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Abstract: Nonferrous smelting is an important source of heavy metals in soil, which causes different
degrees of soil pollution, especially in lead–zinc (Pb/Zn) smelting areas. Based on the Pb/Zn
environmental release during the Pb/Zn mineral smelting processes in 31 Chinese provinces from
the period 2000 to 2015, the study analyzed the spatiotemporal variations in Pb/Zn environmental
release at the national level and then evaluated the degree of soil pollution and potential ecological
risk based on the heavy metal content in soil from Pb/Zn smelting areas. The results showed that
from the period 2000 to 2015, the Pb release had a discrete trend, transferring from the middle east to
the west, and the provinces with higher Pb releases were Henan Province, Yunnan Province, and
Hunan Province. However, the Zn release showed a tendency towards spatial aggregation, and the
release center of this heavy metal presented a shifting trend from south to north; additionally, the
release of Zn was highest in Hunan Province. The pollution index analyses indicated that Cd, Pb, Cu,
and Zn in Zhuzhou and Huludao all reached extremely polluted levels, while Tongguan was at a
safe level. In Gejiu, Mianxian, Fengxian, Zhuzhou, Huludao, and Shaoguan, there were very high
potential ecological risks, with Cd having the highest potential ecological risk in most smelting areas,
followed by Pb.

Keywords: spatiotemporal variation; Pb/Zn smelting; environmental release; soil; heavy metal
pollution; potential ecological risk assessment

1. Introduction

The rapid development of industrialization resulted in many environmental problems; soil heavy
metal pollution has especially caused worldwide concern due to their persistence, toxicity, and harmful
effects on plants and human health [1–6]. Nonferrous metal smelting is an important source of heavy
metals in soil [7–10]. Heavy metals enter the soil mainly through atmospheric deposition, sewage
irrigation, and slag percolation, resulting in various levels of heavy metal contamination in cultivated
land around a smelter [7,11–13]. Many studies have shown that heavy metal pollution in soil around
nonferrous metal smelting areas is very serious [4,14–16]. The Pb/Zn smelting is an important source of
heavy metals in soil [8,9,11,16,17]. During the smelting process, some associated heavy metal elements,
such as Cd, Cu, and As, are also released into the surrounding environment [1,18–20].

China is a country with abundant Pb and Zn resources, and its Pb and Zn mineral reserves are
second only to Australia in the world, and Pb/Zn mines are widely distributed in China [21]. With the
growing demand for Pb and Zn resources in China, the environmental problems arising from the Pb/Zn
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smelting process cannot be ignored. During the smelting of Pb/Zn minerals, a large amount of waste
water, waste gas and solid waste is generated; if improperly treated or discharged, it causes soil heavy
metal pollution, and ultimately results in harm to human health through the food chain [6,14,22–24].
At present, studies on the environmental release of Pb/Zn during smelting in China are insufficient,
and the environmental release and distribution of Pb/Zn at the provincial level is unclear.

At present, the research at home and abroad in Pb/Zn smelting areas mainly focuses on pollution
and risk assessment of soil and crops around smelting areas, and the research areas are mostly small
or medium-sized [4,14,16,24–27]. There is a lack of comprehensive evaluation of the differences in
pollution degree and potential ecological risk in different regions.

It is important to understand the spatiotemporal variation in the environmental release of Pb/Zn
and the difference in pollution degree and potential ecological risk in different regions. For this purpose,
we carried out a study to (a) analyze the spatiotemporal variation in Pb/Zn environmental release and
(b) explore the difference in soil heavy metal pollution and potential ecological risk in different Pb/Zn
smelting areas.

2. Materials and Methods

2.1. Materials

2.1.1. Pb/Zn Environment Release during Smelting

Data on the Pb/Zn production and smelting recovery of minerals in provinces came from the
yearbook of nonferrous metals industry of China (2001–2016). In this study, 31 provincial administrative
regions were included (excluding Hong Kong, Macao and Taiwan). Our data on the release of Pb/Zn to
the environment are at provincial scale. In provinces with no available data, a value of 0 was used.

The calculation formula of Pb/Zn release in the smelting process is as Equation (1) [28].

Sr = Mep × (1− Sar) (1)

where Sr is the smelting release, Mep is the mineral metal production, and Sar is smelting average
recovery rate. The smelting release refers to the release from the smelting process through mediums
such as atmosphere, water and solid.

2.1.2. The Content of Heavy Metals in Soil from Pb/Zn Smelting Areas

In Pb/Zn smelting areas, the concentrations of heavy metals in the soil were collected from the
literature; we used ‘Web of Science’ and ‘China’s National Knowledge Infrastructure project (CNKI)’,
and the subject terms “Pb/Zn smelting, heavy metal” and “smelting plant, soil heavy metal” to select
the literature that met the requirements. The soil samples in literates were topsoil (0~20 cm), and the
digestion method of the samples was consistent with the China national standards (GB15618–1995).
The quality control of the samples test was also less than 10%. We finally screened a total of 21
references, which have been published since 2005, on heavy metals in soil from Pb/Zn smelting areas.

2.2. Methods

2.2.1. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is mainly applied to detect whether there is an aggregation
trend between a spatial unit and its adjacent spatial units [29]. The global Moran’s index (GMI) is a
commonly used indicator for evaluating spatial autocorrelation statistics. When the GMI increases,
the spatial correlation increases, and the variables show spatial aggregation. In contrast, lower GMI
values indicate that the correlation has become weaker, and the variables appear as spatially discrete
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trends. This research utilizes spatial autocorrelation analysis to study the overall distribution of Pb/Zn
environmental release in China; the calculation formula is as Equation (2).

GMI =

∑n
i=1

∑n
j=1 Wij(xi − x)

(
xj − x

)
S2 ∑n

i=1
∑n

j=1 Wij
(2)

where n is the number of provincial units, xi and xj are the Pb and Zn environmental releases for
provincial units i and j, respectively, Wij is the standardized spatial weight of provincial units i and j.
The GMI value is between −1 and 1. If the GMI value is positive, this indicates that the Pb/Zn release
has a significant aggregation state in space, and if it is negative, this indicates that the Pb/Zn release
shows a discrete situation in the spatial distribution. To identify the significance of the GMI, the Z test
is applied, and the calculation formula is as Equation (3).

Z(I) =
1− E(I)√

V(I)
(3)

where Z(I) is the Z test value of the GMI, and E(I) and V(I) are the mathematical expectation and
variance of the GMI, respectively.

2.2.2. Evaluation of Soil Heavy Metal Pollution

To evaluate the soil heavy metal pollution in Pb/Zn smelting areas, the single pollution index is
applied [30]. The calculated formula is as Equation (4).

Pi =
Ci

Si
(4)

where Pi, Ci, and Si represent the pollution index, measured concentration, and evaluation standard
value of heavy metal i, respectively. In this study, the Si values are selected from the risk screening
values in “Soil environmental quality—Risk control standard for soil contamination of agricultural
land”. The grading standard of the single pollution index is as follows: Pi ≤ 1, clean; 1 < Pi ≤ 2, lightly
polluted; 2 < Pi ≤ 3, moderately polluted; Pi > 3, highly polluted.

2.2.3. Potential Ecological Risk Assessment

The potential ecological risk index method is applied to evaluate the ecological risk of heavy metals
in smelting areas. The method was proposed by Hakanson in 1980 [31], and the results can reflect the
potential ecological risk degree of heavy metals in the soil to the environment. The calculation formula
is Equation (5).

RI =
∑4

i=1
Ei =

4∑
i=1

Ti ×
Ci

Cb
(5)

where RI is the comprehensive potential ecological risk index of various heavy metals; Ei is the potential
ecological risk index of heavy metal i in the soil; Ti is the toxicity response coefficient of heavy metal
i; the toxicity response coefficients of Cd, Pb, Cu, and Zn are 30, 5, 5, 1, respectively; Ci and Cb are
the measured concentration and the background value of soil heavy metal i, respectively (mg/kg). In
this study, the corresponding soil background values are selected according to the soil region. The
classification criteria for potential ecological risks are as follows: Ei < 40, RI < 150, indicates a low
potential ecological risk; 40 ≤ Ei < 80, 150 ≤ RI < 300, means medium potential ecological risk; 80 ≤ Ei

< 160, 300 ≤ RI < 600, represents considerate potential ecological risk; 160 ≤ Ei < 320, 600 ≤ RI < 1200,
denotes high potential ecological risk; and Ei ≥ 320, RI ≥ 1200, signifies very high potential ecological
risk [25,31].
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3. Results and Discussion

3.1. Spatial and Temporal Variations in Pb/Zn Eenvironmental Release

3.1.1. Temporal Variation in Pb/Zn Environmental Release

The mineral Pb/Zn production and environmental release from the period 2000 to 2015 is shown
in Figure 1; specifically, the production of Pb increased from the period 2000 to 2013, with a maximum
production of 3.44 × 106 ton in 2013 and a decrease after 2014. Overall, the production of Zn was
increasing, and the maximum output was 5.88 × 106 ton in 2015. The production of Zn was higher
than that of Pb.
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(a) mineral Pb/Zn production; (b) environmental release of Pb/Zn.

The increase in mineral Pb/Zn production is mainly due to the growing demand for Pb/Zn in
recent years in China [21,28], although the production of Pb/Zn is vast, and several tons were also
imported from other counties. In recent years, the decline in Pb production has been mainly caused
by price factors, environmental protection policies and other factors [21]. With the increase in Pb/Zn
production, the release of Pb/Zn to the environment during smelting cannot be ignored.

The amount of Pb/Zn released into the environment during the smelting process is shown in
Figure 1b; specifically, the environmental release of Pb first increased and then decreased, and the
maximum amount of Pb released was 1.39 × 105 ton in 2008. The amount of Zn released first increased
and then alternately increased and decreased, and the maximum amount of Zn released was 3.32 ×
105 ton in 2006. The release of Pb/Zn to the environment is not always consistent with the level of
production, which is mainly due to strict environmental policies, emission reduction measures and
technological improvements, resulting in a reduction in Pb/Zn release [21,28,30,32].

3.1.2. Spatiotemporal Variation in Pb/Zn Environmental Release

Based on the release of Pb to the environment at the provincial scale, and through the function of
color classification in ArcGIS 10.3, the provinces with different release levels are shown in different
colours. The spatial distribution maps for Pb in 2000, 2005, 2010, and 2015 are shown in Figure 2.
The environmental release of Pb indicated an extremely unbalanced phenomenon between regions
in China.

From Figure 2a, low and sub-low areas were mainly distributed in the north and east of China, and
high and sub-high areas were mainly located in the middle and south, especially in Henan Province,
Hunan Province and Yunnan Province. In 2005, the low value areas were mainly located in the northern
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and south-central regions, and the high value area was in Henan Province. In some provinces, the
emission had reduced to zero, such as in Shandong Province, Tianjin, Jilin Province, and Sichuan
Province; however, some additional provinces were added, e.g., Qinghai Province, Fujian Province,
and Shanxi Province. In 2010, the low and sub-low areas were mainly distributed in the north; the high
value areas were distributed in Henan Province and Hunan Province; and the major change in emission
provinces was that Shanxi Province, Hubei Province, and Zhejiang Province became no-release areas,
while Xinjiang Autonomous Region was added. In 2015, apart from Fujian Province and Chongqing
becoming no-release areas, the distribution pattern was similar to that in 2010, in which the low and
sub-low areas were mainly distributed in the north, and the high value area was distributed in Henan
Province and Hunan Province.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 5 of 14 
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distribution of Pb in 2015.

From the period 2000 to 2015, the number of provinces with Pb releases was reduced from 20 to
15; the reduced area was mainly distributed in the central and eastern regions, while the added area
was mainly located in the western region. The area of released Pb showed a tendency of transferring
from the middle east to the west, which was mainly due to the distribution of mine Pb resources and
the impact of environmental protection policies [21,32].

According to the release of Zn to the environment at the provincial scale and through the function
of color classification in ArcGIS 10.3, the provinces with different release levels are shown in different
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colours. The spatial distribution maps of Zn in 2000, 2005, 2010, and 2015 are displayed in Figure 3.
The spatial distribution of Zn also showed obvious regional differences.
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In 2000, the low and sub-low value areas were mainly distributed in the north, the high and
sub-high value areas were mainly located in the south, and Hunan Province had the highest release.
In 2005, the distribution pattern was similar to that in 2000, but three new provinces were added to
the distribution area, namely, Fujian Province, Chongqing, and Ningxia Hui Autonomous Region,
and Hebei Province was removed. The low and sub-low value regions were mainly in the north and
east, and the high and sub-high value areas were in Hunan Province and Yunnan Province. In 2010,
there were some changes in the distribution of provinces, including the addition of Xinjiang Uygur
Automous Region and Jiangxi Province and the reduction in Ningxia Hui Autonomous Region and
Chongqing. The sub-high region was transferred from the south to north compared to the distribution
in 2005, and the high value region was in Hunan Province. In 2015, the distribution provinces were
reduced by two provinces compared with 2010, namely, Shanxi Province and Fujian Province; the low
areas were located in the northwest and east; the high and sub-high regions were in the north and
south; and the high value regions were in Hunan Province, Yunnan Province, and Shaanxi Province.

From 2000 to 2015, although there were some changes in areal distribution, the total number of
Zn release provinces did not change. Among them, Hunan Province released the most. The release



Int. J. Environ. Res. Public Health 2020, 17, 1968 7 of 13

center of Zn showed a trend of shifting from south to north, which was mainly due to the gradual
exploitation of Zn resources from the south to the north and environmental policy [21,32].

3.2. Spatial Autocorrelation Analysis of Pb/Zn Environmental Release

As shown in Table 1, for Pb environmental release, in 2000, 2005, 2010, and 2015, the Moran’s I
values were 0.0651, −0.0327, −0.0109, and −0.0118, respectively. The Z-value < 2.58, which indicated
that the correlation was poor. Only in 2000 was there a certain accumulation tendency of Pb release in
provincial unit. In 2005, 2010, 2015, the amount of Pb release showed a discrete trend.

Table 1. The P and Z values of Pb/Zn environmental release in China from the period 2000 to 2015.

Year Moran’s I P-Value E(I) Z-Value

Pb

2000 0.0651 0.2252 −0.03125 1.2128
2005 −0.0327 0.9834 −0.03125 −0.0209
2010 −0.0109 0.7843 −0.03125 0.2737
2015 −0.0118 0.7954 −0.03125 0.2593

Zn

2000 0.0686 0.2206 −0.03125 1.2249
2005 0.1156 0.0637 −0.03125 1.8539
2010 0.0152 0.5398 −0.03125 0.6131
2015 0.0455 0.3514 −0.03125 0.9318

As Table 1 shows, for Zn environmental release in 2000, 2005, 2010, and 2015, the Moran’s I values
were 0.0686, 0.1156, 0.0152, and 0.0455, respectively, which were all greater than 0, and there was a
certain tendency of spatial aggregation of Zn. The spatial correlation was greatest in 2005.

3.3. Pollution Assessment of Soil Heavy mMetals in Pb/Zn Smelting Areas

To investigate the pollution degree of heavy metals in soil around the Pb/Zn smelters, data on soil
heavy metal content (Cd, Pb, Cu, and Zn) in 21 smelting areas from nine provinces were collected and
analyzed. The content of heavy metals in the soil is displayed in Table 2.

Table 2. The concentration of heavy metals in soil (mg/kg), (the concentration is shown as an average).

Region N Cd Pb Cu Zn Source

Huize, Yunnan 23 12.80 712.00 239.00 1688.00 [11]
Gejiu, Yunnan 15 63.50 3347.50 117.00 2974.30 [33]

Lancang, Yunnan 53 2.36 287.79 14.79 161.94 [34]
Hezhang, Guizhou 8 43.00 9000.00 120.00 11,000.00 [35]

Bijie, Guizhou 101 2.07 87.18 97.81 261.00 [12]
Baiyin a, Gansu 33 15.93 392.59 330.81 737.18 [36]
Baiyin b, Gansu 16 19.70 3510.00 426.00 332.00 [37]

Huixian a, Gansu 21 4.37 418.00 29.50 90.10 [38]
Huixian b, Gansu 27 9.85 655.89 37.24 435.89 [39]
Huixian c, Gansu 20 3.12 214.00 25.80 79.50 [40]

Mianxian, Shaanxi 17 39.74 165.08 52.05 1304.27 [41]
Fengxiang, Shaanxi 27 0.95 53.50 30.81 118.27 [42]
Tongguan, Shaanxi 18 0.26 94.63 26.10 68.60 [32]
Fengxian, Shaanxi 9 33.79 412.28 59.14 556.73 [43]
Zhuzhou, Hunan 10 108.18 7621.86 261.41 1249.20 [44]
Chenzhou, Hunan 35 2.80 226.50 60.50 347.10 [45]

Jiyuan, Henan 45 5.75 145.00 22.00 84.70 [46]
Jiaozuo, Henan 135 1.70 42.33 15.98 67.77 [47]

Huludao, Liaoning 113 60.94 443.10 247.80 4084.00 [48]
Youxi, Fujian 12 8.28 699.25 114.88 670.47 [49]

Shaoguan, Guangdong 13 25.61 1185.66 67.13 764.12 [50]

Note: a, b, and c represent the different smelting areas in the same district, N represents the number of soil samples.
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3.3.1. Content of Heavy Metals in Soil

As shown in Table 2, the concentration of Cd was higher in Gejiu, Hezhang, Mianxian, Fengxian,
Zhuzhou, and Huludao, with concentrations of 63.50, 43.00, 39.74, 33.79, 108.18, and 60.94 mg/kg,
respectively, while the concentration in Tongguan was low, with a value of 0.26 mg/kg. The concentration
of Cd is high in the soil from the smelting areas, mainly because Cd is often associated with Pb/Zn ore.
During Pb/Zn smelting, Cd was released into the surrounding environment through waste gas, waste
water and other forms [51,52]. The concentrations of Pb in Gejiu, Hezhang, Baiyin b, Zhuzhou, and
Shaoguan were 3347.50, 9000.00, 3510.00, 7621.86, and 1185.66 mg/kg, respectively, which were higher
than those in other smelting areas. The concentrations of Pb in Fengxiang and Jiaozuo were 53.50 and
42.33 mg/kg, respectively, which were lower than those in other areas, mainly due to the difference in
smelting amount and smelting time [25,47]. The concentrations of Cu in Baiyin a, Baiyin b, Zhuzhou,
and Huludao were 330.81, 426.00, 261.41, and 247.80 mg/kg, respectively, but they were lower in
Lancang and Jiaozuo, with values of 14.79 and 15.98mg/kg, respectively. The concentrations of Zn in
Huize, Gejiu, Hezhang, and Huludao were 1688.00, 2974.30, 11,000.00, and 4084.00 mg/kg, respectively,
and the lower values were in Tongguan and Jiaozuo, with 68.60 and 67.77 mg/kg, respectively. The
concentrations of heavy metals in different regions displayed great differences, mainly due to the
smelting time, smelting amount, types of associated metals and other mineral production activities in
the region [24,25,37].

3.3.2. Pollution Assessment of Heavy Metals in Soil

According to the concentration of heavy metals in soil, the risk screening values in smelting areas
and Equation (4), the single pollution index is shown in Figure 4.
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As shown in Figure 4, the single pollution indices of Cd, Pb, Cu, and Zn varied greatly in different
regions. For Cd, the single pollution index was 0.87 only in Tongguan, which indicated that the soil
was clean. In Jiaozuo, the value was 2.83, reaching a moderately polluted level. In other smelting
areas, the single pollution indices were all greater than 3, reaching a highly polluted level. In Gejiu,
Hezhang, Mianxian, Zhuzhou, and Huludao, the values reached 211.67, 143.33, 132.47, 360.60, and
203.13, respectively, and the pollution level was quite serious. It can be seen from the degree of Cd
pollution in the Pb/Zn smelting areas that Cd pollution is a common problem and is very serious
in some areas. For Pb, the single pollution indices in Bijie, Fengxiang, Tongguan, and Jiaozuo were
0.73, 0.45, 0.79, and 0.25, respectively, which indicated that the soil in these regions was at a safe level.
However, in other areas, the single pollution indices all exceeded 1, especially in Gejiu, Hezhang,
Baiyin b, Zhuzhou, and Shaoguan, which were 27.90, 75.00, 20.65, 84.69, and 16.94, respectively, and the
pollution level was extremely high. For Cu, the single pollution indices in Baiyin a, Baiyin b, Zhuzhou,
and Huludao were 3.31, 4.26, 5.23, and 4.96, respectively, which were all above 3, and reached high
pollution levels. The single pollution indices in Huize and Youxi were 2.39 and 2.30, respectively, which
indicated moderate pollution. The single pollution indices in Gejiu, Hezhang, and Shaoguan were
1~2, and the pollution level was slightly polluted. The single pollution indices of Cu in other areas
were less than 1, and the soil was at a clean level. For Zn, the single pollution indices in Hezhang and
Huludao were 44.00 and 20.42, respectively, and the lowest was in Jiaozuo, which was 0.23. The single
pollution indices of Cd, Pb, Cu, and Zn in Zhuzhou and Huludao were all highly polluted; one reason
for this was that the smelting in Zhuzhou and Huludao has existed for several years, and another was
that smelting had caused serious pollution to local soil [44,48]. The single pollution indices of Cd, Pb,
Cu, and Zn in Tongguan were all below 1, which indicates a safe level and is mainly due to the small
scale of the smelter and the short smelting time [32].

3.4. Potential Ecological Risk Assessment

Based on Equation (5), the potential ecological risk index is shown in Figure 5.
The potential ecological risk of Cd in Bijie and Tongguan was considerate; it was high in Fengxiang

and very high in all other areas, especially in Mianxian, Fengxian, Zhuzhou, Huludao, and Shaoguan.
The potential ecological risk exceeded 10,000, and the content of Cd in the soil far exceeded the
respective soil background values. There were great potential ecological risks in these areas.

The potential ecological risk of Pb in Gejiu, Hezhang, Baiyin b, and Zhuzhou were very high,
and the values in Huixian b and Shaoguan were high, indicating that the Pb pollution was serious in
these areas and may cause serious ecological harm. In other regions, the potential ecological risk was
considerably lower.

The potential ecological risk level of Cu in the Pb/Zn mining area was generally low, except for
the ecological risk of Cu in Baiyin b, which was 88.38, reaching a considerable potential ecological risk.
In Baiyin a, Zhuzhou, and Huludao, the risk was moderate, and the potential ecological risk in other
areas was low.

The potential ecological risk of Zn in Hezhang was considerable. In Huludao, the risk was
medium, and the risk in other regions was low, indicating that the potential ecological risk level of Zn
in the Pb/Zn smelting area was generally low and that the risk of causing ecological damage was small.

In general, the potential ecological risk was extremely high in Gejiu, Mianxian, Fengxian, Zhuzhou,
Huludao, and Shaoguan; among them, Cd had the largest contribution, followed by Pb, and the
contribution of Cu and Zn was relatively low.
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4. Conclusions

This study analyses the spatiotemporal variation in the environmental release of Pb/Zn and the
differences in soil heavy metal pollution and potential ecological risks in different Pb/Zn smelting
areas. Overall, the environmental release of Pb first increased and then decreased, and the amount
of Zn first increased and then decreased. However, the release of Pb/Zn to the environment was not
always consistent with production. From the spatiotemporal variation in the release of Pb/Zn, the
environmental release of Pb/Zn showed an extremely unbalanced phenomenon between regions in
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China. From 2000 to 2015, the Pb release indicated a tendency to transfer from the middle east to the
west, and the release center of Zn showed a trend of shifting from the south to north. Hunan Province
showed the greatest release. The concentration of heavy metals in different regions displayed great
differences and the single pollution indices of Cd, Pb, Cu, and Zn in Zhuzhou and Huludao all reached
extremely polluted levels; however, in Tongguan, they were all below 1 and within the safe level.
The potential ecological risk in Gejiu, Mianxian, Fengxian, Zhuzhou, Huludao, and Shaoguan was
high, which indicated that there were very high potential ecological risks in those areas. Cd had the
highest potential ecological risk in most smelting areas, followed by Pb. From the above analyses, it
indicates that Pb/Zn smelting activities have caused soil heavy metal pollution to different degree. With
environmental problems becoming more and more important, our study can provide some significant
guidance for pollution control.
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