′ ;

9 V(aj)← V(aj) ∪ {vi′};

Algorithm 3: The procedure for generating the direction vector.
Input: subsequence xi and the beginning dimension j0 (set to 1 by default)

1 Let j = j0;
2 while j < ni−1 do
3 if bxi,j = ci then
4 yi,j ← 1;

5 else if bxi,j < ci and rand() < bxi,j /ci then
6 yi,j ← 1;

7 else
8 if rand() < 0.5 then yi,j ← 1;
9 else yi,j ← 0;

10 j← j + 1;

Algorithm 4: The procedure that improves a solution by balancing areas among vehicles.

1 while true do
2 Let viL be the vehicle with the minimum completion time and viU be that with the maximum

completion time;
3 Among all areas that are assigned to viU but have not been visited by viU before the completion time

of viL , select an area aj with the minimum tiU (j) calculated as follows:

tiU (j)=

τiU ,niU
+tiU ,xiU ,niU

,j, ciU ,niU
>=bj

τiU ,niU
+t′iU ,xiU ,niU

+t′iU ,j, otherwise

Move aj from xiU to the end of xiL ;
4 if the completion time of viL is later than that of viU then
5 Undo the last movement and return;

4.2. Water Wave Optimization for Evolving Solutions

WWO is a metaheuristic that takes inspiration from natural wave motions and has exhibited
state-of-the-art performance in solving a variety of continuous, combinatorial, and constrained
optimization problems [3,44,45]. In WWO, a solution is analogous to a wave, which has a wavelength
inversely proportional to the solution fitness. The better (worse) the solution, the smaller (larger)
the range in which the solution explores. As the problem is to minimize the objective function
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Equation (13), we employ the following equation to calculate the wavelength λ(Z) of each solution
Z=(X, Y):

λ(Z) =
f (Z)

∑Z′∈P f (Z′)
(17)

The original WWO has three evolutionary operators: propagation, refraction, and breaking. Here,
we adopt the strategy of improved WWO that discards refraction and reduces the population size
with an increasing number of generations. We adapt the propagation operator to evolve a solution
Z = (X, Y) to this problem as follows: let nX = ∑m

i=1 ni be the total length of X, for each dimension
d < nX, with a probability of λ(Z), reverse a subsequence from dimension d, where the length of
the subsequence is randomly set between [1, nX−d]. Note that if the subsequence does not contain
a separator, then the reversal only changes the route of one vehicle, but does not change the set of
areas assigned to the vehicle; otherwise, it changes the routes of and reassigns the areas among two
or more vehicles; in particular, after a reversal, it is probable that an area occurs in a subsequence
more than once, and in such a case we remove the duplicates. The expected number of reversal on the
solution is λ(Z)nX , so a high (low) fitness solution will be changed to a short (large) extent. If the best
resulting solution is better, it will replace the original one in the next generation. The pseudocode of
the propagation operation is given in Lines 5–7 of Algorithm 1.

The breaking operator is conducted only on each newly found best solution Z∗=(X∗, Y∗). It tries
to improve each subsequence x∗i by performing a local search for dαnie times, each swapping two
randomly selected areas in x∗i , where α is a control parameter less than 1. Among dαnie swaps, the best
resulting one, if decreasing the total exposure time, is retained in x∗i . The pseudocode of the breaking
operation is given in Lines 14–19 of Algorithm 1.

4.3. Gradual Neighborhood Search for Direction Improving

The purpose of the gradual neighborhood search method is to fine-tune the direction vector Y
of each solution Z=(X, Y). For each sub-vector yi, the method gradually performs at most (ni−1)
neighborhood search operations, each changing the decision yi,j (if the current capacity of vi allows)
and then updating the subsequent dimensions from j + 1 to ni−1 according to the heuristic described
in Algorithm 3. If the best neighboring sub-vector is better than the original sub-vector yi, it will
replace yi in the solution. Algorithm 5 presents the pseudocode of the gradual neighborhood search
method.

Algorithm 5: The gradual neighborhood search method for improving the direction vector of a
solution.
1 for i = 1 to m do
2 Let y′i = yi;
3 for j = 1 to ni−1 do
4 if yi,j =1 and ci,j≥ ci then
5 continue;

6 yi,j ← 1−yi,j;
7 Call Algorithm 3 to regenerate the subsequent dimensions from j + 1 to ni−1;
8 if the total exposure time of xi with y′i is better then
9 yi ← y′i ;

5. Results and Discussion

We test the proposed method on seven real-world instances of vehicle routing for transferring
high-risk individuals in Hangzhou, China, from 28 January to 3 February 2020, the peak period of the
COVID-19 epidemic in the city. Table 2 summarizes the basic characteristics of the seven instances.



Int. J. Environ. Res. Public Health 2020, 17, 2275 12 of 17

Table 2. Summary of the basic characteristics of the seven real-world instances. b̄: average number of
individuals per area; KV : number of types of vehicles; c̄: the average capacity of vehicles; t̄: average
travel time between two areas (in minutes).

ID n m b̄ KV c̄ t̄

J28 27 6 13.9 2 11.0 44.5
J29 60 9 10.8 2 11.0 71.3
J30 127 16 10.4 4 10.5 60.7
J31 191 16 8.4 4 10.5 35.7
F01 93 15 10.6 4 10.8 54.2
F02 102 15 10.3 4 10.8 39.3
F03 98 12 8.2 4 9.3 48.2

To validate the performance of the hybrid WWO and neighbor search algorithm, we compare it
with the following five methods:

• A greedy heuristic method, which always makes each vehicle move to the closest area with
untransferred individuals. This method was used by most emergency management officers in the
past.

• A standard integer programming algorithm implemented by CPLEX solver (version 12.6, with the
automatic cut generator switched on).

• An ACO algorithm based on [19], which uses an artificial ant to construct and iteratively improve
the tour of each vehicle.

• A memetic algorithm combing GA and local search for multi-trip VRP, in which a vehicle can go
back to the depot and be re-loaded [46]. We adapt the algorithm for our problem by changing the
objective function from the total travel time to the total exposure time.

• A tabu search algorithm for VRP with split deliveries and pickups [47].

The computational environment is a workstation with an i7-6500 2.5GH CPU, 8GB DDR4 RAM,
and an NVIDIA Quadro M500M card. In each instance, as it is required to produce a solution within
ten minutes, the maximum CPU time of each algorithm is set to 600 seconds. The last four algorithms
are stochastic; in a real-world application, we typically run an algorithm once, or simultaneously run
several instances of the algorithm with different random seeds and submit the best solution obtained
to the decision-maker. However, to make the comparison more objective, we make up the number of
runs of the ACO, memetic, tabu search, and WWO algorithms to 30 after the application.

Table 3 presents the results in terms of the average exposure time (in minutes) obtained by
the algorithms on the test instances. For the last four algorithms, we present both mean value and
standard deviation (in parenthesis). Figure 3 also illustrates the comparative results, where the
maximum and minimum values obtained by WWO are given by error lines. As we can observe,
the proposed algorithm achieves the shortest average exposure time (shown in bold in Table 3) on
each instance. On instance J28 where the numbers of areas and high-risk individuals are relatively
small, the differences among the algorithms are not significant, and the result of CPLEX is the second
best. However, with an increasing number of areas/individuals, the performance of CPLEX becomes
the worst among all algorithms on the six remaining instances. This is because, for large instances,
the exact algorithm of CPLEX can only explore a very small fraction of the solution space within the
limited running time. The ACO algorithm performs the worst on instance J28, but it outperforms
Greedy and CPLEX on the remaining instances. The memetic algorithm performs the second-worst on
J28, the second-best on J29, and the third-best (below tabu search and WWO) on the last four instances.
This demonstrates that the population-based ACO and memetic metaheuristics can explore the large
solution space in an efficient (if not the most efficient) way. The performance of the greedy heuristic is
unstable, worse than that of CPLEX on J28 and F01 while better than that of CPLEX on the remaining
instances. That is, on some specific instances, the greedy heuristic can sometimes reach a good solution,
but its general performance is far from satisfactory. The tabu search algorithm starts from a greedy
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solution and then iteratively improves it. It performs relatively well on medium-size instances F01, F02,
and F03; on small-size instances, its performance heavily relies on the unstable initial solution; on large
instances, it cannot effectively explore the large solution spaces as the population-based metaheuristics.
The average exposure time obtained by the greedy heuristic method used by the organization in
the past is 337 minutes, while that of the proposed WWO-based algorithm is 206 minutes, which
demonstrates that the proposed algorithm can significantly increase the efficiency of epidemic control.

Table 3. Results of the comparative algorithms on the test instances.

ID Greedy CPLEX ACO Memetic Tabu Search WWO

J28 220 213 236 (14.19) 223 (5.11) 218 ( 8.16) 203 (5.87)
J29 263 284 212 (20.75) 192 (3.88) 208 ( 9.15) 175 (7.20)
J30 351 384 338 (24.52) 295 (10.97) 333 (16.25) 277 (13.49)
J31 363 475 252 (18.39) 226 (12.73) 253 (18.20) 191 (9.28)
F01 416 397 261 (23.30) 257 (15.45) 249 (17.03) 242 (10.07)
F02 306 353 226 (16.06) 207 (14.66) 187 (15.05) 152 (5.25)
F03 390 448 267 (20.40) 251 (17.80) 245 (28.46) 215 (6.70)

100

200

300

400

500

J28 J29 J30 J31 F01 F02 F03

Greedy CPLEX ACO
Memetic Tabu search WWO

Figure 3. Comparative results of the algorithms on the test instances. The horizontal axis denotes the
test instance, and the vertical axis denotes the average exposure time (in minutes).

Inevitably, the exposure time calculated based on the objective function of a solution is not equal
to the actual exposure time obtained by the implementation of the solution. Thereby, we compare the
calculated and actual exposure times on the test instances in Figure 4, from which we can observe
that, except on F01 the calculated time is longer than the actual time, on each remaining instance the
actual time is longer. This is because the solutions obtained by our algorithm have high qualities,
i.e., they schedule the vehicles in an efficient and “compact” way; when a vehicle is delayed by an
unexpected incident, many areas (especially those requiring multiple rounds of transfer) may be
seriously affected, which can cause a significant increase of the total exposure time. Nevertheless,
the calculated time does not deviate much from the actual time, which demonstrates the feasibility
and accuracy of the solution produced by our approach.
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Figure 4. Comparison of the calculated and actual average exposure times on the test instances.
The horizontal axis denotes the test instance, and the vertical axis denotes the average exposure time
(in minutes).

In summary, the application of our method can be divided into the following steps.

(1) In preparation for an epidemic, establish a database to manage the information of quarantine
vehicles, services for medical isolation, and routes from most densely populated areas to the
isolated regions;

(2) Whenever there are requirements for high-risk individual transfer, input the number and
distribution of individuals, and run the algorithm;

(3) Arrange staffs to prepare the vehicles (typically, during the execution of the algorithm);
(4) Within the response time, take the best-known solution found by the algorithm, and send it to

the staffs for implementation;
(5) Monitor the operations; if the implementation deviates from the plan, or new requirement comes,

adjust the current solution or run the algorithm to solve the new instance.

In practice, we must pay attention to the changes in information, including traffic conditions,
vehicle conditions, and the number of high-risk individuals, and appropriately respond to the
changes. For example, if the number of individuals in an area increases a small amount during
the implementation of an existing solution, we typically make the vehicle for this area to transfer the
new individuals and, if the vehicle is delayed too much, the last area(s) of the vehicle can be reassigned
to other vehicle(s) that have completed their jobs. However, if the number of individuals increases a
large amount, we often need to construct and solve a new instance for the remaining tasks.

6. Conclusions

Transferring high-risk individuals to an isolated region in a timely manner is critical for epidemic
control. In this paper, we present a problem of scheduling quarantine vehicles to transfer high-risk
individuals from a set of dispersed areas to an isolated region, which is more difficult than most existing
VRPs. To solve this problem, we propose a hybrid WWO and neighborhood search algorithm, which
adapts the WWO metaheuristic to efficiently explore the solution space and utilizes neighborhood
search to improve the solution accuracy. Computational results demonstrate that the proposed
algorithm significantly outperforms several existing algorithms and obtains high-quality solutions on
the test instances.

Currently, our problem assumes that available drivers for quarantine vehicles are sufficient.
During the peak period of COVID-19, we found that this assumption holds for the instances in
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Hangzhou and many other cities in China, but does not hold for that in Wuhan, the epidemic center
where the number of high-risk individuals is huge and hence a vehicle should have several drivers in
rotation. Therefore, an ongoing study is to include the scheduling of drivers in our problem. Our future
work will integrate more other components, such as combining the use of electric and fuel vehicles [48],
early primary screening and automatic grading of individuals [49], to enhance the effectiveness of
epidemic control.
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