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Abstract: Understanding the driving forces behind built-up land expansion is crucial in urban
planning and management. Using the Pearl River Delta urban agglomeration as research area, four
landscape metrics were used to analyze landscape characteristics of urban expansion from 1990 to
2015. Spatial autocorrelation analysis was used to study the characteristics of built-up land expansion,
while geographical detector was employed to identify the driving forces of urban land growth and
their interactions. The results show the extent of built-up land has been increasing, the structure has
become more complex, the level of fragmentation has been increasing, and the aggregation degree
is in decline. The built-up landscape index shows spatial heterogeneity occurring in the core and
peripheral towns of cities, as well as in the core and peripheral areas of the entire region. Also, changes
in the built-up landscape index indicate increased spatial aggregation occurring in the past 25 years.
Results from the geographical detector show natural, socio-economic, and transportation-related
factors have substantial influence on built-up land expansion. Elevation, slope, population density,
change in population density, and road network density were shown to have high influencing power.
The influencing powers of slope and change in population density were also found to be different
from other factors, highlighting their important role in urban development. Also, there were two
types of interactions found, enhance nonlinear and enhance bivariate interactions, indicating the
compounding influence of interactions between significant determinants. This study provides a
new perspective and methodological approach in evaluating the driving forces behind built-up land
expansion and their interactions.

Keywords: built-up land expansion; landscape metrics; spatial autocorrelation; geographical detector;
pearl river delta urban agglomeration

1. Introduction

Urbanization has become a global phenomenon, which has significantly transformed society and
the global economy and has become a crucial geospatial process [1]. With urbanization, research on
urban transport [2], spatial planning [3] and smart city [4] has been increasing. Over the past 30 years,
urban populations have increased, and built-up land has expanded rapidly, especially in developing
countries [5]. Rapid urbanization has had profound influence on the structure and functions of
both natural ecosystems and human livelihoods [6,7] and has resulted in various problems, such as
ecological destruction, resource shortages, population explosion, environmental pressure, and health
problems [8–13]. Understanding the process of built-up expansion and its driving factors is crucial for
effective urban growth planning and management to mitigate associated adverse impacts [14].
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In order to investigate the effects of various factors on built-up land expansion, numerous models
and approaches have been used, including cellular automata [15,16], bivariate regression [17,18],
analytical hierarchical process [19], logistical regression [20,21], and spatial regression [5,22]. Previous
studies have tried to establish how landscape characteristics and determinants of built-up land
expansion, such as shape, fragmentation, and edge, provide an efficient approach to describe urban
processes and their consequences [5].

Understanding the interactions among the various driving factors is crucial in accurately simulating
and predicting built-up land expansion patterns; however, only a few of the methods previously
stated are able to evaluate interaction effects [23]. As a spatial statistical method, the geographical
detector can be used to assess the relationships of different geographical strata and identify associations
between complex sets of factors and numerous geographical phenomena without using assumptions or
restrictions [24]. It can quantitatively characterize the interactions between pairs of factors and obtain
valuable results [23,25]. Geographical detector is a tool for measure of spatial stratified heterogeneity
and attribution of spatial patterns, the factor detector, interaction detector and ecological detector
can analyze interactions between two factors, excellent ability to study the factor interactions. Thus,
with the use of the geographical detector, the spatial pattern of built-up land expansion can be better
understood, and the interactions between driving forces and their relation to urban growth can be
quantitatively characterized. Various factors can influence the expansion of built-up lands. After an
extensive literature review, we found that several variables have often been considered in past studies.
These include topographic factors [5,14,23,26–32], population [18,23,26,29–34], Gross Domestic Product
(GDP) [18,23,26,30,33,35,36], road effects [5,14,23,28,29,31,34], policy factors [21,28–31,34], and other
factors [37–39].In this study, we explore the attributes and the impact of built-up land expansion and
characterize the interactions between these factors. In particular, we address the following research
questions: (1) What are the landscape pattern characteristics of built-up land expansion? (2) What are
the features of the impact of driving forces of built-up land expansion and the interactions between these
factors? Using geographic information systems (GIS) and remote sensing technology, we employed
geographical detector and landscape metrics to explore the landscape characteristics and impact of
built-up land expansion for the Pearl River Delta (PRD) urban agglomeration from 1990 to 2015.

2. Materials and Methods

2.1. Study Area

Adjacent to the South China Sea, the PRD is located in southern mainland China and is one of
the three most economically developed regions in China. The region includes two deputy provincial
cities, Guangzhou and Shenzhen, and seven prefecture-level cities, namely Foshan, Dongguan, Zhuhai,
Huizhou, Zhongshan, Jiangmen, and Zhaoqing [40]. With continued economic progress in PRD,
urban construction has accelerated significantly in recent years. In 2015, the area of built-up land was
estimated at about 9127 km2, which constituted approximately 17% of the total land area. Urbanization
was particularly pronounced in Shenzhen, Dongguan, Zhongshan, and Foshan, making more than
30%. In this study, 581 towns situated in the Pearl River Delta urban agglomeration were selected as
the research area. The location map of the study area is shown in Figure 1.
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Figure 1. The location of the Pearl River Delta urban agglomeration.

2.2. Data Source and Description

The built-up land areas were derived using Landsat images: Landsat-5 TM for 1990 and Landsat-8
OIL (National Aeronautics and Space Administration, Washington, DC, USA) for 2015. All Landsat
images were classification by supervised classification technique. The resulting classification map
delineated built-up lands against non-built-up lands, supervised classification accuracies of the 1990
and 2015 were 89.21% and 93.12%, having higher reliability.

Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation
Model (ASTER GDEM, version 2) (National Aeronautics and Space Administration, Washington, DC,
USA) was used as the elevation data source, and the slope was obtained by processing the ASTER
GDEM data using ArcGIS 10.2 software (Environmental Systems Research Institute, Redlands, CA,
USA). The population and gross domestic product (GDP) data for 1990 and 2015 were obtained from the
Guangdong Statistical Yearbook of 1991 and 2016. The road data were acquired from the Guangdong
Transportation Atlas of 1992 and 2016 and were digitized as vector road data using ArcGIS.

2.3. Methods

2.3.1. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis has been widely used in land use and landscape studies [22,41–43]
and utilizes global spatial autocorrelation index and local spatial autocorrelation index. Moran’s I is
used to measure global spatial autocorrelation, the formula as follows:

I =
n
∑n

i
∑n

j wi j(yi − y)
(
y j − y

)
(∑n

i
∑n

j wi j
)∑n

i (yi − y)2
(1)

where yi denotes the values of points i, y j denotes the values of points j, y is the average of all values,
wi j is the spatial weight, and n is the total number of units. Moran’s I ranges from [–1, 1], which
indicates a negative correlation when Moran’s I is less than 0, an independent random distribution
when Moran’s I equal to 0, and a positive correlation when Moran’s I is greater than 0.
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The local Moran’s I (IL) is used to measure local spatial autocorrelation [44], the formula as follows:

IL = zi

∑
i

wi jz j (2)

where zi is the standard amount of mean value, z j is the standardized quantity of the standard deviation,

zi =
xi−x
δ , xi denotes the values of points i, δ is the standard deviation of xi.

2.3.2. Geographical Detector

The geographical detector is a spatial statistical method used to test the relationships between
geographical phenomena and their potential driving factors [45,46]. It has been applied to various
research themes, such as ecological and landscape connectivity [25], environmental risks [24], and
built-up land expansion [23]. The geographical detector includes a factor detector, an interaction
detector, an ecological detector, and a risk detector. The Geodetector software (Institute of Geographic
Sciences and Natural Resources Research, Beijing, China) (http://www.geodetector.cn/) was developed
to calculate the result, the tools are free of charge, freely downloadable, and easy to use, and were
designed without any GIS plug-in components and with “one click” execution. The principle behind
the geographical detector is that variable Y is associated with variable X if their spatial distributions
tend to be identical. The Power of q value measures the association between Y and X, which is
expressed as:

q = 1−
1

Nσ2

L∑
h=1

Nhσ
2
h (3)

where N is the number of samples, L is for the number of the sub-areas (h = 1, 2, . . . , L), σ2 is the
global variance, σ2

h is the variance of the sub-areas. The spatial stratified heterogeneity q ranges [0, 1],
such that q = 0 indicates that Y is not spatially stratified heterogeneously, or simply that there is no
association between Y and X. If q = 1, Y is said to have perfect spatial stratified heterogeneity, or simply
that Y is entirely determined by X. The value of q indicates the degree of spatial stratified heterogeneity
of Y, or how much Y can be interpreted by X [45,46].

2.3.3. Quantifying the Built-Up Land Expansion Pattern

A variety of landscape metrics have been proposed and applied to quantify different
spatial characteristics of built-up land areas, such as fragmentation [47], shape complexity [48],
heterogeneity [49], and urban land patterns [16,48]. In this study, we chose four landscape metrics to
characterize the built-up land expansion pattern, namely the percentage of landscape (PLAND), edge
density (ED), aggregation index (AI), and perimeter-area ratio_mean (PARA_MN). The description of
the landscape metrics is presented in Table 1. These four metrics are able to adequately characterize
land expansion patterns and structures, and their numerical values were calculated using FRAGSTATS
4.2 software (University of Massachusetts in Amherst, Amherst, MA, USA). The change in landscape
metric can, using the equation:

C = (L2015 − L1990) × 100% (4)

where C stands for the change of built-up landscape metrics (i.e., CPLAND, CED, CAI, and CPARA_MN);
L1990 is for the value of the landscape metrics in 1990 (i.e., L1990−PLAND, L1990−ED, L1990−AI, and
L1990−PARA_MN); L2015 is for the value of the landscape metrics in 2015 (i.e., L2015−PLAND, L2015−ED,
L2015−AI and L2015−PARA_MN).

http://www.geodetector.cn/
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Table 1. Landscape metrics used in the study.

Metrics Acronym Description

Percentage of
landscape PLAND

PLAND indicates the proportion of the built-up land
patch(class) over the entire landscape area; the value of PLAND
increases with greater urbanization and built-up land expansion.

Edge density ED
ED indicates the ratio of the total edge length of all built-up land

patches over the total landscape area. Larger values mean
higher fragmentation.

Aggregation Index AI

AI is calculated using the adjacency matrix. It provides
information about specific aspects of landscape composition and

structure caused by urbanization and helps characterize
urbanization in terms of stability. Higher values mean

greater clustering.

Perimeter-Area
Ratio_Mean PARA_MN

PARA is a simple measure of shape complexity and is equal to
the ratio of the built-up land patch perimeter and the area, an

increase in patch size will cause a decrease in the perimeter-area
ratio. PARA_MN indicates the mean of PARA.

3. Results and Discussion

3.1. Landscape Patterns of Built-Up Land Expansion

3.1.1. Spatial Patterns of Built-Up Landscape Changes

As shown in Figure 2, the area of built-up land in PRD had increased rapidly from 1202.87 km2 in
1990 to 9127.09 km2 in 2015. The growth in built-up land by 7924.22 km2 in 25 years means that the
average annual growth rate was at 26.35%.
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The summary of the results of the built-up landscape analysis using FRAGSTATS4.2 (University
of Massachusetts in Amherst, Amherst, MA, USA) is shown in Table 2. The percentage of built-up
land (PLAND) increased from 2.21 in 1990 to 16.69 in 2015, indicating continued urbanization in the
study area. Edge density (ED) surged from 2.31 in 1990 to 31.07 in 2015, indicates the ratio of the total
edge length of all built-up land patches over the total landscape area have substantially improved,
mean that the level of fragmentation have improved from 1990 to 2015. which suggests that the degree
of fragmentation have substantially improved. The perimeter-area ratio_mean (PARA_MN), which is
indicative of shape complexity, also increased in value, suggesting that urban spread has become more
complex. In terms of aggregation index (AI), the value decreased marginally from 91.37 in 1990 to
86.04 in 2015, which implies slight changes have occurred on the aggregated distribution of built-up
lands. In summary, at the landscape-level, the extent of built-up land had increased significantly,
fragmentation intensified, distribution characteristics became more complex, while the degree of
aggregation declined.
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Table 2. Built-up landscape metrics.

1990 2015

PLAND 2.21 16.69
ED 2.31 31.07

PARA_MN 687.08 1048.36
AI 91.37 86.04

The landscape metrics of the 581 towns in PRD were calculated at the class-level (a specific type
of land use) for 1990 and 2015, and the results are presented in Figure 3. In 1990 (see Figure 3a),
built-up land patches are mainly located in the central towns of large, populated cities, such as
Guangzhou and Foshan. In 2015 (see Figure 3b), areas with high proportions of built-up land increased
significantly and extended to other cities, such as Dongguan, Shenzhen, and Zhongshan. In terms
of edge density, the areas with high edge density values in 1990 (Figure 3c) were limited and were
concentrated mainly in small towns in Guangzhou, Foshan, Dongguan, Shenzhen, and Zhuhai. In 2015,
the spatial concentration demonstrated became more evident, with areas having high edge density
values expanding towards the periphery (see Figure 3d). Thus, a distribution trend of edge values
becomes more evident wherein high values are concentrated in core areas and gradually decrease
into the margins. In terms of the perimeter-area ratio_mean, the dispersion was more widespread,
and there were no clear town having extremely high values for 1990 (Figure 3e). For 2015, the areas
with high mean ratio values significantly proliferated and shifted towards the central areas of PRD
and can be found mainly in the cities of Guangzhou, Foshan, Zhuhai, and Shenzhen (see Figure 3f).
A distribution pattern has formed where the values at the eastern bank of the Pearl River Estuary
are considerably larger than those in the western bank. In terms of aggregation index, there are no
observable regular distribution features found for 1990 (Figure 3g); but in general, the high values can
be found in the city center. For 2015, the values are shown to gradually decrease from the core areas on
both sides of the Pearl River Estuary towards the peripheral areas (Figure 3h).
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To further evaluate the changes in landscape patterns occurring in the cities, the spatial distribution
diagrams of the landscape metrics were generated using Equation (4), and are shown in Figure 4.
Based on the results, the distribution trends of CPLAND (Figure 4a) and CED (Figure 4b) exhibit similar
features, where the values in the core areas are much larger than those in the peripheral areas, and the
values in the east and west sides of the Pearl River Estuary obviously higher than other regions. The
distribution trends of CPARA_MN (Figure 4c) and CAI (Figure 4d) share similar features, the peripheral
areas have towns with both high and low values. For example, towns in Jiangmen have relatively low
values, while in Zhaoqing and Huizhou, the values are relatively high.

Based on the analyses of results, the area, shape, fragmentation degree, and aggregation state of
built-up land have changed significantly from 1990 to 2015. In particular, the extent of the built-up area
is increasing, the shape is becoming more complex, the level of fragmentation is becoming higher, and
the aggregation degree is declining. Furthermore, the changes in landscape metrics have significant
spatial distribution heterogeneity in the core and peripheral towns of cities and in the different regions
of PRD. With regard to city-level changes in the built-up landscape metrics, the values of CPLAND and
CED are high in the core areas and low in the peripheral areas There are also no apparent distribution
features in CPARA_MN and CAI, but with significant differences between core and peripheral areas. The
reason for the differences is that the built-up lands are mainly concentrated in the central towns of cities
and in the PRD’s core area. In some areas in the core towns, the proportion of built-up lands reaches
80% or higher. Thus, the growth disparity between peripheral and core areas gradually narrowed
as urbanized lands expanded, forming the spatial distribution and change pattern of built-up land
features in the PRD.
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3.1.2. Spatial Autocorrelation Analysis of Built-Up Landscape Pattern

Spatial autocorrelation analysis is used to further analyze the landscape patterns of built-up land
expansion. Using the Geoda 1.14 software (GeoDa Center for Geospatial Analysis, Chicago, IL, USA),
the values of Moran’s I were calculated for 1990 and 2015. The results, which are shown in Table 3,
indicate that all the metrics pass the hypothesis test with the significance level of 0.05.

Table 3. Statistical on Moran’s I.

L1990 L2015 L2015 − L1990

PLAND 0.845 0.859 0.689
ED 0.615 0.685 0.644

PARA_MN 0.302 0.666 0.285
AI 0.436 0.801 0.243

All the Moran’s I values in Table 3 are positive, which means that L1990, L2015, and L2015 − L1990
all have positive spatial autocorrelation. Towns with high values tend to be adjacent to other towns
with high values, and likewise, towns with low values are often adjacent to low-value towns. The
Moran’s I values in L2015 are larger than in L1990. The spatial autocorrelation of PARA_MN and AI
increased considerably while the spatial autocorrelation of PLAND and ED remained relatively stable
and only increased slightly. The Moran’s I values of L2015 − L1990 are also large, indicating positive
spatial autocorrelation with evident spatial agglomeration characteristics. The Moran ’s I values of
CPLAND and CED are significantly larger than the values of CAI and CPARA_MN.

In order to determine spatial agglomeration areas experiencing landscape changes of built-up
lands, Geoda 1.14 software (GeoDa Center for Geospatial Analysis, Chicago, IL, USA ) was used to
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calculate the local spatial autocorrelation indexes of CPLAND, CED, CAI, and CPARA_MN. After applying
the LISA clustering map, non-significant types were found to be the predominant type, the High-High
and Low-Low towns were numerous, and the High-Low and Low-High towns were minimal. For
CPLAND (Figure 5a), there are 295 non-significant type areas, 114 High-High clusters concentrated
around the core areas of the east and west banks of the Pearl River Estuary, 165 Low-Low areas mainly
distributed in the peripheral areas of PRD (e.g., Zhaoqing, Huizhou, and Jiangmen), and six Low-High
and one High-Low towns scattered mainly in the surrounding areas of High-High type towns (such
as in Guangzhou and Shenzhen). For CED (Figure 5b), there are 383 non-significant type areas, 96
High-High clusters distributed around the central regions of the PRD (such as in Guangzhou and
Foshan), 96 Low-Low clusters concentrated in Zhaoqing, and four Low-High and two High-Low towns
found mainly in Guangzhou and Foshan. For CPARA_MN (Figure 5c), there are 443 non-significant type
areas, 41 High-High clusters dispersed in Zhongshan, Zhuhai, Zhaoqing, and Huizhou, 59 Low-Low
clusters mainly located in the cities of western PRD including Zhaoqing and Jiangmen, 14 Low-High
areas in Huizhou and Zhongshan, and 24 High-Low towns situated primarily in Zhaoqing and
Jiangmen. For CAI (Figure 5d), there are 485 non-significant type areas, 35 High-High areas distributed
in northwest Zhaoqing and northeastern Huizhou, 33 Low-Low towns dispersed all over the region
with a small concentration found in northern Guangzhou, 22 Low-High and six High-Low towns,
and the Low-High type distribution is similar the High-High type and distributed mainly in the
northwest of Zhaoqing and the northeast of Huizhou, and six High-Low towns mainly distributed in
the peripheral areas of the cities of Zhaoqing, Huizhou, and Jiangmen.
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The analyses show that significant spatial agglomeration exists in the landscape metrics, and the
patterns in the changes of built-up lands are becoming more pronounced. The analyses on the clustering
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maps for CPLAND, CED, CAI, and CPARA_MN show that there are more High-High and Low-Low areas
compared with High-Low and Low-High towns, and there is significant spatial differentiation feature
in the core and peripheral areas of the PRD.

3.2. Driving Forces of Built-up Land Expansion

3.2.1. Potential Driving Factors

In this study, policy factors were not considered since they cannot be accurately converted into
quantitative data. Meanwhile, transportation accessibility includes access to various transportation
modes (e.g., highway, railway, expressway, and high-speed railway), convenience to socio-economic
centers, and location advantage. This means that transportation accessibility is affected by the level
of transportation development and location conditions. Based on the literature review and data
availability, ten potential factors have been selected in this study namely: physical factors, including
elevation (x1) and slope (x2); socio-economic factors, including per capita GDP in 1990 (x3), change in per
capita GDP (x4), population density in 1990 (x5) and change in population density (x6); transportation
factors, including density of road network in 1990 (x7), change in density of road network (x8),
transportation accessibility in 1990 (x9), and change in transportation accessibility (x10) (Table 4). And
considering that the independent variable of the geographical detector must be discrete, the method
of natural breaks (Jenks) was used to divide the parameters into five classes for the geographical
detector analysis.

Table 4. Ten potential factors selected in this study.

Factors Description

x1 elevation
x2 slope
x3 per capita Gross Domestic Product (GDP) in 1990
x4 change in per capita GDP
x5 population density in 1990
x6 change in population density
x7 density of road network in 1990
x8 change in density of road network
x9 transportation accessibility in 1990
x10 change in transportation accessibility

Examining the determinants was conducted using geographical detectors, which include factor
detector, interaction detector, and ecological detector. The four landscape metrics (CPLAND, CED, CAI,
and CPARA_MN) calculated using Equation (4) were used as dependent variables while the ten impact
factors were used as the independent variables for the geographical detector analysis.

3.2.2. The Factor Detector

Factor detector can be used to study the forces affecting the growth of built-up land in cities.
Based on the results of factor detection (summary presented in Table 5), the power (q) of CPLAND can
be ranked according to size as: x6 > x2 > x5 > x1 > x4 > x8 > x10 > x7 > x9 > x3. The explanatory powers
of x6 (change in population density) and x2 (slope) are both above 0.300, which makes them primary
factors affecting CPLAND. The secondary factors (0.150 ≤ q ≤ 0.300) are x5, x1, x4, x8, and x10. In terms of
the edge density, the ranking for q is as follows: x2 > x7 > x5 > x8 > x6 > x10 > x4 > x9 > x1 > x3. The
primary factors (q > 0.200) are x2 (slope), x7 (density of road network in 1990), x5 (population density
in 1990), and x8 (change in density of road network), while the secondary factors (0.150 ≤ q ≤ 0.200)
include x6, x10 and x4. In terms of the parameter-area ratio, the ranking for q of CPARA_MN is as follows:
x2 > x8 > x6 > x9 > x4 > x5 > x10 > x3 > x7 > x1. The primary factors (q > 0.050) are x2 (slope), x8 (change
in density of road network), and x6 (change in population density), while the secondary factors (0.030
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≤ q ≤ 0.050) include x9 and x4. And in terms of the aggregation index, the ranking of q for CAI is as
follows x1 > x2 > x9 > x5 > x4 > x3 > x6 > x7 > x8 > x10. The primary factors (q > 0.100) are x1 (elevation)
and x2 (slope), while the secondary factors (0.050 ≤ q ≤ 0.100) include x9, x5, x4 and x3.

Table 5. Factor detector of the geographical detector.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

CPLAND 0.250 0.394 0.039 0.229 0.256 0.406 0.134 0.185 0.082 0.155
CED 0.077 0.258 0.051 0.168 0.211 0.182 0.214 0.209 0.085 0.174

CPARA_MN 0.015 0.058 0.019 0.032 0.026 0.055 0.016 0.056 0.048 0.025
CAI 0.135 0.127 0.053 0.055 0.062 0.042 0.034 0.031 0.082 0.023

Based on the factor detector analysis, there are distinct contrasts between the effects of factors on
the change in landscape metrics of different built-up land, with CPLAND having the largest explanatory
power and CPARA_MN having the least explanatory power. Meanwhile, elevation (x1), slope (x2),
population density in 1990 (x5), change in population density(x6), and density of road network in
1990 (x7) were found have strong overall explanatory powers. This shows that natural conditions
(such as elevation, slope), socio-economic development (such as population density in 1990, change in
population density), and transportation development level (density of road network in 1990) have vital
influence on changing the landscape patterns of built-up lands. Also, societal changes can become
significant driving forces for built-up land expansion.

3.2.3. The Interaction Detector

The interaction detector can be used to examine interactions between factors in built-up
land expansion, and there are five possible outcomes: nonlinear-weaken, uni-weaken, bi-enhance,
independent and nonlinear-enhance. The results are shown in Table 6. For the 45 pairs of interactions
between two factors on CPLAND, 15 pairs are nonlinear-enhance: x1 and x3, x2 and x3, x3 and x4, x3 and
x5, x3 and x6, x3 and x7, x3 and x8, x3 and x9, x3 and x10, x5 and x9, x5 and x10, x7 and x8, x7 and x10,
x8 and x9, x9 and x10. The remaining 30 sets are bi-enhance. For the interactions between factors on
CED, 16 pairs are bi-enhance: x2 and x8, x3 and x5, x4 and x5, x4 and x6, x4 and x7, x4 and x8, x5 and
x6, x5 and x7, x5 and x8, x5 and x10, x6 and x7, x6 and x8, x6 and x10, x7 and x8, x7 and x10, x8 and x10.

The remaining 29 sets are all nonlinear-enhance. For the interactions between factors on CAI, 21 pairs
are nonlinear-enhance, namely: x1 and x4, x1 and x9, x1 and x10, x2 and x10, x3 and x4, x3 and x5, x3

and x6, x3 and x7, x3 and x8, x3 and x9, x3 and x10, x4 and x7, x4 and x9, x5 and x6, x5 and x7, x5 and x8,
x5 and x10, x6 and x7, x7 and x8, x7 and x10, x9 and x10. The remaining 24 sets are bi-enhance. For the
interactions between factors on CPARA_MN, five pairs are bi-enhance, namely: x4 and x6, x5 and x6, x6

and x8, x8 and x9, x8 and x10. The remaining 40 sets are nonlinear-enhance.
The interaction detector reveals that the factors x1 and x2 (and more x) have an interactive influence

on built-up land expansion. Based on the results of the interaction detector, there is a noticeable
interactive influence among the different factors. There were two main types of interactions found in the
study: nonlinear- enhance and bi-enhance. The combination of different factors exerts greater influence
than that of a single factor. In this study, the interactions between various natural, socio-economic, and
transportation-related factors have been shown to enhance the power of determinants in influencing
the expansion of built-up lands. Such combinations include x3 (per capita GDP in 1990) and x4 (change
in per capita GDP), x5 (population density in 1990) and x6 (change in population density), x7 (density
of road network in 1990) and x8 (change in density of road network), x9 (transportation accessibility in
1990) and x10 (change in transportation accessibility).
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Table 6. Interaction detector of the geographical detector.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 x2 x3 x4 x5 x6 x7 x8 x9

PLAND

x2 0.41

PARA_MN

x2 0.10
x3 0.35 0.48 x3 0.10 0.13
x4 0.39 0.50 0.38 x4 0.12 0.16 0.08
x5 0.39 0.53 0.45 0.37 x5 0.09 0.13 0.07 0.07
x6 0.50 0.63 0.49 0.48 0.49 x6 0.10 0.15 0.08 0.08 0.08
x7 0.33 0.45 0.27 0.34 0.37 0.53 x7 0.07 0.11 0.08 0.12 0.12 0.13
x8 0.35 0.45 0.33 0.37 0.38 0.49 0.34 x8 0.09 0.12 0.09 0.10 0.09 0.11 0.11
x9 0.29 0.45 0.21 0.31 0.36 0.49 0.20 0.32 x9 0.12 0.15 0.09 0.11 0.10 0.13 0.11 0.11
x10 0.31 0.46 0.35 0.38 0.42 0.50 0.36 0.30 0.37 x10 0.07 0.1 0.09 0.08 0.09 0.12 0.12 0.07 0.12

ED

x2 0.35

AI

x2 0.17
x3 0.21 0.37 x3 0.17 0.18
x4 0.33 0.45 0.28 x4 0.20 0.18 0.12
x5 0.36 0.49 0.26 0.28 x5 0.17 0.18 0.13 0.10
x6 0.34 0.47 0.29 0.27 0.29 x6 0.15 0.15 0.11 0.09 0.11
x7 0.32 0.48 0.32 0.36 0.38 0.38 x7 0.17 0.16 0.12 0.13 0.14 0.10
x8 0.30 0.42 0.28 0.31 0.33 0.3 0.38 x8 0.15 0.14 0.11 0.09 0.10 0.06 0.10
x9 0.23 0.35 0.21 0.30 0.32 0.3 0.34 0.33 x9 0.22 0.19 0.14 0.15 0.13 0.12 0.10 0.1
x10 0.31 0.45 0.29 0.35 0.37 0.35 0.36 0.28 0.32 x10 0.18 0.1 0.11 0.08 0.10 0.06 0.11 0.05 0.15
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3.2.4. The Ecological Detector

The ecological detector is used to examine the significant difference in the influence of the various
factors on the four landscape metrics, is a geographical stratum more significant than another one.
The results of the ecological detector analysis are shown in Table 7. For CPLAND, there is no significant
difference between x1 and x4, x1 and x5, and x1 and x8. There are significant differences between x2

and other factors. There is no significant difference between x3 and x7, x3 and x9, x4 and x5, x4 and x8,

x4 and x10, and x5 and x8. There are significant differences between x6 and other factors. There is no
significant difference between x7 and x8, x7 and x9, x7 and x10, x8 and x10, and x9 and x10. For CED,
there no significant difference between x1 and x3, x1 and x4, x1 and x9, x2 and x5, x2 and x6, x2 and x7,
x2 and x8, x3 and x9, x4 and x5, x4 and x6, x4 and x7, x4 and x8, x4 and x9, x4 and x10; x5 and x6, x5 and
x7, x5 and x8, x5 and x10,x6 and x7, x6 and x8, x6 and x10, x7 and x8, x7 and x10; x8 and x10, and x9 and
x10. For CPARA_MN, there is no significant difference among factors. For CAI, there is no significant
difference among the factors except for the pairs: x1 and x7, x1 and x8, x1 and x10, and x2 and x10.

In the ecological detector, results of the statistically significant differences between two factors are
presented. If Y(row) was significantly bigger than Y(column), the associated value is “Y”, while “N”
expresses the opposite meaning. The results show there are significant differences in the influence of
determinants for the different landscape metrics. However, there is no significant difference in the
influence of factors on CPARA_MN and CAI. For CPLAND and CED, a considerable number of pairings
were shown to have significant differences. In particular, the ecological detector results of CPLAND
shows that there are significant differences between x2 and all the other factors and between x6 and all
the other factors. This suggests that slope (x2) and change in population density (x6) have unique roles
in influencing the expansion of built-up lands.

Table 7. Ecological detector of the geographical detector.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x1 x2 x3 x4 x5 x6 x7 x8 x9

PLAND

x2 Y

PARA_MN

x2 N
x3 Y Y x3 N N
x4 N Y Y x4 N N N
x5 N Y Y N x5 N N N N
x6 Y N Y Y Y x6 N N N N N
x7 Y Y N Y Y Y x7 N N N N N N
x8 N Y Y N N Y N x8 N N N N N N N
x9 Y Y N Y Y Y N Y x9 N N N N N N N N
x10 Y Y Y N Y Y N N N x10 N N N N N N N N N

ED

x2 Y

AI

x2 N
x3 N Y x3 N N
x4 N Y Y x4 N N N
x5 Y N Y N x5 N N N N
x6 Y N Y N N x6 N N N N N
x7 Y N Y N N N x7 Y N N N N N
x8 Y N Y N N N N x8 Y N N N N N N
x9 N Y N N Y Y Y Y x9 N N N N N N N N
x10 Y Y Y N N N N N N x10 Y Y N N N N N N N

F test with a significance level of 0.05 is used and Y indicates that there is a significant difference in the influence of
two factors on the landscape pattern, while N indicates that there is no significant difference.

3.3. Limitations

There are several limitations to this study. First, we chose to focus our analysis only on the years
1990 and 2015, and we did not include intervening years to check short-term temporal trends. Future
studies can utilize long-term and higher temporal scale datasets as improvements. Second, a limited set
of physical, socio-economic and transportation-related determinants were utilized in the geographical
detector analysis. Other variables, such as policy factors, may be considered in future studies. Third,
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the geographical detector model can only probe the interactive influences between two driving factors.
Different approaches and methodological modifications can be proposed and developed in the future in
order to analyze the compounding and complex interactive influences of three or more driving factors.

4. Conclusions

Against the backdrop of rapid urbanization, this study analyzes built-up land expansion in PRD
for 1990 and 2015 using Landsat images. Using four landscape metrics, percentage of landscape,
edge density, aggregation index, and perimeter-area ratio_mean, to indicate built-up land expansion
features, an extensive assessment of the landscape patterns of built-up land expansion was conducted
that combines global and local spatial autocorrelation techniques. Further analyses were employed
evaluating determinants of built-up land expansion using geographical detectors that included factor
detector, interaction detector, and ecological detector. The key findings can be summarized as follows:

First, during the 25 years (1990–2015), there had been significant changes in the area, shape,
fragmentation degree, and aggregation degree of built-up lands in PRD. In particular, the urban area has
increased in size, the shape has become more complex, the level of fragmentation degree has become
higher, and the aggregation degree has been in decline. With the rapid development of economy and
population, the increase in human activities has led to dramatic changes in the scale and pattern of
built-up lands in PRD.Second, in calculating the data involving the 581 towns in PRD, the built-up
landscape metrics exhibit significant spatial distribution differences in the core and peripheral towns
of each city, as well as the core and peripheral areas of the PRD. The analyses show that significant
spatial agglomeration exists in the landscape metrics, and the patterns in the changes of built-up lands
are becoming more pronounced. Regarding CPLAND and CED, the core areas were shown to have high
values while the peripheral areas have low values. For the CAI and CPARA_MN, there are no distinct
patterns of value concentrations, but the core and peripheral areas still exhibited significant differences.
In terms of the spatial agglomeration of areas experiencing landscape changes, the High-High and
Low-Low towns were much greater in number than High-Low and Low-High towns, which indicates
clear spatial differences in the core and peripheral regions of the PRD.

Finally, this study proves that the geographical detector can be an effective method for analyzing
the driving forces influencing built-up land expansion. The results of the factor detector show that
natural, socio-economic, and transportation-related determinants have played essential roles in the
growth of built-up lands. In particular, the overall explanatory powers of elevation (x1), slope (x2),
population density (x5), change in population density (x6), and road network density (x7) were found
to have strong influence on urban land expansion. The results of the interaction detector show that
there are relationships among the different factors, including enhance non-linear and enhance bivariate
interactions. This means the interaction between different factors enhances the power of determinants
in influencing the expansion of build-up lands. The results of the ecological detector show that the
influencing powers of factors on CPARA_MN and CAI have no significant differences, while the powers
of determinants on CPLAND and CED have significant differences. In particular, the ecological detector
results of CPLAND show that there are significant differences between slope (x2) and the other factors
and between population density change (x6) and other factors, which indicate that slope and changes
in population density have significant impact on the expansion of built-up lands. The factor detector,
interaction detector and ecological detector can identify the driving forces of urban land growth and
their interactions, can provide reference for other research about driving forces.
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