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Abstract: Background: Few studies have directly estimated expected life loss attributable to lifetime
exposure to fine particulate matter (PM2.5). Methods: We used claims data from Taiwan’s National
Health Insurance to create 63 study cohorts of 1.91 million residents aged 60–79 years old residing in
small areas where air quality monitoring stations are situated. The survival status of each person was
followed from 2001 to 2016. We applied an extrapolation algorithm to estimate the lifetime survival
function so that we could directly estimate life expectancy (LE) and the lifetime exposure to PM2.5 of
each cohort. We estimated the association between LE and lifetime exposure to PM2.5 among the
63 cohorts. We also fit a Cox proportional hazards model to all the data combined to estimate the
relative risk of mortality. Results: Older adults who lived in an area with a higher lifetime weighted
average PM2.5 of 10 µg/m3 had a shortened LE by 0.34 (95% CI: 0.22–0.46) years. The hazard ratio of
mortality was 1.0245 (1.0242–1.0248) per one µg/m3 increase in lifetime average PM2.5. Conclusion:
This study provides strong evidence that later-life exposure to moderate PM2.5 air pollution had a
substantial impact on the life loss of older adults.

Keywords: air pollution health effects; survival extrapolation; long-term PM2.5; expected years of
life lost

1. Introduction

To improve health risk assessments, the effects on mortality from long-term exposure to ambient
particulate matter (PM) air pollution have been well studied [1–13]. Recently, Pope III et al. complied a
comprehensive list of cohort studies in the past 25 or more years and provided substantial evidence
of associations between air pollution exposure and mortality through meta-analysis [14]. We have
found that most of the cohort studies reported relative mortality risks for an increased unit of PM
exposure utilizing Cox proportional hazards models [14]. To have a more meaningful indicator of the
health effect of air pollution, the estimated relative risks were used with some assumptions, and under
various counterfactual scenarios, to estimate the number of premature deaths and further estimate the
loss of life expectancy (LE) attributable to air pollution of a study population [15–17].

The expected loss of LE was also used as a primary outcome for quantifying the health effects of
long-term exposure to PM2.5 in several causal studies [18–21]. The difference-in-differences approach,
a statistical technique to mimic an experimental design by studying the differential effect of exposures
in two time periods, was used to evaluate the changes in LE associated with differential changes in
PM2.5 air pollution between two time periods across US county units [18,19]. Recently, a regression
discontinuity design based on the distance between a location and the Huai River in China was
proposed to model the relationship between LE and air pollution concentration among selected study
areas [20,21].

These studies claimed to provide evidence of the effect on LE from the long-term exposure to PM2.5.
However, the LE was indirectly calculated by first modeling annual mortality data and population
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data for each study area, and then using standard life table techniques with the estimated relative
risks [19]. The uncertainties of the estimated LE and the effect size of air pollution on LE decrement in
the exposed population were rarely discussed. Therefore, more studies with advanced approaches
for estimating associations between long-term PM2.5 exposure and LE decrement are deeply needed.
Furthermore, although these studies examined the health effects of long-term exposure, none of these
studies have explored the health impacts of lifetime exposure to PM2.5 [14]. This is mainly because few
cohorts had their exposure levels and mortality statuses tracked for a sufficiently long period. Without
proper approaches for dealing with the high censoring rate problems, it is difficult to obtain robust
estimates of LE and lifetime exposure to PM2.5 in the study cohorts.

In this study, we proposed a new approach for directly estimating both LE and lifetime exposure
to PM2.5 in study cohorts of older adults for assessing the health effects of long-term exposure on
expected years of life lost. We used Taiwan’s National Health Insurance claims data to create study
cohorts of 1.91 million older adults aged 60–79 years who lived or worked in 63 small areas in rural
townships and city districts where ambient air quality monitoring stations were situated. We extracted
each individuals’ 1998–2000 medical visit records in the claims database to select participants for a
study cohort. We then obtained the survival status of the participants from the mortality registry.
The participants were followed from the first day of 2001 to the last day of 2016.

We reported an increased risk of mortality attributable to lifetime exposure to PM2.5 in two models
of mortality at area level and individual level, separately. First, we estimated the lifetime survival
function for each study cohort using an extrapolation algorithm [22]. The expected lifetime exposure
to PM2.5 of each cohort was estimated by adding up the product of PM2.5 concentrations in the area
that the cohort resided in and survival rates over the lifetime and divided these by the LE of the cohort.
We used a weighted regression model with spatially correlated error terms to estimate the effect size
on LE by lifetime exposure to PM2.5, with adjustments for socioeconomic and demographic variables
among the study cohorts in the 63 small areas. Second, we estimated the relative mortality risk of
lifetime exposure to PM2.5 by fitting a Cox proportional hazards model to the survival data of all
the 1.91 million individuals, together with an adjustment for individual risk factors and area-level
variables for comparisons with other studies.

2. Methods

In addition to analyzing the relative mortality risk of exposure at the individual level using a
traditional Cox model, the main focus of the study is the proposed new method for estimating the
association between life expectancies and lifetime exposure among study cohorts. The procedures
of the new method consist of three steps, including calculating LE and estimating lifetime exposure,
both using the lifetime survival function for each cohort, and a linear regression model. We will
introduce the extrapolation algorithm for estimating the lifetime survival function before the details of
the modeling association between LE and lifetime exposure.

2.1. Data Sources

Taiwan’s National Health Insurance was launched in 1995, providing universal health care
coverage to 99.6% of Taiwan’s residents and had service contracts with 93% of the country’s hospitals
and clinics in 2018 [23]. Data in the registry of beneficiaries comprise a unique encrypted identifier, sex,
date of birth and an insured payroll-related amount. The claims data contain diagnoses, prescriptions,
and details of inpatient care or outpatient visits. Disease diagnoses are coded using the International
Classification of Diseases, Ninth Revision (ICD9). Although the medical facilities have been deidentified,
their scale and location can be obtained from the registry.

The Taiwan air quality monitoring network was established in 1993 and collects data from 77
monitoring stations currently. Most monitoring stations are located in populous urban and rural areas
and can be used to inform the public on ambient air quality. Open data on hourly measurements of
major pollutants are available on the monitoring network website [24]. Data for the township and city
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district socioeconomic and demographic variables of this study are also available from the Taiwanese
government’s open data platform [25]. We also used population and housing census data that were
collected in December 2000 to determine the characteristic variables of the selected study areas [26].

2.2. Study Design

We selected 63 small study areas, with a median size of 42 km2, consisting of rural townships
and city districts in Taiwan where air quality monitoring stations are situated and complete ambient
PM2.5 measurements have been available since 2006. Because ambient monitoring stations are usually
located in the populous center of the selected study areas, the PM2.5 concentrations measured at the
monitoring stations are presumed to represent the air pollution exposure levels of participants living
or working in these small areas [27].

For each study area, we created a study cohort of participants who had (1) lived or worked in the
area since the start date of January 1, 2001 and (2) had been in the area until the end of 2016 or died
during the follow-up. To create a study area cohort, we first identified participants who (1) visited a
primary care clinic in the study area for minor treatment during 1998–2000, (2) were living at the end of
2000 and (3) were aged between 60 and 79 years at the start date of January 1, 2001. We defined minor
treatment as treatment with a medical fee that was less than the 75th percentile of fees for primary
clinic visits. The aforementioned criteria for selecting participants into a study cohort were chosen to
exclude participants who resided far away from the study area and who came to a study area for major
treatment. Data on all medical visits for each participant during the follow-up period were retrieved.
We assumed that a participant in a study area had been living or working in the area from the start to
end date; the end date was defined as 12 months after the date of a participant’s last visit to any health
facility located within 20 km of the area’s center. If the end date of a participant in an area was later
than 2016, it was truncated to the end of 2016. The encrypted identifier for each participant was used
to obtain their corresponding survival status data from the mortality registry during the follow-up.
A participant’s survival time was defined as the period from the start date to the date of death if the
participant visited any health facility located within 20 km of the area’s center within 12 months before
death; otherwise, the survival time was defined up until the end date of the participant in the area and
the survival time was treated as censored.

2.3. Survival Extrapolation Method

Given the survival data of a cohort, the survival function of the cohort, denoted as S(t), can be
estimated for some time t until the maximum follow-up time. Although the study followed participants
aged 60–79 years for 16 years, approximately 50% of the participants were still alive by the end of
the follow-up. We required a lifetime extrapolation of the survival function to estimate the LE of the
cohort, which is defined as:

LE =

∫
∞

0
S(t)dt. (1)

When the censoring rate is high, commonly used parametric models may produce an inaccurate
long-term extrapolation of the survival curve of the cohort [28,29]. In this study, we estimated the
lifetime survival function using a new method called the rolling extrapolation algorithm [22], which has
been demonstrated to be more robust and accurate than popular parametric models when estimating
the lifetime survival function of a cohort of patients with specific conditions [30,31].

The use of the rolling extrapolation algorithm in the estimation of LE is detailed in Hwang et
al. [22]. Briefly, we described the algorithm in four steps in the following. First, the survival times
of referents with sex s, age a and start year y matched with the study participants of the cohort are
generated from the survival function:

SG( t
∣∣∣s, a, y ) = SG(t− 1

∣∣∣s, a, y) ×
(
1− qy+t−1

a+t−1,s

)
for t ≥ 1, (2)
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where qy+t−1
a+t−1,s is the probability that someone with sex s and aged exactly a + t− 1 years old will die

before reaching age a + t based on the standard life table of year y + t − 1 and SG(0
∣∣∣s, a, y) = 1. We

used these generated survival times for the general referents to obtain the survival function of the
general reference population and denoted it as Sg(t). If Sg(t) was larger than S(t), we termed the
generated general reference population a healthy reference population and set the survival function of
the healthy reference population to be Sh(t) ≡ Sg(t). Conversely, if the generated function Sg(t) was
not larger than S(t), a proposed method of generating survival times for heathy referents, as detailed
in the following, can be used to obtain Sh(t). Let tobs be the observed survival time of a participant
with sex s, age a and year y in the cohort. A random number r uniformly distributed between 0 and
SG

(
tobs

∣∣∣s, a, y
)

was generated. We then further drew a random number v from Unif(0, r) to obtain a

survival time tre f = S−1
G (v

∣∣∣s, a, y) for the healthy referent matched with the participant.
Second, we defined a relative survival function between the study cohort and the healthy reference

population, denoted as:
W(t) = S(t)/Sh(t), (3)

whose values lie between 0 and 1. Under the assumption of the cohort having an excessive
constant hazard of mortality, logit[W(t)] is approximately linear after a certain follow-up time [22,32].
The assumption was reasonable in practice, as demonstrated in the applications [30,31].

Third, the best fitted restricted cubic splines model to the logit[W(t)] curve during the observed
period was used to extrapolate the curve one time point ahead. We treated the newly predicted value
of logit[W(t)] at the neighboring time point as “observed” because such short-term predictions, with
the property of approximate linearity, are usually highly accurate. We then rolled the extrapolation
procedures by updating same-length observation periods one time point ahead and refitting the
restricted cubic splines models for the updated observation periods to predict the value of logit[W(t)]
at the successive time point.

Fourth, when logit[W(t)] was completely extrapolated, we could back-transform it to obtain the
complete W(t) function, which was used in conjunction with Sh(t) to calculate an estimate of the study
cohort’s lifetime survival function S(t). The survival extrapolation procedures can be implemented
using the R package iSQoL2 [33].

2.4. Statistical Analysis for Risk at Area Level

The estimated life expectancy of each cohort can be obtained by integrating the extrapolated
survival function. The extrapolated survival function can also be used to estimate lifetime exposure
of each cohort. We can then fit a linear regression model to the life expectancies and the lifetime
exposures among the 63 cohorts to examine the association between exposure and the health outcome.
The details of the analysis are described in the following three sub-sections.

2.4.1. Standardized Life Expectancy Deviation

Instead of using LE as the response variable in the linear regression model, we proposed a measure
called the standardized life expectancy deviation (SLED) of a study cohort, which is defined as the LE
difference between the cohort and the age- and sex-matched general reference population. That is,

SLED =

∫
∞

0
S(t)dt−

∫
∞

0
Sg(t)dt. (4)

Similar to the standardized mortality ratio used for comparison among subnational areas in a
country, the proposed SLED quantifying the increase or decrease in LE of a study cohort with respect
to the general population is better than LE for use in exploring factors determining expected life years
gained or lost among the study areas in a country. The estimates and 95% confidence intervals (CI) of
LE and SLED can be obtained from the R package iSQoL2 [33].
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2.4.2. Expected Lifetime Exposure

The expected lifetime cumulative exposure of a cohort from the start date can be written as∫
∞

0 S(t) ×C(t)dt, where S(t) is the extrapolated survival function of the cohort and C(t) is the function
of the average concentration of PM2.5 air pollution in the study area [34,35]. The expected lifetime
exposure to PM2.5 of the cohort can then be estimated by the lifetime weighted average, which is
denoted by:

E =
T∑

t=0

S(t) ×C(t)/LE =
T∑

t=0

P(t) ×C(t), (5)

where T is the maximum lifetime of the cohort. The weight P(t) = S(t)/LE can be interpreted as the
person-times at time t divided by the lifetime cumulative person-times. For each time point during a
lifespan, the expected lifetime exposure gives weight to PM2.5 levels according to the population that
is still alive. This weight ensures that the expected lifetime exposure is an appropriate measure of the
lifetime exposure to air pollution for a cohort in an area.

2.4.3. Models for the Cohort Measures

As a preliminary measure, let Yi and si be the estimate of the SLED and standard error (SE) of the
estimate of the ith study cohort, and let Ei be the lifetime weighted average PM2.5 for the cohort. We
first conducted standard stepwise regression analysis using the model:

Yi = β0 + β1Ei +

p∑
j=1

γ jX ji + εi, (6)

where εi ∼ N
(
0, s2

i σ
2
)
. This weighted regression was used to identify the influential covariates X ji

from the socioeconomic and characteristic variables. Having identified these covariates, we then
re-estimated the coefficients of the selected covariates in the regression model, assuming that the
correlation between εi and ε j is exp

(
−di j/δ

)
, where the parameter δ denotes the range and di j is the

distance between the centers of the two areas. The R packages stat and rms were used for the analysis.
The covariates included in the stepwise regression model were of three categories, which were

grouped according to how their data were obtained. In the first category, data were obtained from the
created cohorts, and the covariates were cohort size, mean age at start date, sex proportion, insured
payroll-related amount and proportion of the study cohort hospitalized during 1998–2000. In the
second category, data were obtained from December 2000 population census data for individuals
aged 60 to 79 years, and the covariates were the proportions of college graduates, individuals living
with a partner, individuals living with a disability and indigenous people in a study area. In the
third category, data were obtained from government-provided open data, and the covariates were
population density, proportion of adults older than 60 years during 1996–2000, gross consolidated
income, number of hospital beds, and number of regional hospitals and medical centers located within
20 km of the area’s center.

2.5. Statistical Analysis for Risk at Individual Level

We fit a Cox proportional hazards model to all the data of the 1.91 million participants in the 63
cohorts to estimate the hazard ratio of the lifetime average PM2.5 of these older adults. The lifetime
exposure of a participant is given by the average of monthly mean PM2.5 concentrations of the area the
participant lived or worked in during the period from 12 months before the start date of January 1, 2001,
to the month the participant died or their data were censored. The Cox model was adjusted for age,
sex, insured payroll-related amount, any hospitalization due to diabetes, hypertension, cardiovascular
diseases, hypercholesterolemia, chronic obstructive pulmonary disease and other diseases of the
individuals during the 3 years before the start date, and area-level variables listed above.
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3. Results

The characteristic variables of the 63 study areas and corresponding cohorts are summarized
in Table 1. The sizes of the study areas had a median of 42.4 km2 and a range of 1.9–247.2 km2.
The population densities of the study areas ranged widely from 26,562 people per km2 for a district in
Taipei City to 200 people per km2 for a rural township; the median was 2,149 people/km2. The largest
study cohort had 136,512 people, whereas the smallest cohort had 1,993 people; the median cohort size
was 23,323 people. Average ages at the start date of follow-up ranged between 67.4 and 68.7 years.
The proportions of women were as low as 44% and as high as 76%.

Table 1. Summary characteristics of the 63 study areas and corresponding cohorts.

Variable Min 25% 50% 75% Max

Variable related to the study cohorts
Cohort size (people) 1993 13029 23323 44312 136512

Age at start date (year) 67.4 67.7 67.9 68.1 68.7
Female of the cohort (%) 44.1 51.7 54.0 55.8 75.8

Insured payroll-related amount (in NT$1000) 15.4 18.8 19.5 20.1 22.2
Hospitalization during 1998–2000 (%) 11.4 13.4 14.4 16.1 20.1
Survival rate at the end of follow-up 46.6 51.4 53.7 55.5 63.2

Area variables calculated from census data collected in December 2000
Age 60–79 living with a partner (%) 65.5 71.3 72.5 74.4 76.9

Age 60–79 living with severe disability (%) 4.6 5.4 5.9 6.4 8.3
Age 60–79 with a college degree (%) 0.4 1.4 2.8 4.2 24.9

Age 60–79 who is indigenous people (%) 0.0 0.0 0.1 0.3 14.2
Area variables retrieved from government open data

Area size (km2) 1.9 29.1 42.4 70.0 247.2
Population density (people/km2) a 200 1080 2149 5927 26562

Age 60+ in 1996–2000 (%) 5.3 9.2 11.9 13.4 18.6
Gross consolidated income (in NT$1000) b 605 735 784 879 1672

Number of hospital beds (x 100) b 0 2.78 6.53 14.27 50.38
Number of large hospitals within 20 km c 0 9.5 21 44 67

The data used for analysis come from different periods: a 2010, b 2013, c 2016.

To obtain insight into the workings of the proposed survival extrapolation method, the extrapolated
logit[W(t)] curve and extrapolated survival curve for the study cohort of Sonsang district in Taipei City
are plotted in Figure 1. The cohort had superior survival than its matched general reference population
before the maximum follow-up of 16 years. We, therefore, generated another survival curve for the
healthy reference to define the relative survival function W(t) for extrapolating the survival curve of
the cohort. The logit[W(t)] curve was approximately linear before the end of the maximum follow-up
and beyond. With the extrapolated survival curve, we obtained an estimate of 19.0 (SE = 0.10) years
for LE and 1.98 (0.10) years for SLED. The median LEs of the 63 study cohorts of participants aged
60–79 years was 17.1 years and their LEs ranged between 15.6 and 19.3 years. The SLEDs of the cohorts
ranged between -1.3 and 2.0 years.

The hourly PM2.5 and PM10 concentrations during 2006–2018 are available for the 63 study areas
from the air quality monitoring network; PM10 data for the years before 2006 are also available. We
aggregated the measurements to obtain monthly average concentrations of PM2.5 for 2006–2018 and
PM10 for 2001–2018 for each study area. The annual average concentrations of PM2.5 ranged between
14.8 and 50.7 µg/m3 and had a median of 32.0 µg/m3 among the 63 study areas in 2006; while the annual
concentrations of PM2.5 gradually reduced to a range of 6.8–27.7 µg/m3 and a median of 19.7 µg/m3 in
2018. The ranges of annual concentrations of PM10 were 33.6–90.4 µg/m3 and 25.9–65.9 µg/m3 among
the 63 study areas in 2006 and 2018, respectively. The correlation coefficient between the monthly
concentrations between PM2.5 and PM10 during 2006–2018 was 0.9.
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Figure 1. Extrapolated logit[W(t)] curve and survival functions for a study cohort and matched
reference populations.

We used a fitted linear model of measured monthly levels of PM2.5 that were regressed against
PM10 concentrations for 2006–2018 to estimate monthly average concentrations of PM2.5 from 2001 to
2005 for each study area. We then used a fitted autoregressive integrated moving average time series
model to the observed monthly mean PM2.5 levels in 2006–2018 to predict the monthly mean levels
after 2018 for each study area. Because of the clear downward trend of PM2.5 air pollution in Taiwan,
the model-predicted monthly mean levels were decreasing for all 63 areas. We set a lower bound of 10
µg/m3, the annual average concentration chosen by the World Health Organization as the long-term
guideline value for PM2.5, for the predicted monthly levels in an area if the area’s annual average
concentration in 2018 was larger than 10 µg/m3. If the area’s annual average concentration was smaller
than 10 µg/m3 in 2018, this annual average concentration was the lower bound. The expected lifetime
exposure to PM2.5 for the 63 study cohorts, which ranged from 12.0 to 38.6 µg/m3, had a median of
26.9 µg/m3.

Figure 2 presents the plot of SLED against expected lifetime exposure to PM2.5 for the 63 study
cohorts. The simple regression model of SLED against expected lifetime exposure yielded a slope
of approximately −0.066 (0.015). However, the plot also exhibited clear clustering for study areas
in northern, southern, and eastern Taiwan. The association between SLED and expected lifetime
exposure level was further estimated, with influential covariates adjusted for using the stepwise
regression model.
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Figure 2. Standardized life expectancy deviation plotted against expected lifetime exposure to
particulate matter (PM2.5) for the cohorts in the 63 study areas, which are marked with four different
shapes to indicate cohorts located in eastern, northern, central and southern Taiwan. The slope of the
added solid line is −0.066.
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Table 2 summarizes the estimated coefficients for the association between PM2.5 levels and SLED,
in addition to the effects of five selected covariates from the final weighted regression model with
spatially correlated error terms. When the effects of influential socioeconomic and demographic
covariates were controlled for, the coefficient estimate of lifetime exposure was−0.034 (0.006). Although
the association estimate in the model of SLED against the single variable of PM2.5 exposure was very
strong (Figure 2), the adjusted R2 value was only 0.22. The stepwise regression model increased the
adjusted R2 to 0.87, indicating that the estimated effect size of PM2.5 exposure was appropriately
adjusted by the five selected covariates (Table 2).

Table 2. Effect estimates of influential variables associated with standardized life expectancy deviation
(years) from the weighted regression model with spatially correlated error terms.

Variable Estimate Std. Error p-Value

Hospitalization of the cohort 1998–2000 (%) −0.071 0.022 0.002
Number of large hospitals within 20 km 0.009 0.003 0.002

Age 60+ of the area 1996–2000 (%) 0.041 0.015 0.010
Age 60–79 living with a partner (%) 0.126 0.018 0.000
Age 60–79 with a college degree (%) 0.060 0.011 0.000

Lifetime weighted average PM2.5 (µg/m3) −0.034 0.006 0.000

It is not surprising that the proportion of a cohort being hospitalized during the 3 years before
follow-up was negatively associated with SLED. This indicates that health conditions at the start date
affected LE in the follow-up. We also determined that socioeconomic condition—represented by the
proportion of elderly people with a college degree in a cohort—was positively associated with the
SLED of a cohort (p-value < 0.001). According to Table 2, the higher the proportion of people aged 60
years during 1996–2000, the higher the cohort’s LE in the follow-up. This implies that those living in
an area with more older residents are likely to live longer. It is also interesting to find that older people
who lived with a partner also had a significantly longer LE than those without partners (p-value <

0.001). Medical resources, represented by the number of regional hospitals and medical centers within
20 km of an area’s center, were positively associated with the SLED of a cohort. According to the
residuals plot of the final model in Figure 3, the location clustering effect was considerably lower than
that at the initial stage. This indicates that the confounding effects were largely eliminated by the
selected covariates.
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As a comparison with related studies, we observed that a 10 µg/m3 increase in lifetime weighted
average PM2.5 was significantly associated with an estimated mean LE loss of 0.34 (0.06) years for
the adults aged 60–79 years. To estimate the effect of lifetime exposure to PM2.5 on expected years
of life lost among the study cohorts, the annual average concentration of 10 µg/m3 was set as a
baseline. The largest excessive lifetime exposure of the 63 cohorts from the baseline was 28.6 µg/m3.
The expected years of life lost was 0.97 years for older adults living in the study area that had the worst
air quality since 2001. The life loss relative to the cohort’s LE of 15.9 years was 6.1%.

There were 1.91 million people in the 63 cohorts at the start date of January 1, 2001. By the end of
2016, 804,000 (42%) had died. After the adjustment for all the available individual risk factors and
area-level variables in the Cox proportional hazards model, the estimate of the hazard ratio of mortality
for each one µg/m3 increase in lifetime average PM2.5, was 1.0245 (95% CI: 1.0242–1.0248). The result
was very close to the hazard ratio of 1.021 (1.019–1.022) reported in a similar cohort study of long-term
exposure to PM2.5 and mortality among older adults in US [36].

4. Discussion

The comprehensive claims data of Taiwan’s National Health Insurance and the wide range of
PM2.5 levels that spanned more than 10 years enabled us to propose this new study design and set of
analytical approaches for examining the association between lifetime exposure to PM2.5 and LE. Our
results showed that the increase in lifetime weighted average PM2.5 was significantly associated with
an estimated mean LE loss based on modeling the standardized life expectancy deviations against the
exposure of the cohort. We also fit the same weighted linear model with the response variable SLED
replaced by LE. The estimated association between expected lifetime exposure to PM2.5 and LE was
very close to the estimate of the SLED modeling after the adjustment for the additional two variables
of average age at the start date and proportion of females in the cohorts. Although the conclusions of
the two models were the same in this study, we prefer to report the results of the SLED modeling, as
the two additional variables of age and sex may be correlated with the other explanatory variables in
the model of LE.

Although the study cohorts of people aged 60–79 years were followed for 16 years, their survival
rates at the end of 2016 ranged between 46.6% and 63.2% (Table 1). The accuracy of the extrapolation of
the survival function to the end of life is critical for estimating LE. The rolling extrapolation algorithm
has been demonstrated to be more accurate and robust in terms of long-term survival extrapolation [22].
However, this algorithm assumes that the study cohort has a lower survival than its matched general
reference population. In this study, we modified this algorithm to generate a reference population
that is always healthier than the matched study cohort for survival extrapolation. To evaluate the
performance of this proposed modification, we assumed that the survival status of the 63 study cohorts
were followed to the end of 2010. We then extrapolated the survival function to the end of 2016.
The difference between the observed and extrapolated survival functions to the end of 2016 yielded a
survival time difference that ranged from −2.2 to 1.8 months among the 63 cohorts. Therefore, our
modified algorithm still has an excellent performance with a mean relative absolute error of 0.43%.

Our analysis of hazard ratio for mortality using the claims data of 1.91 million residents was very
similar to that of the study of 13.1 million Medicare beneficiaries residing in seven southeastern US
states [36]. Both of the studies fit Cox proportional hazards models with adjustments for available
confounding variables. The estimated hazard ratios for death in the two studies were very close,
with 1.0245 and 1.021, respectively, per one µg/m3 increase in lifetime average or yearly mean PM2.5.
The difference is that the median exposure level was 26.9 µg/m3 in our study, which was moderate
relative to key representative studies of the health effects of long-term PM2.5 exposure [37], as it was
10.7 µg/m3 in the US study. This indicated a linear relationship of mortality risk among the elderly
with annual PM2.5 in the range of 10–27 µg/m3. Our estimate of association between lifetime exposure
to PM2.5 and LE is also consistent with the findings of a relevant study that modeled differences in LE
against differences in PM exposure over time. Our result of a decrease of 10 µg/m3 in lifetime average
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PM2.5 was associated with a mean LE increase of 0.34 (0.06) years, which was close to the 0.35 (0.16)
years measurement obtained in the analyses of data in 545 US counties for the period from 2000 to
2007, with annual PM2.5 down from 13.2 to 11.6 µg/m3 [19]. The difference is that our estimated effect
size was for assessing expected later-life loss of older adults, while the US study was for examining the
change of LE at birth in two time periods.

Although we included several influential socioeconomic variables in our model, our results may
be affected by other unmeasured confounders. Thus, we cannot infer causality between lifetime
exposure to PM2.5 air pollution and LE loss in this study. Furthermore, the strong correlation between
concentrations of PM2.5 and other pollutants, especially ozone, among the 63 study areas hindered
us from fitting data on multiple pollutants in the model. At least for our single-pollutant model,
we found that LE was also strongly associated with the annual mean concentration of ozone. It is
generally difficult to determine which air pollutants were responsible for LE loss based on our findings.
However, the strong evidence obtained from our analysis further strengthens our belief that later-life
exposure to air pollution shortens LE among older adults.

5. Conclusions

The proposed survival extrapolation algorithm allows for the accurate estimation of LE and lifetime
exposure to air pollution of a cohort, even when the censoring rate is high. Using comprehensive
data on health, air quality, and socioeconomic status, we presented strong evidence that expected
lifetime exposure to PM2.5 is associated with the LE of people aged 60–79 years old in Taiwan. Both the
proposed methods and findings of our study contribute to health impact assessments of long-term
exposure to air pollution.
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