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Abstract: (1) Objective: The objective of this study was to screen amoxicillin (AMX)-degrading
bacterial strains in pig manure and optimize the fermentation conditions for these strains to
achieve high fermentation rate, which can provide an effective way for the practical application of
bacterial strains as antibiotic-degrading bacterial in treating livestock waste for antibiotic residues.
(2) Methods: Antibiotic susceptibility tests and high-performance liquid chromatography tandem
mass spectrometry (HPLC-MS/MS) were employed to screen AMX-degrading bacterial strains in
pig manure. The culture conditions were optimized for AMX-degrading bacterial strains using
Plackeet–Burman design (PBD), the steepest ascent design, and the response surface methods, coupled
with the Box–Behnken design (BBD). The effects of culture time, temperature, rotator (mixing) speed,
inoculum level, and initial pH value on the growth of AMX-degrading strains were investigated.
Experimental data obtained from BBD were utilized to generate a second-order polynomial regression
model for evaluating the effects of the tested variables on the optical density at 600 nm (OD600)
of culture solutions as the growth indicator for the screened AMX-degrading strains. (3) Results:
The initial pH, culture time, and the inoculum level had significant effects on the OD600 value (growth)
of the screened AMX-degrading strains. The initial pH value was found to be the most critical
factor influencing the growth of bacteria. The optimized culture condition for the bacterial growth
determined by the response surface methodology was: the initial pH of 6.9, culture time of 52 h,
and inoculum level of 2%. The average OD value of 12 different fermentation conditions in the
initial fermentation tests in this study was 1.72 and the optimization resulted in an OD value of 3.00.
The verification experiment resulted in an OD value of 2.94, which confirmed the adequacy of the
optimization model for the determining the optimal culture condition. (4) Conclusions: The growth
of the screened strain of AMX-degrading bacteria could be optimized by changing the fermentation
conditions. The optimization could be achieved by using the Box–Behnken response surface method
and Plackett–Burman experimental design.

Keywords: amoxicillin; biodegradation; Plackett–Burman; Box–Behnken design; culture condition

1. Introduction

Amoxicillin (AMX) is a broad-spectrum therapeutic antibiotic that can penetrate the cell walls of
bacteria and thus kill pathogenic G+ and G- bacteria (including coccus and bacillus) [1]. AMX has
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been commonly used in intensive livestock production because it is considered to be effective in
treating a variety of animal diseases. However, like most antibiotics, AMX cannot be completely
decomposed in the animal body and residues are excreted in the form of protoplasts or metabolic
intermediates, which may eventually enter the environment [2]. AMX residues discharged into the soil
and groundwater environment are harmful to ecosystems [3,4].

Unlike other natural penicillin antibiotics, AMX is acid-stable and difficult to hydrolysis [5].
Compared to the chemical or the physical methods for treating AMX residues, the microbial degradation
methods are effective and more environmentally friendly for removing AMX residues in animal wastes.
High-catalytic-activity enzyme generated by metabolic processes of microorganisms can reduce
antibiotic activity by modifying the structure of antibiotic directly or indirectly [6]. Therefore, screening
AMX degradation bacterial strains and optimizing the fermentation rate for these strains would
potentially provide effective measures for degrading AMX residues in the environment.

The rate of removing AMX by microbial degradation is highly dependent on the bacterial strains as
well as their fermentation conditions. For a given strain, minor changes in culture conditions can impact
the quality and quantity of the removal of AMX antibiotic residues [7]. However, the optimization of
fermentation conditions of culture media is very tedious and complicated because many factors have
to be considered [8]. The Response Surface Methodology (RSM) is an effective experimental method
that can identify the optimal fermentation conditions for a multi-variable system mathematically and
statistically [9,10]. The procedure of RSM to optimize the fermentation conditions may be briefly
described as follows: (i) identifying factors that significantly impact the fermentation conditions
using the Plackeet-Burman (PB) design method, which can identify significant factors among a larger
number of influencing variables and eliminate relatively minor factors [11,12]; (ii) determining the
change step size of each significant factor that are identified by PBD using steepest ascent design,
which can confirm the optimal value area quickly and economically [13]; (iii) establishing a fermentation
model and determining the optimal fermentation conditions by performing the Box-Behnken design
(BBD), which reduces the number of experimental runs and provides enough information for the
interaction between independent variables [14]; and (iv) comparing the predicted response value
directly obtained by the BBD design with the experimental response value obtained by the optimal
fermentation conditions, so as to verify the adequacy of the model. The RSM has been widely used on
optimizing microbial fermentation conditions to avoid the unnecessary trails and addition of excessive
components in the culture medium. For example, the RSM was used for optimizing the operation
parameters on the photocatalytic degradation of chloramphenicol (CAP) [15] and to investigate the
effects of processing factors in the preparation of antioxidant peptides hydrolyzed from goat’s milk [16].
The objective of this study was to first screen AMX-degrading bacterial strains in pig manure and then
optimize the fermentation conditions for these strains to achieve high fermentation rate.

2. Materials and Methods

The experiments were performed to: (i) isolate efficient AMX degrading bacterial strains from pig
manure using antibiotic susceptibility test and HPLC-MS/MS method; and ii) optimize the fermentation
conditions of isolated bacterial strains by using the RSM method to provide a theoretical basis for
industrial production of antibiotic degrading bacteria.

2.1. Isolation and Selection of AMX-Degrading Bacterial Strains

AMX-degrading bacterial strains were isolated and screened from the pig manure that was
collected from a pig farm in Hefei, Anhui, China. This farm was selected because AMX residues were
found in pig manure, which naturally led to the emergence of bacteria that feed on AMX. A total
of 1000 g of pig manure was gathered from the farm. Collected pig manure was placed in sealed
sterile bags and kept at a temperature about −20 ◦C before the experiment. Isolating and screening
AMX-degrading bacterial strains were performed in three steps, namely enrichment, acclimatization
and separation. The details of the steps can be found in the previously published reference [17].
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Evaluating the degrading efficiency of bacterial strains is the key in bacterial screening.
The antibiotic susceptibility test and HPLC-MS/MS methods were carried out to evaluate the degradation
efficiency. The antibiotic susceptibility test qualitatively determined if an isolated bacterial strain was
capable of degrading AMX. In this test, a piece of filter paper containing 10 µg of AMX was applied
to the surface of the Luria–Bertani (LB) agar medium (NaCl (5 g/L), yeast extract (5 g/L), 1.5% (w/v)
agar powder and tryptone (10 g/L) at pH 7.0) which had been inoculated with a degradation bacterial
strain. As the diffusion distance of AMX in the agar increased, the AMX concentration decreased
logarithmically to a certain concentration below which the bacterium would not grow, thus forming
a transparent antimicrobial circle on the filter paper. The size of this inhibition zone reflected the
sensitivity of the test bacterial to AMX, i.e., the smaller the circle, the stronger resistance of bacteria to
AMX. The HPLC-MS/MS method was then used on the bacteria strains that had the small inhibitory
zones observed in the susceptibility tests to further evaluate quantitatively their effectiveness in
degrading AMX.

A Liquid chromatography system-UPLC (I-Class)-MS (XEXO TQD) (Waters, Milford MA, US)
coupled with Themo LENGEND MICRO 17R (Thermo Fisher Scientific, USA) were used in the
HPLC-MS/MS evaluation. The Waters ACQUITY UPLC BEH-C18 column (1.7 µm, 2.1 × 100 mm;
Waters, USA) with column temperature of 35 ◦C was used. A mobile phase of 0.1% (v/v) formic acid in
water (A) and 0.1% (v/v) formic acid in acetonitrile (B) was used, filtered through a 0.22 µm membrane
filter at a flow rate of 0.4 mL/min. The gradient dilution was performed as follows: 0 min, 95% A;
1 min, 95% A; 3 min, 2% A; 5 min, 2% A; 5.5 min, 95% A; 8 min, 95% A. The injection volume was 1 µL
for both samples and standards. The mass spectrometer was used for the detection of analytes in the
positive ion mode. The ionization source used a source voltage of 3.00 KV; a source temperature of
400 ◦C; a gas flow rate of 700 L/Hr; and cone of 50 L/Hr.

The standard stock solution of AMX was prepared with ultrapure water at a concentration of
1 µg/mL, which was then used to dilute to the following concentrations: 500, 200, 100, 50, 20, 10, 5, 2,
and 1 ng/mL. The culture medium samples containing the isolated bacteria strains was diluted 1000
times and centrifuged for 10 min at 13,000 rpm. The supernatant was removed and filtered through a
0.22 µm membrane and aliquots of the supernatant were taken for HPLC-MS/MS analysis. The isolated
strains that had higher degradation rates were selected for the optimization of fermentation conditions.

2.2. Optimization of Fermentation Condition

2.2.1. Determination of the Growth Curve of Bacteria Strain

The isolated bacteria strains were inoculated on LB liquid medium at 1% inoculation level and
cultured at 30 ◦C for 24 h on a shaker incubator. A turbidimetric method was used to evaluate
the growth curve of the bacteria [18,19], in which the growth of the bacteria was measured by the
optical density of the bacterial cultural media at 600 nm (OD600) [20] using 722 ultraviolet visible light
spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA) in 4, 6, 12, 15, 25, 35, 37, 40, 48, 50,
55, and 60 h of culture. The bacterial growth curve was plotted as the optical density OD600 vs. the
culture time.

2.2.2. Fermentation Experiment

The fermentation experiment was conducted to examine the effects of fermentation conditions on
bacterial growth. Bacterial suspensions were inoculated on 50 mL LB liquid medium and cultured
in a shaker incubator. The range of fermentation conditions (the influencing factors and levels) was
selected as follows: the fermentation time (20, 30, 40, 50, and 60 h), temperature (20, 25, 30, 35, and
40 ◦C), the inoculum level (0.5%, 1%, 1.5%, 2.0%, and 2.5%), the shaker rotation speed (110, 120, 130,
140, and 150 rpm), and pH (5, 6, 7, 8, and 9) [21,22].
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2.2.3. Selection of Significant Variables by Plackett-Burman Design (PBD)

Based on the data from the fermentation experiment, the Plackeet–Burman design (PBD) was
used to screen the factors that have the most significant influence among a set of factors by using a
minimum number of tests [11]. It should be noted that this design is not focused on the interrelationship
between factors, but merely on the significant effects of these factors [12]. Specifically, the effects
of five parameters that defined the culture condition on the OD600 value of bacterial cultures were
investigated. The number of tests selected was N = 12, with five parameters X1, X2, X3, X4, and X5

representing the fermentation time, the temperature, the inoculum level, the shaker speed, and pH,
respectively. The high (+ 1) and low (- 1) levels of these parameters are shown in Table 1, with the
high level being 1.25 times the low level. The regression analysis was carried out using the software
MINITAB 17.0 (Minitab, LLC, State College PA, USA) to assess the statistical significance.

Table 1. Factors and levels of Plackett–Burman design (PBD).

Parameters
Level

−1 1

X1 Time (h) 40 50
X2 Temperature (◦C) 30 37.5

X3 Inoculum level (%) 1 1.25
X4 Shaker speed (rpm) 120 150

X5 pH 6 7.5

2.2.4. Steepest Ascent Design (SAD)

Three most significant influencing variables selected by the PBD were further analyzed by the
steepest ascent design (SAD) to design the next experiment (selecting the rage of parameters) to further
optimize the fermentation condition. The steepest ascent design uses the gradient direction of the
experimental data as the climbing direction, and the change step size is determined according to the
effect value of each factor, which can approach the target area quickly and economically [13].

2.2.5. Box-Benhnken Design (BBD)

The three significant factors and the best level of these factors identified after PBD and SAD were
further optimized using Box-Behnken response surface design (BBD) [14]. This design coupled with
the response surface methodology (RSM) is one of the most commonly used methods for process
optimization with minimal experimental requirements [23]. In this design, the optical density (OD600)
value (growth) of bacteria was considered as the response value and the three identified significant
variables the independent variables. Data analysis and experimental design were performed for each
single factor using Design-Expert (Version 8.0.6, Stat-Ease Inc., Minneapolis, MN, USA).

Based on the BBD, a set of 12 tests were performed and a second-order polynomial model was
used to fit to the data to generate a prediction model for the optimal fermentation condition.

Y = α0 +α1Xm + α2Xn+ α3Xp + α11Xm2 + α22Xn2 + α33Xp2 + α12XmXn + α13XmXp+ α23XnXp (1)

where Y is the response (bacterial growth), Xm, Xn and XP are the three most significant parameters
identified by the PBS among the five factors that were tested in the first set of fermentation tests
(Table 1); α0 is the offset term, and αi, αii and αij are the regression coefficients of the first-order main
effect, the second main effect, and interaction effect, respectively.

2.2.6. Verification

To verify the effectiveness of the three-step optimization procedure (PBD–SAD–BBD), three
separate tests were carried out according to the optimal fermentation conditions identified through the
BBD experiments. The result was compared to the values predicted by the optimization Equation (1).
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3. Results and Discussion

3.1. Isolation and Preliminary Screening of AMX- Degrading Bacterial Strains from the Pig Manure

A total of six AMX-degrading bacterial strains (denoted as AMX-1, AMX-2, AMX-3, AMX-4,
AMX-5, AMX-6) capable of growing on AMX as sole carbon and energy source were isolated from
the pig manure. From the antibiotic susceptibility test, the inhibitory zone diameters of AMX-1,
AMX-2, AMX-3, AMX-4, AMX-5, AMX-6 were determined to be 6.52 ± 0.28 mm, 16.85 ± 2.13 mm,
8.93 ± 1.24 mm, 21.52 ± 1.87 mm, 36.87 ± 1.48 mm and 10.75 ± 1.24 mm (Mean ± standard deviation, SD)
(Figure 1), respectively. The inhibitory zone diameters of AMX-2, AMX-4 and AMX-5 were significantly
larger than that of the other three strains (AMX-1, AMX-3, and AMX-6) (P < 0.05), and there were no
statistically significant differences among AMX-1, AMX-3, and AMX-6. Therefore, AMX-2, AMX-4
and AMX-5 were considered to be less effective in degrading AMX antibiotic, and the other three
bacterial strains (AMX-1, AMX-3 and AMX-6) were selected for further quantitative evaluation by
HPLC-MS/MS.
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3.2. Screening by HPLC-MS/MS

The AMX degradation rates of strains AMX-1, AMX-3, and AMX-6 measured by using
HPLC-MS/MS, along with the blank control, are summarized in Figures 2 and 3 and Table 2.

Table 2. Regression equation model analysis.

Compound Name Linear Range Regression Equation R2 Retention Time (min)

AMX 1–1000 ng/mL Y = 39.31X − 1.71 0.9995 1.87
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The peak time of non-inoculated AMX standard solution detected by HPLC-MS/MS was 1.86 min
(Figure 2E). Ninety (90) min after inoculation, AMX was still detected in the solutions of strains
AMX-3 and AMX-6, but not in AMX-1 (a new unknown substance with an absorption peak at 2.29
was detected, Figure 2A). In other words, AMX was degraded and new degradation products were
produced under the action of AMX-1 strain [24]. Regression analysis yielded a linear relationship
between the concentration of AMX and the corresponding peak: Y = 39.31X − 1.71, R2 = 0.999. Using
this relationship, the degradation rate by AMX-1 was calculated be to 98.5%, which was significantly
higher than the other two strain (Figure 3). Therefore, AMX-1 bacterial strain was selected for the
optimization of fermentation conditions.
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3.3. Growth Curve of AMX-1

The growth of AMX-1 strain roughly followed a typical “S” curve (Figure 4). A lag period occurred
from 0 to 25 h, followed by a logarithmic growth period from 25 to 50 h, where the number of live
bacteria increased rapidly and the maximum growth rate was reached. The growth reached a stable
state after 55 h, which indicated the total number of living bacteria reached the maximum.
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3.4. Effects of Individual Factors

The measured optical density (OD600), representing the bacterial growth rate, increased first with
temperature until about 35 ◦C and then decreased, with the quickest increase between 25 and 30 ◦C
(Figure 5a). It was interesting to note that when the temperature was 40 ◦C, the OD600 value was
even lower than that at 30 ◦C. It was clear that the optimal temperature range for AMX-1 growth was
30–35 ◦C, while other condition parameters were at the 0-level as described in Table 1.

The bacterial growth increased with the inoculum level rapidly between 1.0–1.5% (v/v), reaching
the maximum at about 1.5% (v/v) (Figure 5b). Further increase in inoculum level resulted in a
slower growth because oxygen and nutrients available to the bacteria in the medium became limiting
and accompanied by bacterial proliferation, affecting the production of primary and secondary
metabolites [25].

The shaker speed was related to the dissolved oxygen content in the culture solution [26,27].
Through the vibration of the shaker, the oxygen in the air was continuously dissolved into the culture
solution for the bacteria. The bacterial growth increased with the rotation speed of the shaker linearly,
indicating that the bacterial growth was closely related to the aeration level (Figure 5c), and that the
bacterial strain was aerobic.

The bacterial growth increased with time and reached a maximum value at 50 h (Figure 5d).
The growth stayed almost constant when the time was extended to 60 h, indicating that the bacterial
growth had entered a stable state after 50 h. The possible reasons were: (i) depletion of nutrients in the
medium; (ii) imbalance of nutrients, such as the inappropriate C/N ratio; (iii) accumulation of harmful
metabolites such as acid, alcohol, toxins, or hydrogen peroxide (H2O2); and (iv) physical and chemical
conditions such as pH and redox potential becoming less suitable for the bacteria [28,29].
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(d) time, and (e) pH on the optical density (OD600) value of bacterial.

The bacterial strain grew well only in a narrow range of pH, with the optimal pH around 7
(Figure 5e). In the acidic or alkaline environment with a pH of 5 or 10, the OD600 value of this strain
decreased significantly, which indicated that the initial pH value could significantly affect the growth
of this strain.
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3.5. Plackett–Burman Design (PBD) Screening

The purpose of PBD was to identify which conditions of fermentation had a significant effect on
the growth of the AMX-1 strain. The optical density OD600 ranged from 1.589 (run 7) to 1.899 (run 9),
as measured in the fermentation experiment (Table 3). The results of statistical analysis on the main
effect are presented in Table 4. The significance of each factor was assessed using the P-value at the
significance level of 0.05.

Table 3. Design and test results of Plackett–Burman.

Run Order X1 Time (h) X2 Temperature
(◦C)

X3 Inoculum
Level

X4 Rotate Speed
(rpm) X5 pH Optical Density

1 50 37.5 1.25 120 7.5 1.77
2 40 30 1.25 150 7.5 1.66
3 50 37.5 1 150 6 1.839
4 50 37.5 1 150 7.5 1.899
5 50 30 1.25 150 6 1.609
6 40 37.5 1.25 120 7.5 1.599
7 40 30 1 120 6 1.589
8 50 30 1.25 120 6 1.678
9 50 30 1 120 7.5 1.899

10 40 37.5 1 120 6 1.709
11 40 37.5 1.25 150 6 1.649
12 40 30 1 150 7.5 1.729

Table 4. Analysis of variance in Plackett–Burman.

Source Sum of Squares df Mean Squares F-Value P-Value Coefficient
Estimate

Significance
Ranking

Model 0.1173 5 0.0234 7.79 0.013
X1 0.048 1 0.048 15.92 0.007 0.0633 1
X2 0.0076 1 0.0076 2.5 0.165 0.0251 4
X3 0.0407 1 0.0407 13.5 0.01 -0.0583 2
X4 0.0016 1 0.0017 0.55 0.487 0.0118 5
X5 0.0194 1 0.0194 6.45 0.044 0.0403 3

Residual 0.0181 6 0.003
Cor total 0.1354 11

The significance of the five variables in terms of their effects on the optical density (OD600) was
ranked as: X1 (Time) > X3 (Inoculum level) > X5 (pH) > X2 (Temperature) > X4 (Rotation speed). Among
them, the effects of the fermentation time, inoculum level and pH were statistically significant (P < 0.05).
Therefore, these three variables were considered as the significant factors in the next experiment.

3.6. Steepest Ascent Design

The Coefficient Estimate of X1, X3 and X5 presented in Table 4 indicated that the fermentation time
and the initial pH value exhibited positive effects and the inoculum level exhibited a negative effect.
Based on these observations, the directions of the gradients for X1, X2, and X4 in the steepest ascent
design were determined (Table 5). Specifically, the time and pH were gradually increased, while the
inoculum level was decreased. The corresponding optical density (OD600) value first increased and
then decreased (Table 5), with the maximum OD600 at the fermentation time 50 h, pH 6.5, and inoculum
level 1.5% (v/v).
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Table 5. The design and results of steepest ascent test.

Test Step Size X1 X3 X5 OD600

1 X 30 h 2.5% (v/v) 5.5 1.48
2 X+ ∆Xi 40 h 2.0% (v/v) 6.0 1.63
3 X+ ∆2Xi 50 h 1.5% (v/v) 6.5 1.89
4 X+ ∆3Xi 60 h 1.0% (v/v) 7.0 1.74
5 X+ ∆4Xi 70 h 0.5% (v/v) 7.5 1.65

Note: ∆X1 = + 10 h, ∆X3 = −0.5% (v/v), ∆X5 = + 0.5.

3.7. Optimization: Box-Behnken Design

Based on the data in Table 5 (the maximum OD600 at fermentation time X1 = 50 h, the inoculum
level X3 = 1.5% (v/v), and pH X5 = 6.5, a BBD design was proposed to further refine the optimal
fermentation condition (Table 6). The corresponding experimental results based on this BBD are shown
in Table 7.

Table 6. The factors levels in BBD.

Level. X1 (Time) (h) X3 (Inoculum Level) (%) X5 (pH)

−1 40 1.00 6.00
0 50 1.5 6.5
1 60 2.0 7.0

Table 7. Experimental results of Box–Behnken Design.

Test X1 Time (h) X3 Inoculum Level (%) X5 pH Response Value (OD600)

1 −1 0 1 2.54
2 0 −1 1 2.94
3 0 0 0 2.27
4 1 1 0 2.73
5 −1 1 0 2.4
6 1 −1 0 1.96
7 0 0 0 2.57
8 1 0 1 2.51
9 0 −1 −1 1.8
10 0 1 1 2.80
11 1 0 −1 1.36
12 0 0 0 2.82
13 −1 0 −1 1.30
14 −1 −1 0 2.27
15 0 0 0 2.82
16 0 1 −1 1.97
17 0 0 0 2.60

Design-Expert 8.0 was used to analyze the data in Table 7 and the following regression equation
was obtained:

Y = 2.616 + 0.00625X1 + 0.11625X3 + 0.545X5 + 0.16X1 × X3 − 0.0225X3 × X5 − 0.363X12 + 0.087X32 − 0.3225X52 (R2 = 0.9195) (2)

where Y is OD600 (the response value), X1 is time (hr), X3 is the inoculum level (%), and X5 is the initial
pH value.

The details of regression analysis are summarized in Table 8.
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Table 8. Analysis of variance of regression.

Source Sum of Squares df Mean Square F-Value P-Value

X1 0.0003125 1 0.0003125 0.006794 0.9366
X3 0.11 1 0.11 2.35 0.1691
X5 2.38 1 2.38 51.66 0.0002

X1X3 0.1 1 0.1 2.23 0.1793
X1X5 0.002025 1 0.002525 0.044 0.8398
X3X5 0.024 1 0.024 0.52 0.4933
X12 0.55 1 0.55 12.06 0.0104
X32 0.032 1 0.032 0.69 0.4327
X52 0.45 1 0.45 9.7 0.017

Model 3.68 9 0.41 8.89 0.0044
Lack of Fit 0.12 3 0.039 0.76 0.5733
Pure Error 0.21 4 0.051
Cor Total 4 16

Note: The P-value less than 0.001 for the difference is extremely significant; the P-value less than 0.01 is highly
significant; the P-value less than 0.05 is significant.

The P-value for the overall model was 0.0044, which demonstrated that the quadratic equation
model was highly significant [30]. Based on the P-values associated with the three factors, their
influences on the optical density (OD600) of bacterial growth were ranked as: X5 (pH) > X3 (Inoculum
level) > X1 (Time). The P-value for misfitting was 0.5733, indicating that the misfitting term was
insignificant relative to the absolute error, and the misclassification is not significant. At the same
time, the adjusted determination coefficient (Adj R-squared, Table 9) (0.82 > 0.80) and coefficient
of variance (CV%) was 9.19, which further indicated that the multivariate regression relationship
between the dependent variable and the all independent variables was significant [31]. In other
words, the regression equation was adequate in predicting the optical density (OD600) under different
fermentation conditions [32] (Figure 6).

Table 9. Statistical significance.

Model Terms Results

Std. dev. 0.21
Mean 2.33
%CV 9.19

PRESS 2.19
R-squared 0.9195

Adj R-squared 0.8161
Adeq precision 9.772
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Determination of Optimal Fermentation Condition

The response surface contour maps for the factors were generated based on the regression Equation
(2) to search for the optimal fermentation condition (Figure 7).
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The profiles of the response surfaces between fermentation time and inoculum level, fermentation
time and pH, inoculum level and pH were all convex with an open downward direction, indicating a
parabolic relationship between the OD600 value and the three factors of fermentation time, inoculum
level and pH [33].The surface plots showed the interactive effects of the three significant fermentation
factors on the bacterial growth. Figure 7b,c clearly demonstrates that the OD600 increased with pH,
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with the optimal pH value of 7.00 (Figure 7a) [29]. Comparing Figure 7a–c indicates that the pH
also had the most significant effect on the bacterial growth among the three variables as the response
surface curvatures were smaller (Figure 7a). Figure 7b,d, and m shows that the contour lines were
circular, indicating the interaction of these three factors was not obvious [29,31]. Overall, the optimum
fermentation condition for the screened bacterial strain was predicted to be: the fermentation time of
52.1 h, the inoculum level of 2%, and pH of 6.855, and this condition resulted in a predicted OD600

value of 3.00.

3.8. Experimental Verification

To verify the prediction model (Equation (2)), the predicted optimal fermentation condition
(fermentation time X1 = 52 h, the inoculum level X3 = 2%, and pH X5 = 6.9) was used to conduct a set
of tests to measure OD600. The average OD600 of five replicates was 2.94 with a standard deviation of
0.045. The difference between the predicted and measured values was about 2%, indicating that the
model was adequate in predicting the optimal fermentation condition.

4. Conclusions

An effective Amoxicillin (AMX) degrading bacteria strain was successfully isolated and screened
from pig manure through the antibiotic susceptibility testing and HPLC-MS/MS. A three-step procedure
was developed to optimize the fermentation conditions for this screened bacteria strain. In the developed
optimization procedure, the Plackett–Burman design (PBD) was first used to select most significant
parameters; the steepest ascent design (SAD) was then used to define the gradient direction for the
Box–Benhnken design (BBD); and finally the BBD with the response surface method (RSM) was used
to refine the optimal fermentation condition, and a predictive model of quadratic polynomial was
developed. It was found that among the five factors that defined the fermentation conditions, namely
the inoculum level, the fermentation time, temperature, pH and shaker speed, three had significant
effect on the growth of screened bacterial strain in the following order: pH, the fermentation time,
and the inoculum level. The determined optimal fermentation condition was: pH 6.9, the fermentation
time 52.1 h, and the inoculum level 2%. The proposed optimization process increased the bacterial
growth rate by 67.6%. The proposed quadratic polynomial model adequately (within 2%) predicted
the optimal fermentation condition.
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