Supplementary information - International Journal of Environmental Research and Public Health (IJERPH), 2020

Occupational exposure of plastics workers to diisononyl phthalate (DiNP) and di(2-propylheptyl) phthalate (DPHP) in Finland

Simo P. Porras^{a,*}, Minna Hartonen^a, Jani Koponen^b, Katriina Ylinen^a, Kyösti Louhelainen^a, Jarkko Tornaeus^a, Hannu Kiviranta^b, Tiina Santonen^a

- ^a Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
- ^b Finnish Institute for Health and Welfare (THL), PO Box 95, FI-70701 Kuopio, Finland
- * Correspondence: simo.porras@ttl.fi

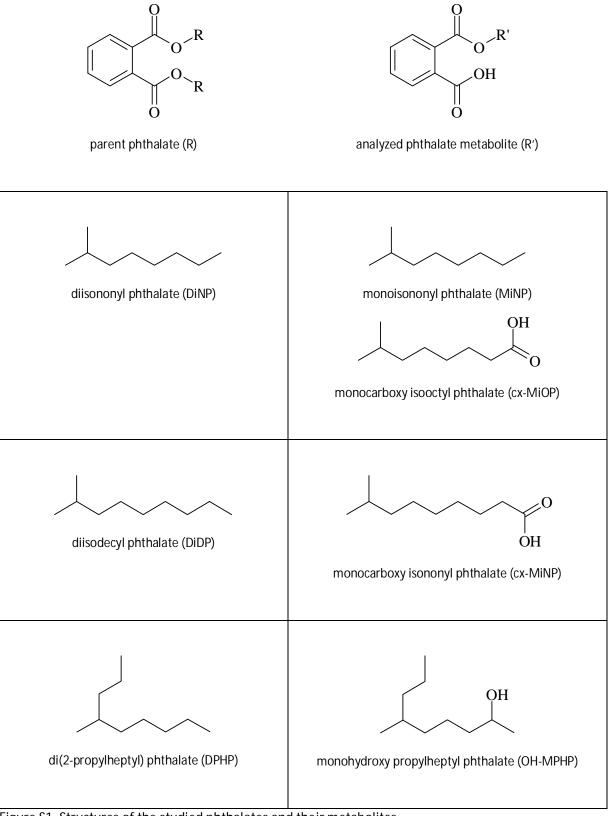


Figure S1. Structures of the studied phthalates and their metabolites.

Materials and methods

LC-MS/MS conditions

We used a 50 mm × 2.1 mm, 3.5 μ m Waters XBridge C18 column and mobile phase with a flow rate of 0.25 ml/min. The mobile phase consisted of aqueous 10% methanol (eluent A) and 100% methanol with 0.1 % acetic acid (eluent B), and the gradient programme was as follows: 0.0–1.7 min, 17% B; 1.7–3.7 min, from 17% to 37% B; 3.7–7.5 min, an isocratic 37% B; 7.5–9.5 min, from 37% to 62% B; 9.5–14.5 min, an isocratic 62% B; 14.5–16.0 min, from 62% to 95% B; followed by an isocratic elution for 4 min and then return to the initial conditions for 5 min before the next injection. The column oven temperature was set at + 33°C. Mass spectrometry was operated in negative ESI mode with a spray voltage of –2.4 kV, capillary and vaporiser temperatures of 330°C and 300°C, respectively, sheath gas pressure of 80 psi and auxiliary gas pressure of 4 arbitrary units (AU). All the chromatograms were recorded in selected reaction monitoring (SRM) with a specific transition per analyte. The specific quantifier precursor and product ions, as well as the collision energies, are shown in Table S1.

Analyte	12C transitions (m/z)	2H/13C transitions (m/z)	CE (V)
MiNP	291 → 77	295 → 79	18
cx-MiOP	321 → 173	325 → 173	16
cx-MiNP	335 → 187	339 → 187	16
OH-MPHP	321 → 121	325 → 125	16

Table S1. Monitored precursor and product ions, and collision energies (CE) for LC-MS/MS.

Results and discussion

Table S2. Setting of inhalation DNEL and corresponding biomonitoring equivalent (BE) for workers' exposure to DiNP and DPHP.

DINP	
Point of departure (PoD)	PoD used by ECHA [1] as a starting point for the DNEL for general population was NOAEL=15 mg/kg (oral exposure)
Modification of the starting point	Transforming oral NOEAL to inhalation NOEAC (following the approach given in [2]): allometric scaling factor = 4 BW=70 kg inhaled volume =10 m ³ exposure time is 5 days per week (factor 7/5)
Adjustment for absorption via inhalation	Absorption via oral route is 50%, and via inhalation 75% [1] (factor 50/70)
Assessment factors (AFs) for remaining uncertainties	Default AF of 2.5 is used for toxicodynamic differences and the default AF of 5 is used for interindividual differences.
DNEL _{worker} -inhalation	15 mg/kg x 1/4 x 70 kg/10m ³ x 7/5 x 50/75 x 1/2,5 x 1/5 = 1,96 ~ 2 mg/m ³ (corresponding inhaled dose of 0.28 mg/kg)
BE for cx-MiOP	$F_{ue}{=}$ 8%, 0.28 mg/kg x 70 kg x 0.08/1.7 l = 0.92 mg/l \sim 900 $\mu g/l$

DPHP

Point of departure (PoD)) Bhat et al. [3] used as a starting point human equivalent BMDL10 of 10 mg/kg (includes allometric scaling factor)			
Modification of the starting point	Transforming oral NOEAL to inhalation NOEAC (following the approach given in [2]): allometric scaling factor = 1 (already included in $BMDL_{10}$) BW=70 kg inhaled volume =10 m ³ exposure time is 5 days per week (factor 7/5)			
Adjustment for absorption via inhalatior	Absorption via oral route is 50%, and via inhalation 75%. There is no specific data on DPHP, assumed to be the same as in the case of DiNP (factor 50/70)			
Assessment factors (AFs) for remaining uncertainties	Default AF of 5 is used for interindividual differences. Bhat et al. [3] used also an additional assessment factor of 3 for extrapolation from subchronic animal data to chronic human exposure and a factor of 3 for incomplete database (total AF 5 x 3 x 3 = 45).			
DNEL _{worker} -inhalation	10 mg/kg x 70/10 x 7/5 x 50/75 x 1/45 = 1.45 mg/m ³ (corresponding inhaled dose of 0.21 mg/kg)			
BE for OH-MPHP	F _{ue} = 8%, 0.21 mg/kg x 70 kg x 0.08/1.7 l = 0.68 mg/l ~ 700 μg/l			
NOAEL=no observed adverse effect level, NOAEC=no observed adverse effect concentration, BMDL=benchmark dose level				

Table S3. Biomonitoring equivalents (BEs) and Risk Characterization Ratios (RCRs) for DiNP and DPHP. RCRs have been calculated using maximum levels measured in exposed workers.

-					
Phthalate	Metabolite	DNEL _{worker} (mg/m ³)	BE for workers (mg/l)	Maximum urinary levels (mg/l, from Tables 2 and 4)	RCR
DiNP	cx-MiOP	2	0.9	0.126	0.14
DPHP	OH-MPHP	1.45	0.7	0.0254	0.04

References

- 1. ECHA Evaluation of the New Scientific Evidence Concerning DINP and DIDP in Relation to Entry 52 of Annex XVII to Regulation (EC) No 1907/2006 (REACH) Final review report; European Chemicals Agency: Helsinki, Finland, 2013. <u>http://echa.europa.eu/documents/10162/31b4067e-de40-4044-93e8-9c9ff1960715</u> (accessed on 19 March 2020).
- ECHA Guidance on information requirements and chemical safety assessment, Chapter R.8: Characterisation of dose [concentration]-response for human health, Version: 2.1; European Chemicals Agency: Helsinki, Finland, 2012. <u>https://www.echa.europa.eu/documents/10162/13632/information_requirements_r8_en.pdf</u> (accessed on 19 March 2020).
- 3. Bhat, V. S.; Durham, J. L.; English, J. C., Derivation of an oral reference dose (RfD) for the plasticizer, di-(2-propylheptyl)phthalate (Palatinol (R) 10-P). *Regulat. Toxicol. Pharmacol.* 2014, 70, (1), 65-74. <u>http://doi.org/10.1016/j.yrtph.2014.06.002</u>