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Abstract: Lead (Pb) toxicity has been a subject of interest for environmental scientists due to its toxic effect 

on plants, animals, and humans. An increase in several Pb related industrial activities and use of Pb 

containing products such as agrochemicals, oil and paint, mining, etc. can lead to Pb contamination in the 

environment and thereby, can enter the food chain. Being one of the most toxic heavy metals, Pb ingestion 

via the food chain has proven to be a potential health hazard for plants and humans. The current review 

aims to summarize the research updates on Pb toxicity and its effects on plants, soil, and human health. 

Relevant literature from the past 20 years encompassing comprehensive details on Pb toxicity has been 

considered with key issues such as i) Pb bioavailability in soil, ii) Pb biomagnification, and iii) Pb- 

remediation, which has been addressed in detail through physical, chemical, and biological lenses. In the 

review, among different Pb-remediation approaches, we have highlighted certain advanced approaches 

such as microbial assisted phytoremediation which could possibly minimize the Pb load from the 

resources in a sustainable manner and would be a viable option to ensure a safe food production system. 

Keywords: lead toxicity; lead contamination; health hazards; remediation 
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1. Introduction 

Lead (Pb) is a highly noxious, non-disintegrative heavy metal with a bluish-gray color, an atomic 

number of 82, molecular weight 207.2, density 11.34 g/cm3, and a melting point of 621.43 °F. It can be easily 

shaped, molded, and used to form alloys through mixing with other metals. It can exist in both organic as 

well as inorganic form. The inorganic Pb dominantly occurs in dust, soil, old paint, and other different user 

products, while organic Pb (Tetra-ethyl Pb) is predominantly found in leaded gasoline. Both of these forms 

of Pb are toxic, however organic Pb-complexes are excessively toxic to biological systems compared to 

inorganic Pb [1]. Pb is the second most toxic metal after Arsenic (As), comprises 0.002% of Earth's crust 

[2,3], and its natural level remains to be below 50 mg kg−1 [4]. Although earlier literature did not focus on 

the biological importance of Pb, recent findings suggest that traces of Pb (~29 ng/g diet) is important for 

enzyme activities and cellular systems, especially during cell development, hematopoiesis, and 

reproduction [5]. 

In general, Pb salts/oxides through atmospheric dust, automobile exhaust, paint, polluted food, and 

water are the key pathways for human exposure. The food canning industry is also an important source of 

Pb intake due to its leaching ability into canned foods. Currently, humans are exposed to Pb through dust 

particles from soil transmitted into homes and/or drinking water. Lead is considered carcinogenic (Group 

2B) to humans [6]. Humans are impacted by Pb primarily through ingestion as 20–70% of ingested Pb is 

absorbed by the human body. Children have a high absorption capacity of Pb [7,8]. 

Enhanced Pb concentration in blood affects behavior, cognitive performance, postnatal growth, delays 

puberty, and reduces hearing capacity in infants and children. In adults, Pb causes cardiovascular, central 

nervous system, kidney, and fertility problems. During pregnancy, Pb can also hamper fetal growth in the 

early stage [1,3]. The Commission Regulation E.C., No 1881/2006, documented the Pb concentration (0.3 

mg kg−1) thresholds for different agriculture products such as leafy vegetables and fresh aromatic herbs [9]. 

Pb sources, their inclusion in soil, Pb bioavilability to plants, soil role for Pb transfer to plants, plant toxicity 

and accumulation mechanism, Pb effect on plants and humans, and different remediation technologies are 

basically covered in the present review. The main objective of this review is to summarise the research 

updates on Pb toxicity, bioavailability, and its imposed toxic effects on plants and on human health, 

including recently tested/recommended remediation options. 

2. Methodological Approach for Selecting and Reviewing the Literature in a Meaningful Way for 

Targeting Specific Objectives 

2.1. Collection, Compilation, and Identification of Relevant Literature for the Study 

The criteria for selection of recent literature for targeting up-to-date information on the topic was done 

through search string/keywords such as "Lead", "sources of Lead", "Lead toxicity", "bioaccumulation of Pb 

in food and human", "toxic forms of Pb", "Pb tolerance in human and plants", "health effect of Pb toxicity", 

and "Pb remediation". The extensive search of existing literature on the specific keywords was performed 

to collect the data from Scopus, Science Direct and Google scholar, MDPI, and other academic university 

websites. Three important criteria were considered for addressing relevant updated information i) peer-

reviewed, ii) highly cited (i–10), and iii) articles appearing in journals with a minimum impact factor (>1.0, 

Thomson Reuters) iv) few articles except the above listed criteria based on recent/specific information was 

also included. The selection criteria/rules were adopted and modified from Sandin and Peters [10]. 

2.2. Extraction of Data and Data Representation 

All the available relevant literature was studied carefully based on the key objectives of the present 

review. Omission of work was based on literature that was published before 2000, was without quantitative 

results, non-English, and/or was general/duplicate/similar in nature, which did not fit the questions of this 
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review. Later, the results from all representative literature published from the year 2000 onwards were 

extracted and represented in tabular form. 

3. Sources of Pb Contamination in Soil, Crops, and Water Resources 

Pb contamination in air, soil, and water resources has been associated with natural causes, such as 

geochemical weathering, sea spray emissions, volcanic activity, and remobilization of sediment, soil, and 

water from mining areas [11–13]. Table 1 represents the various sources of lead contamination in 

agricultural soils, crops, and water in different countries/regions of the world. It is evidenced in Table 1 

that the anthropogenic products and processes (such as industrial, oil-processing activities, agrochemicals, 

paint, smelting, mining, refining, informal recycling of lead, cosmetics, peeling window and door frames, 

jewelry, toys, ceramics, pottery, plumbing materials and alloys, water from old pipes, vinyl mini-blinds, 

stained glass, lead-glazed dishes, firearms with lead bullets, batteries, radiators for cars and trucks, and 

some colors of ink) are considered to be major sources of Pb contamination in the environment [14–21]. 

Pb is available in soil/sediments as a free metal ion, is associated with inorganic molecules (e.g., HCO3−, 

CO32−, SO4 2−, and Cl−), and can also exist as organic ligands (e.g., amino acid, fulvic acid, and humic acid). 

Pb can also be adsorbed onto particle surfaces such as biological material, oxides of iron, clay particles, and 

organic matter [22,23]. In general, a higher concentration of anthropogenic Pb accumulates on the soil 

surface and can decrease with depth [24]. Pb has a high affinity with organic and colloidal materials and, 

thereby, is readily available for plant uptake [25]. 

Table 1. Table of Pb contamination in agricultural soils, crops, and water in different countries [18]. 

Sources Contaminati-on Plant Species Region References 

Wastewater of Shitalakhya 

river 

Soil and 

vegetables 

Amaranthus lividus, Basella alba, 

Cucurbita moschata, Spinacia oleracea, 

and Trichosanthes cucumerina  

Bangladesh [26] 

Wastewater treatment plant 
Soil, water, and 

crops 

Eruca sativa, Madia sativa, Malus 

sylvestris, Triticum æstivum, Triticum 

turgidum, Urtica dioica, and Vicia faba 

Morocco [27] 

Mine affected area 
Soil and 

vegetable 

Amaranthus dubius, Ipomoea aquatic, 

Ipomoea batatas, Phaseolus vulgaris, 

Piper nigrum, Solanum lycopersicum, 

and Solanum melongena  

China [28] 

Sewage water Soil and crop Oryza sativa Iran [29] 

Agricultural/Urbanisation 

activities 

Water and 

sediments 
Lemna minor India [30] 

Urbanization 
Soil, water, and 

vegetables 

Brassica oleracea, Momordica charantia, 

Phaseolus vulgaris, Raphanus 

raphanistrum, Solanum lycopersicum, 

and Triticum aestivum  

China [31] 

Anthropogenic activities 
Soil and 

vegetables 

Cucurbita maxima, Lagenaria siceraria, 

Solanum melongena, and Spinacia 

oleracea  

Pakistan [32] 

Glass industry 

Soil and 

agricultural 

crops 

Brassica juncea, Hordeum vulgare, and 

Triticum aestivum 
India [33] 
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4. Pb Bioavailability in Soil and Its Influencing Factors 

Lead bioavailability in soil is strongly controlled by its species, especially free-Pb ions concentration 

[22,34]. Plants absorb lead in dissolved form via the soil solution [25]. Moreover, the concentration of the 

free lead ion in soils depends on its physical process (e.g., adsorption/desorption) [23]. 

The behavior of lead species (bioavailability, mobility, and solubility) in soil is controlled by complex 

interactions of different biogeochemical factors [25]. These factors are redox conditions [35], pH [23,36], 

cation-exchange capacity [23], soil mineralogy, biological and microbial conditions [2], lead quantity 

[26,37,38], inorganic and organic legend concentration [22,34,39], competing cation concentration [40,41], 

and the type of plant species involved [37]. The behavior (uptake rate) of lead species in soil and plants is 

influenced by either biogeochemical factor independently or in combination with geochemical factors. The 

effects of some factors on Pb bioavailability are summarized below: 

4.1. Soil pH 

Soil pH is the most important factor that controls Pb availability to plants. Soil pH dictates Pb 

availability in soil as a negative correlation between Pb solubility and soil pH is noticed [42]. In acidic soil 

(pH < 7), Pb exists as aqueous Pb(H2O6)+2, while in alkaline soil (pH > 7), Pb forms aqueous complexes with 

OH− (hydroxyl ions). Specific adsorption of Pb is directly proportional to soil pH [16,43]. At a low soil pH 

(3–5), adsorption is the dominant process, whereas at a high pH (6–7), precipitation is the dominant process 

[16,44]. 

4.2. Soil Redox Potential 

Redox potential controls Pb dynamics in soil. The solubility of Pb is inversely proportional to soil 

redox potential (i.e., Pb solubility increases along with a decrease in soil redox potential). Generally, heavy 

metals dissolve easily in waterlogged soils. Pb was dissolved by acetic acid in highly impeded drainage 

soil (1.9 μg g−1) as compared to freely drained soils (0.1 μg g−1) in a region of slate bedrock [16]. 

4.3. Soil Texture 

Soil texture significantly affects Pb solubility. In Clay soils, heavy metal ions are adsorbed through ion 

exchange and specific adsorption mechanisms [45]. Pb adsorption also varies between types of clay 

minerals [16]. For example, the affinity between iolite and Pb is ~32 times higher than montmorillonite [46]. 

Mao et al. [47] observed low Pb adsorption on montmorillonite due to competition between Ca and Pb for 

cation exchange sites on clay. 

4.4. Soil Minerals 

Soil minerals such as Mn and Fe affect Pb solubility in soils. Mn oxides have a high affinity towards 

Pb, thus they significantly decrease Pb uptake by plants grown in Pb contaminated soil [2,16,48–50]. 

O’Reilly and Hochella [50] emphasized that microbial activity is responsible for Pb mobilization from 

oxides and carbonate. Tao et al. [51] reported that earthworms could enhance Pb availability to plants. 

4.5. Nutrients, Organic Carbon, and O2 

These are the essential factors for microbial growth and metabolism and are directly involved in the 

degradation of contaminants. Some of the bioactive nutritional elements include carbon (e.g., backbone of 

all organic compounds), nitrogen (e.g., cellular protein and cell wall component synthesis), phosphorus 

(e.g., cell membrane, ATP, and nucleic acid), sulfur (e.g., amino acid synthesis), calcium (signaling 

transport), and magnesium (e.g., enzymatic activities functioning) [52,53] etc. Zhao et al. [54] concluded 
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that soil physical properties such as permeability and fracturing could also affect Pb dynamics in soils. Li 

et al. [48] elucidated the effect of soil organic matter (OM) on Pb solubility through the formation of 

complexes during metals’ interaction. Kögel-Knabner et al. [49] emphasized that soil OM drives a sizeable 

amount of Pb concentration by the formation of organo-Pb complexes. 

The ion exchange capacity (particularly CEC), pH, ion redox potential, microbial community, texture, 

mineralogy, and organic matter of soils are the key regulating factors that affect Pb dynamics (e.g., 

adsorption, solubility, and mobility) in soil and bioavailability to plants. 

5. Lead Bioavailability/Bioaccessibility in Animals and Humans 

Lead toxicity is an important environmental health hazard and its effects on the human body are 

devastating. Total Pb in a human body is subject to environment, age, and occupation. It is estimated that 

a person weighing 70 kg will have an average of 120 mg of Pb, with 0.2 mg/L in the blood, 5–50 in their 

bones (in mg/kg), and 0.2–3 in tissues [55]. The Center for Disease Control and Prevention (USA) has set 

the standard elevated blood Pb levels for both adults and children (10 μg/dL and5 μg/dL, respectively) [56]. 

Bioavailability (BA) is an ingested fraction that crosses the gastrointestinal epithelium and is 

distributed into internal tissues and organs [57]. Bioavailability of Pb was established through in-vivo 

models such as in mice (Mus), monkeys (Cercopithecidae), rabbits (Oryctolagus cuniculus), rats (Rattus), and 

swine (Sus scrofa). However, extrapolation of the in-vivo models into human has not provided a realistic 

effect due to their physiological differences and species diversity. In-vivo experiments are much simpler 

than epidemiological studies because they are cheaper, faster, highly reproducible, and do not involve 

ethical issues. However, critical parameters (e.g., exposure levels, conditions, and absorbed Pb 

concentration) need to be considered while performing in-vivo specimen evaluation. The following key 

factors are to be considered for decision making in public health issues using in-vivo models: (a) specific 

features and limitations of the model; (b) targeting the human population in the design of animal studies 

at developmental stage; (c) the use of acceptable environmental doses, and (d) Pb speciation. In-vitro 

studies such as Relative Bioavailability Leaching Procedure (RBALP), Unified Bio-accessibility Research 

Group Europe Method (UBM), Solubility Bio-accessibility Research Consortium assay (SBRC), 

Physiologically Based Extraction Test (PBET), In Vitro Gastrointestinal (IVG) Method, and the In Vitro 

Digestion Model (RIVM) can be used to measure Pb bioaccessibility [58]. Pb relative bioavailability (RBA) 

refers to the comparative bioavailability of different Pb forms that are available in source substance [58]. 

For estimating the relative bioavailability of Pb, a reference material such as Pb acetate can be used. Lead 

RBA in soil can be measured by either blood or tissues (kidney, liver, and femur) [58,59]. Deshommes et al. 

[60] conducted an in-vivo experiment on Pb particles (especially particulate Pb forms including those in 

paint and dust and those in drinking water supply systems) and stated that the relative bio-accessibility 

leaching procedure (RBLP) offers the highest degree of validation and simplicity in animal models. 

Literature suggests that due to unavailability of data and the existing model (e.g., animal model), we 

could not predict/estimate human risk assessment and human absorption of Pb particles, particularly for 

childhood exposure assessment, e.g., neuro-behavioral and neuro-developmental deficiencies, and the 

effects on growth, hearing, and blood pressure. 

6. Lead Transportation, Toxicity, and Bioaccumulation Through Food Chain Contamination 

Lead is one of the most toxic and frequently encountered heavy metals in the environment [34]. 

Different quantitative indices are currently being used to estimate Pb toxicity at trophic levels in the food 

chain (Table 2). Once Pb reaches the soil by any source and penetrates into the plant root system, it may 

accumulate there or may be translocated to aerial plant parts (APP). Pb mostly accumulates (≥95%) in the 

roots of plant species and only a small fraction is translocated to APP. Some of the studied plants species 

with respect to Pb transportation, toxicity, and bioaccumulation are Allium sativum [61], Avicennia marina 



Int. J. Environ. Res. Public Health 2020, 17, 2179 6 of 36 

[62], Pisumsativum, Phaseolus vulgaris and Vicia faba [34,63,64], Lathyrus sativus [65], Nicotiana tabacum [66], 

Sedum alfredii [67], V. unguiculata [68], and Zea mays [69]. 

Generally, plants uptake metal ions from soils through their roots [17,18,20]. Pb from the soil solution 

is adsorbed (unevenly) through roots and is bound with the uronic acid/polysaccharide of rhizoderm in 

many plant species such as Brassica juncea [70], Festuca rubra [71], Funaria hygrometrica [72,73], Lactuca sativa 

[74], and Vigna unguiculata [68]. This adsorbed Pb passively enters in roots and is transported through 

xylem. A concentration gradient was observed near the root apex, except for root cap, where cells are young 

and have thin cell walls with the lowest rhizodermic pH, which enhances Pb solubility in soil solution. 

Table 2. Different indices used to quantify Lead toxicity at trophic levels in the food chain [18]. 

SN Factors Equations References 

1 Trophic transfer factor (TTF) TTF = Pb conc. in organism tissue/ Pb conc. in food [75] 

2 Transfer factor (TF) TF = Pb conc. in plant tissue/ Pb conc. in soil  [76] 

3 Metal transfer factor (MTF MTF = Pb conc. in plant/ Pb conc. in soil [77] 

4 Accumulation factor (AF) AF = Pb conc. in plant edible part/ Pb conc. in soil [78] 

5 
Bioaccumulation factor 

(BAF) 
BAF = Pb conc. in organism tissue/ Pb conc. in abiotic medium [79] 

6 
Bio-concentration factor 

(BCF) 

BCF = (Pb conc. in experimental organism tissues - Pb conc. in the control 

organism tissues)/ Pb conc. in water 
[80] 

7 Biota-sediments AF (BSAF) BSAF = Pb conc. in the organism/ Pb conc. in sediments [81] 

8 
Biomagnification factor 

(BMF) 
BMF = Pb conc. in the organism/ Pb conc. in the organism’s diet [82] 

9 
Trophic magnification factor 

(TMF) 

TMF is calculated from the slope of logarithmically transformed Pb conc. in 

organisms plotted against the trophic levels of the organisms in the food 

web 

[83] 

 

After entering into the roots, Pb moves by apoplast through water stream until it reaches the 

endodermis region. The endoderm functions as a physical barrier to Pb translocation as water stream is 

blocked by casparian strip and, thus, Pb enters into the symplastic movement. The low Pb transportation 

from root to APP has been reported due to immobilization by negatively charged pectins within the root 

cell wall [2,84]. Insoluble Pb salts precipitate in intercellular spaces of root cells [70,84]. Similarly, Pb 

accumulation in plasma membranes of root cells [61,84] or sequestration in the vacuoles of rhizodermal 

and cortical cells of roots is reported [68,84]. The major portion of the absorbed lead is sequestered/excreted 

from endodermis cells during the plant detoxification process. However, the above reasons are not 

sufficient to explain the low Pb translocation from root to APP as plant species such as Brassica pekinensis 

and Pelargonium potentially translocate Pb to APP, without affecting metabolic functions [85,86]. The lead 

hyper accumulator plant species can accumulate >1000 ppm [87]. The roots of hyperaccumulator species 

dissolve metals in soil [86], increase metal uptake and translocation, and make hyperaccumulator species 

to tolerate higher Pb ions concentrations. Apart from this, various detoxification mechanisms include 

selective metal uptake, excretion, complexation by specific ligands, and compartmentalization, which are 

also support for Pb tolerance. 

In addition, Pb translocation to APP increases by organic chelators like ethylene diamine tetra acetate 

(EDTA) and micro-organisms [2,25]. Liu et al. [88] observed higher translocation to APP with increased soil 

Pb level in B. Pekinensis cultivars. This may be due to the potential of high Pb concentrations to destroy the 

casparian strip based physical barrier. 

Xylem helps in the transportation of metals from plant roots to shoots [89], which is probably 

supported by transpiration [90]. Arias et al. [2] demonstrated X-ray mapping and found high Pb deposition 

in xylem and phloem cells on mesquite plants. After penetrating into the central cylinder of the stem, Pb 

can again be transported via the apoplastic pathway and further translocated to leaf areas through vascular 

flow [73]. In xylem, Pb can form complexes with amino/organic acids [87]. However, inorganic Pb can also 
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be transferred. Translocation factor (i.e., lead in aerial parts/leading roots) can be implemented to know the 

degree of Pb translocation [86,88]. After implementing this factor, low numeric values will indicate that 

lead has been sequestered in the roots system [88]. 

The molecular mechanism of Pb entrance in roots is not clear yet. It is believed that several pathways 

can be used by Pb for the same purpose, especially ionic channels. However, Pb uptake is a non-selective 

phenomenon and is independent of the H+/ATPase pump [91]. Lead absorption is inhibited by calcium [92] 

as Pb competes with Ca for calcium channels. Ca2+-permeable channels are important gateways for Pb to 

penetrate into the root system [91,93]. The transgenic plant studies reveal that Pb can also penetrate into 

roots through other alternative non-selective pathways, e.g., cyclic nucleotide-gated ion channels and low-

affinity cation transporters [94]. Comprehensive details for the average lead content in different food crop 

plants are summarized in Table 3. It is noted that higher concentrations of Pb are associated with fruit crops 

(Table 3). 

Table 3. Details for the average lead contents in different crop plants. 

Plant Species Scientific Name Concentration(mg/kg) References 

Vegetable crops 

Coriander Coriandrum sativum 4.5 [95] 

Spinach Spinacia oleracea 0.98–9.2 [96–99] 

Coriander Coriandrum sativum 0.4–75.5 [98,100–105] 

Cabbage Brassica oleracea 0.07–12 [97,104,106–108] 

Radish leaf Raphanus sativus 0.4 [100] 

Amaranthus Amaranthus blitum 23.26 [109] 

Parsley Petroselimum crispum 2.31 [97] 

Slender amaranth Amaranthus viridis 2.56 [101] 

Sugar beet Beta vulgaris L 149.5 [102] 

Slender amaranth Amaranthus viridis 5.44 [110] 

Tomato Solanum lycopersicum 5.5 [99] 

Brinjal Solanum melongena 2.1 [95] 

Cucumber Cucumis sativus 1.5 [95] 

Brinjal Solanum lycopersicum 2.2 [98] 

Raddish Raphanus sativus 0.75 [111] 

Eggplant Solanum melongena 4.93 [112] 

Brinjal Solanum tuberosum 6.19 [112] 

Pumpkin Cucurbita maxima 0.25 [113] 

Chilli Capsicum annuum  0.17 [113] 

Carrot Daucus carota 0.72–7.8 [95–97] 

Sugar beet Beta vulgaris L 26.35 [109] 

Potato Solanum tuberosum 0.012–2.58 [106,107] 

Cauliflower Brassica oleracea 0.36–6.1 [95,97,104] 

Spices Crops 

Aniseed Pimpinella anisum  0.26–5.68 [114,115] 

Bay leaf Cinnamomum tamala 0.98–3.58 [116–118] 

Cardamom Elettaria cardamomum 0.583 [115] 

Cassia Cinnamonum cassia 4.159 [115] 

Curry Murraya koenigii 3.617 [117] 

Dill Anethum graveolens L. 0.81 [119] 

Fennel Foeniculum vulgare 0.316 [115] 

Fenugreek Trigonella foenum-graecum L. 9.38 [114] 

Rosemary Rosmarinus officinalis 10.8 [120] 

Tulsi Ocimum sanctum 4.59 [116] 

Fruit Crops 
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Mango Magnifera indica 0.642–1.620 [121,122] 

Orange Citrus sinensis 26 

[123] 

Pomegranate Punica granatum 28 

Grapes Vitis vinifera 24 

Lemon Citrus limon 29 

Strawberry Fragaria ananassa 10 

Buckthorn Hippophae rhamnoides 20 

Peaches Prunus persica 11 

Banana Musa sp 0.003–0.05 
[122,124] 

Jackfruit Artocarpus heterophyllus 0.017 

Orange Citrus sinensis 0.106 

[125] 
Trengerine Citrus tangernia 0.097 

Banana Musa 0.118 

Papaw Carica papaya 0.072 

Cereals and Legumes Crops 

Pearl millet  Pennisetum glaucum 0.12 [126] 

Sorghum  Sorghum bicolor 0.18 [126] 

Wheat  Triticum aestivum 
0.40 [127] 

0.47 [128] 

Barley  Hordeum vulgare 0.22 [129] 

Quinoa  Chenopodium quinoa 0.37 [130] 

Maize  Zea mays 

0.50 [131] 

0.34 [132] 

0.31 [133] 

Rice  Oryza sativa 
0.52 [134] 

0.89 [135] 

Black gram  Vigna mungo 0.60 [133] 

Lentil  Lens culinaris 0.55 [133] 

Common bean  Phaseolus vulgaris 0.12 [136] 

Soybean  Glycine max 0.08 [137] 

Safflower  Carthamus Tinctorius 0.80 [138] 

Rapeseed  Brassica napus 0.51 [138] 

Sunflower  Helianthus annus 0.57 [131] 
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Accidental soil ingestion is a major Pb exposure pathway for humans inhabited in a Pb polluted area 

[9,139]. However, the intake of Pb contaminated plants has been an important exposure to humans and 

animals [9,139,140]. Edible/wild plants cultivated/grown in the vicinity of phosphate industries can be Pb 

bio-indicators of toxic metals [9]. Inhabitants and workers of these industries/provinces may be exposed to 

Pb contamination. The Pb exposures and blood concentration to these closely inhabited/living populations 

is subject to the season as well as industrial activity. The children's blood lead levels (BLLs) were observed 

to be higher during the summer and early fall [141]. The BLLs are highly significant, are evident in multiple 

locations, periods, and ages, and are population-specific [142,143]. Higher levels were observed (10–60%) 

in warm-weather and levels increased in 2-year-old children, more so than 1 or over 4-year-olds [142,143]. 

Zahran et al. [143] emphasized that lead seasonality must be considered for Pb risk analysis. One health 

concept was proposed to take care of animal, human, and environmental health all together [144,145]. 

7. Mechanistic Understanding of Pb Toxicity and Tolerance in Plants and Humans 

Lead causes a broad range (physiological, morphological, and biochemical) of toxic effects on living 

organism. In plants, Pb toxicity is characterized with impaired chlorophyll (Chl a) production, cell division, 

elongation of root, lamellar organization in the chloroplast, plant growth, seed germination, seedling 

development, and transpiration [67,87]. However, the magnitude of the effects varies and/or depends on 

Pb levels, exposure time, plant stress intensity, and plant developmental stage. Plants have internal 

detoxification mechanisms to deal with Pb toxicity, i.e., complexation by specific ligands, selective metal 

uptake, excretion, and compartmentalization [18,21,61,87]. 

Lead induced oxidative stress is reported to produce reactive oxygen species (ROS) in plants [146,147]. 

These ROS synthesized as a result of oxidative stress in plants can cause deleterious effects such as lipid 

peroxidation, disrupted cell membrane, DNA and protein damage, inhibition of photosynthesis, and 

inhibition of ATP production [148]. To overcome the adverse effects of ROS, plants produce a variety of 

antioxidative enzymes. Lead imposed changes in antioxidative enzyme production of various food crops 

have been well established (Table 4). The activity of antioxidative enzymes, such as superoxide dismutase, 

peroxidase, and ascorbate peroxidase, were positively correlated with Pb content, while Catalase, 

Glutathione reductase, and Glutathione peroxidise were decreased in both leaf and root tissues (Table 4). 

Lead poisoning cases in humans are mostly the result of oral ingestion and absorption via the gut 

[149]. Pb absorption from the gastrointestinal tract is subject to physical characteristics (such as age, 

pregnancy, fasting, and Fe and Ca status) and the physico-chemical nature of the material ingested (e.g., 

size of particles, solubility, mineralogy, and Pb species) [150]. The Pb absorbed in the intestine is further 

carried to soft tissue, e.g., in the liver, kidneys, and bone tissue, where it accumulates over time [149]. The 

main transport processfor Pb to different body tissues from the intestine is via red blood cells, where 

binding takes place between Pb and haemoglobin (HB). Nearly 99% of the Pb in blood is observed in 

erythrocytes, with approximately 1% in both serum and plasma. Distribution of Pb in the organs (the lungs, 

spleen, brain, aorta, renal cortex, bones, and teeth) relies greatly on Pb concentration in plasma rather than 

on the whole blood. The half-life of Pb in blood is estimated to be 35 days, whereas the half-life of Pb in soft 

tissue is estimated to be 40 days. Pb can be resident in bone for up to 30 years and concentrations of Pb in 

teeth and bone grow in proportion to age [149]. The Pb biological half-time is believed to be significantly 

greater in children than in adults. Lead creates chemical bonds with thiol groups of proteins and Pb toxicity 

is believed to inhibit enzymes and subsequently interfere with homeostasis of Mg, Ca, and Zn. Lead-

induced oxidative stress is caused due to Pb poisoning as it disrupts the pro-oxidant/antioxidant cell 

defence system. Antioxidant nutrients, such as vitamins E, C, B6, and B-carotene, and also Zn and Se, are 

believed to combat Pb-induced oxidative stress [151]. 

High levels of Pb absorption are found in children rather than in adults. It is approximated that adults 

may absorb 3–10% of an oral dose of water-soluble Pb, whereas for children, it may be as high as 40–50%. 
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Higher Pb concentrations are found in the blood of children who are Fe- or Ca-deficient than those with 

replete Fe or Ca. Pb absorption may raise during the pregnancy period and over 95% of Pb deposits in 

skeletal bones as insoluble phosphate [149]. According to autopsy studies, cortical bone and teeth together 

account for 90–95% of the body’s Pb burden. The total Pb body burden in the skeleton is 80–95% in adults 

and about 73% in children [149]. Mothers may transfer Pb to the foetus and also to infants during the period 

of breastfeeding [152]. Pb toxicity principally targets the human central nervous system and children’s 

ingestion of large amounts of Pb from the environment, particularly when anaemic, is linked to lower 

intelligence and impaired motor function [149]. 

The Joint FAO/WHO Expert Committee on Food Additives (JECFA) made an estimation of tolerable 

weekly intake based on dose-response analyses and concluded that the provisional tolerable weekly intake 

(PTWI) is linked to a reduction in children's IQ of at least 3 points and systolic blood pressure of 

approximately 3 mmHg (0.4 kPA) higher in adults [149]. When observed in terms of a shift in IQ 

distribution or blood pressure in a population, these changes assume greater importance. The JECFA’s 

conclusion, therefore, was that the PTWI is no longer adequately protective of health and they withdrew 

it. The lack of an indication of a threshold level for key effects of Pb based on the dose-response analysis 

led the JECFA to conclude that a new PTWI considered as health-protective could not be established. The 

JECFA reiterated that foetuses, infants, and children are the subgroups that have the highest sensitivity to 

Pb [150,153] due to the neuro-developmental effects. The European Commission [154] has set guidelines 

for maximum permissible levels of Pb in some foodstuffs (Table 5). Interventions such as eliminating leaded 

petrol, banning the use of Pb in wine bottles, and the discontinuation of soldered cans are seen as an 

important factor in successful reduction of Pb in food. In children, Pb toxicity symptoms are loss of appetite, 

anemia, behavioral changes, delayed mental growth and learning, fatigue, headaches, hyperactivity, 

insomnia, metallic taste, reduced nerve conduction, weight loss, and possibly neuron disorders [155]. The 

behavior changes are irreversible and untreatable as the cerebrum of Homo sapiens has little capability for 

reparation. A daily Pb intake of up to 7 μg/kg body weight or 490 μg of Pb for an adult was accepted by 

WHO, FAO. However, no such guideline is given for infants and children, who are relatively more sensitive 

to low Pb levels [156]. 

In broilers that have high Pb acetate (200 mg/kg) exposure in their diet, these show anorexia, greenish 

diarrhea, leg paresis, weight loss, wing droop, and lethargy symptoms including gross change in kidney, 

spleen, and liver function, gizzard lining, hemorrhages on muscles [157], etc. Gao et al. [157] concluded 

that Pb could alter the expression of selenoprotein related genes in the cartilage tissue of broilers. Rahman 

and Joshi [158] revealed that Pb acetate (i.e., 250–400) in drinking water could lead to reduced feed intake 

and growth indices in broilers due to higher oxidative stress. Pb-induced oxidative stress can also reduce 

antioxidant activities such as catalase, glutathione superoxide dismutase [159], etc. and erythrocytes burst 

due to lipid peroxidation in erythrocytes membranes and may cause hemolytic anemia [160]. Pb could also 

respond to change in the activities and expression of antioxidant enzyme–related genes [161,162]. Most 

animal experiments confirm that Pb transportation in the body occurs through blood circulation and 

accumulates in soft tissues, bones, and other pivotal organs [163]. Bones are a major sink of Pb (~90%) and 

mostly replace calcium, thus decreasing in bone mineral density (BMD) due to Pb exposure [164]. 
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Table 4. Effects of Pb toxicity on activities of different antioxidant enzymes in different plants [16]. 

 

 

Enzymes 
Pb Exposure Level Duration References 

Enhanced Reduced 

Sedum alfredii SOD APX 0–200 μM 14 [63] 

Triticum 

aestivum 

 

SOD, POX, APX CAT 0, 0.15, 0.3, 1.5, 3.0mM 6 [165] 

SOD, POX, CAT, APX - 0, 1, 2, 4mM 3 [166] 

SOD, CAT 
APX, GPX, 

GR 
0, 8, 40 mg L−1 5 [167] 

SOD GPX 0, 500, 1000, 2500 μM 7 [168] 

Oryza sativa SOD CAT, POD 0, 50, 100, 200M 16 [169] 

Triticum 

aestivum 

 

SOD, CAT 
APX, GPX, 

GR 
0, 50, 100, 250, 500 μM 4 [170] 

Zea mays 

 

SOD, APX, GPX, GR  CAT 0, 16, 40, 80 mg L−1 Pb2+ 8 [146] 

APX, DHAR, MDHAR - 0, 16, 40, 80 mg L−1 Pb2+ 1 [171] 

Oryza sativa SOD, APX, GR CAT 0, 10, 50 μM 4 [172] 

SOD: Superoxide dismutase; POX: Peroxidase; APX: Ascorbate peroxidase; CAT: Catalase; GPX: 

Glutathione peroxidise; GR: Glutathione reductase;  MDHAR: monodehydroascorbate reductase; DHAR: 

dehydroascorbate reductase. 

Table 5. Maximum permissible level of Pb in foodstuffs (mg/kg Fresh Weight). 

Lead in Food Stuffs (mg/kg Fresh Weight) Maximum Permissible Level 

Food of Plant Origin 

Rye, grain 0.20 

Wheat, grain 0.20 

Bread - 

Miscellaneous cereals - 

Cabbage 0.30 

Carrot and potatoes 0.10 

Apple 0.10 

Milk chocolate  - 

Food of animal origin 

Carcass meat 0.10 

Offal - 

Fish 0.30 

Fresh water fish, 0.30 

Eggs - 

Milk 0.02 

Dairy products - 

8. Human Health Effects Due to the Consumption of Pb Contaminated Foodstuffs 

Lead enters into the body through pathways like inhalation of wind-blown Pb-laden dust, ingestion 

of Pb contaminated soils, oral intake of Pb contaminated water, and food grown in Pb-contaminated areas. 

Pb accumulation in livestock tissues may also pose a major risk to human health through livestock meat 

consumption [173,174]. After absorption, Pb is distributed in the body through red blood cells (RBC). Pb is 

mostly bound to hemoglobin rather than RBC membrane after entering the cell [175]. The hematopoietic is 

a sensitive system for critical Pb toxicity and may lead to anemia [160]. Histopathological observations 

confirmed that Pb ions are transported to the liver, where they can induce chronic damage to the liver. Pb 

toxicity also increases blood enzyme levels and reduces protein synthesis [176–178]. Pb imposes toxic 
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effects on kidneys through structural damage and changes in the excretory function [176,177,179]. The other 

organ and tissue systems affected due to lead toxicity are the nervous, cardiovascular, and reproductive 

systems [160,175,180]. Pb toxicity imposes mineralizing of bones and teeth, which is a major body burden 

[3]. The International Agency for Research on Cancer (IARC) stated that inorganic Pb is probably 

carcinogenic to humans (Group 2A) based on limited evidence in humans and sufficient evidence in 

animals [181]. Generalized clinical symptoms of Pb poisoning in humans are comprehensively summarized 

in Table 6. 

Table 6. Generalized clinical symptoms of Pb poisoning in humans. 

SL No. Body Organ/SYSTEM Clinical symptoms of Pb Poisoning 

1 Eyes 
Blindness of parts of visual field 

Hallucinations 

2 Ears Hearing loss 

3 Mouth 

Unusual taste 

Slurred speech 

Blue line along the gum 

4 Kidney 
Structural damage and failure 

Changes in the excretory function 

5 Liver 

Jaundice 

Lead-induced oxidative stress 

Decreased liver function 

Microvesicular and macrovesicular steatosis 

Hemosiderosis and cholestasis 

6 Skin Pallor and/or lividity 

7 Central nervous system (CNS) 

Insomnia 

Loss of appetite 

Decreased libido 

Depression 

Irritability 

Cognitive deficits 

Memory loss 

Headache 

Personality changes 

Delirium 

Coma 

Encephalopathy 

8 Reproductive organs 

Sperm dysfunctions 

Pregnancy complications 

Preterm birth 

9 Abdomen/Stomach 

Pain 

Nausea 

Diarrhoea 

Constipation 

10 Blood Anaemia 

11 General 

Malaise 

Fatigue 

Weight loss 

12 Neuro- muscular 

Tremor 

Pain 

Delayed reaction times 

Loss of coordination 
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Convulsions 

Foot or ankle drop 

Seizers 

Weakness 

13 Bones 
Mineralizing bones and teeth 

Decreased bone density 

9. Pb Remediation approaches 

Innovative and site-specific Pb remediation technologies for efficient clean-up of contaminated sites 

are prerequisites for a healthy life and safe food production. There are different (physical, chemical, and 

biological) processes developed to reduce total Pb concentration and Pb bioavailability to mitigate Pb 

accumulation in the food chain [182,183]. 

9.1. Physical Approaches 

9.1.1. Replacement of the Medium (soil/water) 

In this method, the complete or partial replacement of the contaminated resources (soil/water) is done 

based on the magnitude of the contamination [183]. This method of remediation is very useful at a small 

scale at the local level. The biggest challenge for this method is the safe disposal of the contaminated 

soil/water in a cost-effective manner. 

9.1.2. Vitrification 

This method can be applied through both in-situ and ex-situ remediation mechanisms. In vitrification 

methods, soil is melted with the help of a high-temperature process and Pb sequestration achieved in 

solidified vitreous mass [183,184]. Vitrification can be used long-term and effective low volume can be 

obtained for reuse [183]. This is a costly method and may not be suitable for applications in large areas. 

Dellisanti et al. [185] carried out the vitrification of Pb-rich ceramic waste. Wang et al. [186] treated fly ash 

from a municipal solid waste incinerator to radiated heavy metals including Pb. Navarro et al. [187] applied 

vitrification for remediating the hazardous mine wastes from old mercury and Ag-Pb mines in Spain. 

9.1.3. Electrokinetic Remediation 

Electrokinetic remediation is achieved by applying current in the field. This process involves 

techniques such as electrophoresis, electric seepage/electro-migration, electro-osmosis, and electrolysis 

[188]. Kim et al. [189] has shown that contaminated rice soil could be cleaned using an electrokinetic 

technique, which reduces Pb contamination by 19.4% in 4 weeks. Jeon et al. [190] remediated a soil 

contaminated with Pb in a paddy rice crop using EDTA as an electrolyte. The electrokinetic remediation 

technique generates almost nil waste. Electrokinetic remediation is applicable for saturated soils with low 

groundwater flow, requires short repair time and low energy, and provides a complete repair [183]. The 

heterogeneity of soil and treatment depths are the two important limitations of this method. 

9.2. Chemical Approaches 

Various chemical amendments are widely used for immobilization of lead in soil and ground water at 

the field scale (Table 7). 

9.2.1. Chemical stabilization 



Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 14 of 36 

 
 

This method is used to decrease the mobility, bioavailability, and bio-accessibility of heavy metals in 

soil. The immobilizing agents, i.e., biochar (Wheat, Rice, Miscanthus straw biochar, Sugarcane bagasse 

biochar, Holm oak chips biochar), clay minerals (Sepiolite with limestone, Palygorskite, and Bentonite), 

liming materials (Oyster shells and eggshells), metal oxides (Mn oxides and Ferric oxyhydroxide powder 

with limestone), organic composts (Biosolid), and phosphate compounds (Phosphate rock, Calcium 

magnesium Phosphate, and Single superphosphate) were previously used in the chemical stabilization 

process [183], details of which are given in Table 7. Chemical stabilization is a simple, quick, relatively cost-

effective chemical approach by which Pb can be immobilized by adsorption, chemical precipitation, ion 

exchange, and surface complexation mechanisms to limit Pb transport and bioavailability. However, in this 

process, Pb remains in the soil and hence, long-term immobility is recommended. 

9.2.2. Solidification/Stabilization 

Solidification/stabilization (waste fixation) is relatively low cost, low risk, easily implemented, and 

highly resistant to biodegradation with abroad engineering applicability [183]. Soil solidification refers to 

the encapsulation of waste materials in a monolithic solid with high structural integrity [183,191]. Soil 

stabilization is achieved by stabilization of soil contaminants through chemical interaction between Pb and 

binding reagents [192]. Wang et al. [193] and Antemir et al. [194] demonstrated the potential cement-based 

binders in remediating heavy metals including Pb in England. Navarro-Blasco et al. [195] assessed the Pb 

adsorption capacities of calcium aluminate cement. Voglar and Lestan [196] used calcium aluminate 

cement and sulfate resistant Portland cement as binders for Pb immobilization in Slovenian soil. Wang et 

al. [197] assessed Portland cement, ground granulated blast furnace slag, pulverized fuel ash, MgO, and 

zeolite for on-site soil solidification/stabilization of Pb in UK soil. 

9.2.3. Soil Washing 

The soil washing process is achieved by Pb leaching from soil matrix using reagents/extractants such 

as chelating agents, inorganic acids, organic acids, surfactants, and water. The soil mixing with respective 

reagents/extractants is done where extractants transfer Pb from soil to the liquid phase through chelation 

or desorption, chemical dissolution, and ion exchange mechanisms [198]. Soil washing is a rapid, 

permanent, effective chemical method for Pb remediation with long term liability [199]. Hu et al. [200] 

achieved removal of 73% Pb using EDTA as a chelating agent. Wang et al. [201] used iminodisuccinic acid, 

glutamate-N, N-diacetic acid, glucomonocarbonic acid, and polyaspartic acid to extract 53% and 55% Pb 

from Pb-Zn contaminated soil. However, these technologies have certain hurdles for their practical utility 

due to change in soil properties, loss of nutrients, adverse effect of washing chemicals, generation of 

wastewater, and cost of chemicals and their negative impact on the environment. 

Table 7. Chemical amendments for immobilization of lead in soil and groundwater at the field scale [183]. 

SN Amendments 
Immobilization 

Mechanisms 
Observations Reference 

1. Clay minerals 

 Sepiolite + limestone 
Chemical precipitation and 

surface complexation 

The treatment decreased 

exchangeable Pb (99.8%) and 

reduced Pb in brown rice 

(81.2%). 

[202] 

The treatment significantly 

increased soil pH and CEC, 

decreased Pb exchangeable 

[203] 
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fractions, and inhibited Pb 

accumulation in rice. 

 Palygorskite 
Significantly reduced water 

leachable Pb fractions (50%). 
[204] 

 Bentonite 

Reduced Pb exchangeable 

fractions (20.3–49.3%). 

Increased residual portions 

(6.73–10.0%). Pb concentrations 

in the rice roots (5.13–26.7%) 

and shoot (3.73–7.8%) were 

reduced. 

[205] 

2. Phosphate compounds 

 

Phosphate rock 

(Ca10(PO4)6Cl2 

Calcium magnesium 

phosphate (Ca3(PO4)2) 

Single superphosphate 

(Ca(H2PO4)2) 

Pb: Pb phosphate 

precipitation, especially 

pyromorphite-like mineral; 

P fertilizers decreased water 

soluble and exchangeable Pb 

fractions (22.03–81.4%) and 

reduced Pb uptakes (16.03–

58.0%) by a Chinese green 

vegetable. 

[206] 

3. Liming materials 

 Oyster shells and egg shells Chemical precipitation 
TCLP-leachable Pb was 

effectively reduced. 
[207] 

4. Organic composts 

 Biosolid 
Surface complexation and 

chemical precipitation 

The treatment enhanced soil 

pH, cation exchange capacity, 

and humic acids, with 

improved soil sorption 

capacity. The readily soluble Pb 

forms were reduced. 

[208] 

5. Metal oxides 

 
Ferric oxyhydroxide 

powder + limestone 

Specific sorption, co-

precipitation, and inner-

sphere complex 

Pb decreased by 97% in pore 

water. Pb was transformed into 

residual mineral. 

[209] 

 Mn oxides Pb immobilization. [210] 

6. Biochar 

 

Wheat Straw Biochar 

Increase in soil pH, total 

organic carbon, abundant 

functional groups, and 

complex structures of 

biochar leads to reduction in 

heavy metals extractable 

fractions 

The soil extractable Pb was 

decreased. As a result, Pb in 

root tissues was significantly 

reduced. 

[211] 

 

Biochar significantly 

transformed the exchangeable 

Pb fractions into relatively 

stable fractions. 

[212] 

 Sugarcane bagasse biochar 

The exchangeable Pb was 

reduced and the organically-

bound fraction increased with 

increased biochar input. Pb 

bioavailability to plant shoots 

and roots decreased with 

increasing biochar input. 

[213] 

 Holm oak chips biochar 

Biochar stabilized Pb and 

reduced its accumulation in 

barley grain. 

[214] 
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 Rice straw biochar 

Rice straw biochar decreased. 

Pb bioavailability and reduced 

Pb contents in vegetables. 

[215] 

 
Miscanthus (Miscanthus 

giganteus) straw biochar 

CaCl2-extractability of Pb 

significantly decreased with 

increased biochar input. 

[216] 

 

9.3. Biological Approaches 

Biological methods for Pb remediation are the most eco-friendly alternatives to remediate Pb from the 

contaminated resources. Biological remediation can be referred as direct utilization of any 

natural/genetically engineered living organism and their product for Pb detoxification to restore soil 

function and quality. 

9.3.1. Phytoremediation 

Phytoremediation is an environmentally-friendly, attractive, aesthetically pleasing, noninvasive, 

energy-efficient, and cost-effective technology that can remediate Pb in low to moderate contaminated soil. 

It includes phytostabilization and phytoextraction. Phytostabilization decreases the 

mobility/bioavailability of Pb through adsorption by roots, chemical precipitation, and complexation in the 

root zone. Phytostabilization is only effective up to the root depth of plants. Cheng et al. [217] observed the 

Pb phytoremediation potential of Miscanthus floridulus. Yang et al. [218] ascertained the phyto-extraction 

potential of a co-planting system of Pteris vittata L. and the Ricinus communis L. in Pb contaminated soil and 

observed an increased yield of P. vittata after Pb uptake. Metal hyper accumulater plant species such as 

Eichhornia crassipes, Lemna sp., and Pistia stratiotes have been widely used to remediate Pb from diversified 

environments (Table 8). 

9.3.2. Microbial Remediation 

Microbial remediation refers to decreasing the availability of Pb in the environment using 

indigenous/exotic microbes. Bacterial species such as Alcaligenes sp., Bacillus firmus, Bacillus licheniformis, 

Enterobacter cloacae, Escherichia coli, Micrococcus luteus, Pseudomonas fluorescens, and Salmonella typhi show 

adsorption potential of Pb from the contaminated resources [219–223]. Wang et al. [224] concluded that 

bacterial strain B38 (mutant of Bacillus subtilis) has immense potential to remediate heavy metals including 

Pb in China. Zeng et al. [225] observed that Aspergillus niger strain SY1 effectively removed Pb (99.5%) from 

contaminated sediment through bioleaching. The fungal biomass of Lepiotahystrix, Aspergillus niger, 

Aspergillus terreus, and Trichoderma longibrachiatum are reported as potential bio-sorbents [223,226,227]. The 

algal species i.e. Palmaria palmate, Spirulina maxima, Spirogyra hyaline, Cystoseira barbata, Cladophora sp., Chara 

aculeolata, Nitella opaca, and Ulva lactucaare were identified to be efficient bio-sorbents [223,228,229]. 

Microbial remediation is considered to be a natural, safe, and effective eco-friendly technology with low 

energy and low operation cost inputs [183]. Most importantly, microbial remediation does not impose any 

environmental and health hazards. The process depends on the environmental condition and inputs such 

as nutrients, oxygen, and other amendments to stimulate microbial activity for Pb remediation [183]. 

9.3.3. Microbial Assisted Phytoremediation 

Many approaches including molecular fingerprinting techniques viz. length heterogeneity analysis by 

PCR (LH-PCR), terminal restriction fragment length polymorphism (T-RFLP), denaturing gradient gel 

electrophoresis (DGGE), single strand conformation polymorphism (SSCP), ribosomal intergenic spacer 
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analysis (RISA), cloning, and In Situ Hybridization (ISH/FISH) were used to identify the potent microbial 

community involved in phytoremediation [230–234]. This approach is based on the rhizosphere associated 

microbes such as Bacillus, Beijerinckia, Burkholderia, Enterobacter, Erwinia, Flavobacterium, Gluconacetobacter, 

Klebsiella, Pseudomonas, and Serratia [235–237]. Babu et al. [235] inoculated soil with rhizospheric bacteria 

Pinus sylvestris and found significant increases in biomass, chlorophyll content, nodule number, and Pb 

accumulation in Alnus firma seedlings. 
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Table 8. Phytoremediation potential of different plant species for Pb contaminated water and soil [21]. 

Species Treatments Observation Findings References 

Ceratophyllum 

demersum 
Artificial wastewater Removal rate 92.0–95.0% 

Maximum BCF of 1284.35 in 4 mg/L of Pb 12th 

Day. 
[238] 

Leptodictyum 

riparium 
Artificial wastewater Removal rate 96.7% 

Having high resistance and effectiveness for Pb 

accumulation. 
[239] 

Scirpus grossus 

600 L spiked water in Pb (10, 

30, and 50 mg/L), duration 

98 days 

Pb concentration in water decreased up to 99% 

after 28 days and highest Pb uptake: 1343, 4909, 

3236 mg/kg for the treatment of 10, 30, and 50 

mg/L Pb, respectively 

Highest BCF and TF were 485, 261, and 2.52 on 

day 42 of Pb treatment at 30 mg/L concentration 

in 70 days retention time. 

[240] 

Pistia stratiotes 

Greenhouse condition using 

glass pots with a defined 

amount of added HMs 

Pb removal was >90% in the first week 
No enhancement of Pb removal efficiency with 

increased Pb concentrations. 
[241] 

Eichhornia 

crassipes 

Operation in up-flow 

anaerobic 

packed bed reactors system 

Pb Removal rate: 98% 

In the coupled pond system, water hyacinth 

was observed to have enhanced Pb removal 

efficiency by accumulating Pb into root 

[242,243] 

Eichhornia 

crassipes 

Stock solutions with initial 

concentration of 20 g/L 
Pb Removal rate: 98.33% 

Powdered root of water hyacinth absorbed 

higher Pb. 
[244,245] 

Brassica oleracea 

var. 

Acephala 

Treatments of different 

Concentration Pb = 0, 1, 5, 

and 10 mg/kg 

Phytoremediation of saline soils with 10 and 16 

mg/kg Pb 

Negatively correlated with plant fresh and dry 

weights.  
[246] 

Posidonia 

oceanica 
Sediments Pb Levels (mg/kg) in root: 4.52 ± 0.55,  

Ability of Posidonia oceanic to accumulate and 

detoxify Pb rather than being attributed to 

differences in ecological and morpho-

anatomical characteristics. 

[247] 

Datura inoxia 

Concentrations of 0.5, 1.0, 

3.0, 5.0, 10, 15, 20, 25, 30, 35, 

40, 45, 50 mg/L metal 

Survival rate = 50% Datura exhibits phytoremediation potential. [248] 

Magnolia 

grandiflora 
Soil Pb Accumulation rate: 63.4%, 

Relationship between heavy metal 

concentrations in soils and washed new and old 

leaves. 

[249] 

Pistia stratiotes 

HMs from steel 

effluents: 120 g of plant in 10 

L 

effluent 

Removal rates: Pb = 70.7%, E. crassipes more efficient than P. stratiotes. [250] 

Lemna sp. 
Artificial by concentration of 

2, 

Pb removal rates by Lemna gibba: 60.1% at 2 mg/L 

at pH 9, 98.1% at 10 mg/L at pH 7, 

BCF and metal uptake yield per unit of dry 

biomass for Pb is 403–738. 
[251] 
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5, and 10 mg/L 

Pistia stratiotes Stock solution (2000 mg/L) 
96% removal of Pb (II) from 25 mL of solution in 

60 min by only 0.125 g of biomass 

Results consistent with the Langmuir model by 

maximum biosorption capacity of 122.70 mg Pb 

(II)/g of biomass. 

[252] 

Mixture of 

Typha 

angustifolia and 

Limnocharis 

flava 

Wastewater oxidation pond Removal rate: Pb = 62.07% 
Positive relation between retention time and 

heavy metal removal. 
[253] 

Lemna sp. 

200 g fresh plant in mixed 

sewage of industrial and 

municipal effluents 

Pb Removal efficiency >80% 
BCFs for Pb = 523, indicating that this plant is a 

moderate accumulator of Pb. 
[254] 

Lemna sp. 
Artificial:  

Pb = 0.25 mg/L 
Removal rates: Pb = 36% 

Removal efficiency up to 80% at higher metal 

loading rate where 24 h light and pre-treatment 

steps required. 

[242,243] 

Eichhornia 

crassipes 
Mining wastewater Accumulation in leaves (mg/kg): Pb = 3.40–5.06 BCF: Pb = 242–506 [255] 

Mixture of P. 

australis and 

T. latifolia 

Urban sewage mixed with 

industrial effluents 
Removal rate: Pb = 61.0 ± 1.2% - [256] 
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9.4. Biotechnological and Genetic Approaches 

Genomics, metagenomics, metabolomics, proteomics, transcriptomics, nanoparticles, and isotope 

probing are modern technologies to understand Pb phytoremediation [234,235,257]. The biotechnology and 

genetic approaches to remediate Pb from the contaminated resources have great potential and have been 

proved in some plants [19]. Hattab et al. [258] observed a significant increase in ROS and cellular oxidative 

stress in Medicago sativa through influencing the expression of CuZn-SOD, GSH synthase (GS), and GPX 

against Pb stress. Fan et al. [259] observed an unknown protein, product of PSE1 (Pb-sensitive1) gene with 

NC domain, which is localized in cytoplasm and has potential for Pb tolerance in A. thaliana. Jiang et al. 

[260] studied the role of PDR12 knockout Arabidopsis and under Pb stress conditions and concluded that 

PDR12 is responsible for the activation of a Pb exclusion mechanism. ABC transporter of the mitochondria 

3 (ATM3) [260–262], acyl-CoA-binding protein [263], and leucine-rich repeat2 (LRR2) and ethylene-

insensitive 2 (EIN2) [264] are also important to regulate Pb transportation to the exterior of the cell [19,265]. 

A cytosol-localized malate dehydrogenase (CMDH4) protein functions as regulation of Pb tolerance 

mechanisms [19,266]. Pb is easily affected by GSH reductase in the plant cell [267]. Pb-mediated increased 

expression phytochelatins were also observed in Salvinia minima [268]. M. sativa plants showed 23-fold 

increased expression of PCS gene in the presence of Pb [258]. Furthermore, GMO plants develop efficient 

metabolic processes and over express genes/enzymes that are capable of bioremediation specific pollutant. 

Different omic-approaches help to explore different potential solutions targeting precise pollutants. For 

utilizing the omic-approaches below, certain research should be covered: 

a) Identification of candidate genes for effective and efficient removal of Pb contaminants. 

b) Diversity and phylogenetic studies of gene and protein sequences which control Pb 

bioremediation. 

c) Development of Genetically modified organism (GMO) plants through transgenesis. 

GMO plants are capable of remediating various waste effluents and polluted lands and could be 

advantageous for bioremediation practical applications. Moreover, information on the fundamental omic-

approaches concerned in bioremediation can also contribute towards the development of efficient 

bioremediation systems. Besides that, analysis of comparative genomic and proteomic study, their 

functional variations, as well as evolutionary relationships existing between them can contribute towards 

designing new efficient bioremediation systems. Systems biology information like molecular pathways, 

gene ontogeny analysis, co-expression, and protein-protein interactions can influence the Pb 

bioremediation processes. Therefore, with the help of bioinformatic analyses and modern biotechnological 

techniques, one can evaluate and justify the need for genetically modified organisms for the development 

of efficient remediation systems in the near future (Figure 1). 
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Figure 1. Biotechnological and Genetic Approaches for the development of efficient remediation systems. 

9.5. Nano-Technological Approaches 

Recent scientific development in nanoscience research opens the way to cost-effective, eco-friendly, 

and sustainable remediation approaches. A nano technological approach has been successfully used in soil, 

sediments, solid waste, and a wastewater remediation [18,269] process. Nano-materials are dynamic, 

efficient, and broadly applicable with economic expediency [18,270]. The characteristic features of nano-

materials such as Nanocatalysts, CNTs, graphenes, nano-scale metal oxides, nanomembranes, carbon 

nanotubes, nanobiological processes and zero-valent iron (FeO), Fe2O3, Fe3O4, TiO2, SiO2, and Al2O3 are 

summarized in Table 9. Nanoparticles (1–100 nm) provide very high adaptability for both in-situ and ex-

situ remediation approaches [18]. Nanomaterials, nanoadsorbents, and nanosized compounds (quantum 

dots, nanofilms, nanoparticles, nanotubes, nanowires, and other various colloids) used for Pb remediation 

are listed in Table 9. Nanoparticles (less than 50 nm) have high potential as Pb adsorbents. Nano-

adsorbents, i.e., activated carbon, alginate biopolymer, clay materials, silica, magnetic iron oxide 

nanoparticles (MNPs), metal oxides, nano-titanates, etc. have been utilized to remove Pb [18,271,272]. The 

researchers showed that nano-material can enhance the accumulation of metals by improving the cell wall 

permeability, co-transportation of nanomaterials with heavy metals, and transporter gene regulation 

[18,273]. 

Table 9. Characteristics of nano-particles in Pb removal [18]. 

SN Nano-particles Characters NP Synthesis 
Absorbent 

dose 

Optimum 

pH 

Removal 

efficiency 
References 

1 Iron oxides NPs 
Magnetite 

nanoparticles 

Co-precipitation 

from a mixture of 

Fe(II) and (III) salts 

with aqueous NH3 

and KOH 

50 

mg/20cm3 
5.31–9.37 

Pb(II)-76–

92% 
[274] 

2 Ferrite nano particles - 

Modified co-

precipitation 

synthesis 

0.008 - 
Pb(II) up 

to 38.1% 
[275] 

3 Activated carbon NPs 

High surface area and 

greater adsorption 

capacity 

- 0.02 2-10 
Pb up to 

87% 
[276] 
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4 
Nano scale zero valentiron 

(nZVI) 

High surface area and 

cation exchange 

capacity 

Reduction of Fe(II) 

using borohydride 
- - - [277] 

5 
Starch stabilized zero valent 

Iron nanoparticles(nZVI-Starch) 

Larger surface area for 

sorption reactions 

Chemical 

reduction method 
1 g/kg soil  4.2  100% 

[278] 

 

6 
Zeolite materials obtained from 

fly ash 
Greater specific area 

Hydrothermal 

process 
6.0  5.6-6.6  >80% [279] 

7 

Pyromellitic acid dianhydride/ 

N-(3-(trimethoxysilyl) 

propylethylene 

diamine(PMDA/TMSPEDA) 

Bound heavy metal 

ions via co-ordinate 

and electrostatic 

interactions 

Ring opening 

polymerization 

and sol-gel 

reaction 

0.01  7 
Pd(II) - 

79.60% 
[280] 

8 
Ag and Zn nanoparticles 

functionalized cellulose 

High catalytic activity, 

great biocompatibility, 

high adsorption 

capacity, high surface-

area, reusability, and 

greater dispersion 

degree 

Co-precipitation 

method 
0.5 and 1.0 5.5 - [281] 

9 
ZnO@Chitosancoreshell 

Nanocomposite (ZOCS) 

Hydrophilicity, 

biocompatibility, 

biodegradability, non-

toxicity, and High 

adsorption capacity 

Direct 

precipitation 

followed by 

thermal 

decarbonation 

0.02 6 
Pb(II) up 

to 99% 

[282] 

 

10 ZnO-Fe3O4 nanocomposites 

High adsorption 

capacity and surface 

area 

Chemical co-

precipitation 
0.50 5.5 

Pb(II) up 

to 39.2% 
[283] 

10. Conclusion and Future Prospects 

The source, bioaccumulation, and health hazards of Pb are due to industrial and agricultural activities. 

Translocation of Pb from soil to a crop system is a complex and species dependent phenomenon. The 

human consumptive plant species have shown different bioaccumulation, tolerance, and toxicity levels for 

lead. Based on the tolerance mechanism, different concentrations of Pb accumulate in the food chain and 

cause different magnitudes of human health hazards. To minimize these Pb based health risks, different 

remediation options are available for reducing the concentration of heavy metals in soil and the food chain. 

However, site and source-specific integrated approaches must be practiced to formulate suitable 

remediation strategies. Biological remediation, such as phytoremediation and PGPR, can be an 

environmentally friendly and cost-effective strategy for alleviating Pb toxicity in moderately contaminated 

soils. Eco-feasible technological innovations such as nano-tools and awareness among farmers’ fraternity 

could possibly boost local economies and livelihoods with certain financial guarantees. Similarly, 

suggestive measures should be taken to ensure the sustained efficacy of Pb remediation such as the 

development of promising plants/mechanisms suitable for Pb phytoremediation. Exploitation of molecular 

approaches is required to manipulate Pb transporters and their cellular targeting to specific cell types. 

Development of transgenic plants with enhanced plant-microbe interaction is also a viable option to 

enhance phyto-remediation of Pb. 
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