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Abstract: The dark adaptation of drivers’ eyes at a tunnel entrance seriously affects traffic safety. This
can be improved by the design of tunnel lighting. Light-Emitting Diode (LEDs) have been applied as
a new type of luminaire in tunnel lighting in recent years, but at present, there are few studies on
the influence of color rendering of LEDs on tunnel traffic safety, and there is no explicit indicator for
the selection of appropriate color rendering parameters in tunnel lighting specifications, which has
aroused researchers’ concern. In this article, several new color rendering evaluation indexes were
compared, and as a result, it is considered that CRI2012 (a color difference-based color rendering
index) is more suitable for evaluating the color rendering of LEDs used at tunnel entrances. The dark
adaptation phenomenon was simulated in the laboratory. Four CRI2012s, three color temperatures
and eight colored targets were used in the experiments. The results showed that yellow, silver and
white can provide shorter reaction times, while red and brown lead to longer reaction times, which
can provide a reference for the design of road and warning signs at tunnel entrances. The effect
of target color on reaction time was greater than that of color rendering. Under most target colors,
the higher the CRI2012, the shorter the reaction time. When designing the color rendering of the
LEDs at a tunnel entrance, the value should thus be as large as possible (close to 100), and a lower
color temperature value (about 2800 K) should be selected. This paper provides technical support for
tunnel lighting design and a reference for tunnel lighting specifications, which is of significance to
improve driving safety and avoid traffic accidents in highway tunnels.
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1. Introduction

Highway tunnel entrances are the sections with the highest traffic accident rate in the whole
tunnel [1–3]. Although fewer accidents occur in tunnels than on open roads [4–6], the casualties and
losses of traffic accidents happening in tunnels are more serious than those on open roads [7–9]. The main
factor that causes the frequent traffic accidents at the tunnel entrance is the dark adaptation of human
eyes. The drivers’ dynamic visual characteristics are most closely related to traffic accidents [10,11].
Traffic accidents will bring serious threats to personal safety and property safety. As a result, it is
very significant to analyze the causes of traffic accidents and improve the traffic environment at
tunnel entrances.

When a driver enters a tunnel during the daytime, the human eye will suffer a “black hole effect”
due to the sharp change in luminance [12], which will become more obvious when the difference
between the internal and external luminance is large [13–15]. As the driving speed on highways is
relatively fast, serious traffic accidents may occur if the reaction time is too long [16,17]. Therefore,
reducing the dark adaptation period can increase the traffic safety factor at the tunnel entrance.
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In addition to limiting the vehicle speed at the tunnel entrance, the effect of dark adaptation is
usually attenuated by reducing the luminance difference between inside and outside of the tunnel.
Limited by the traditional luminaires such as high pressure sodium lamps, whose characteristic
parameters like correlated color temperature (CCT) and color rendering are fixed, tunnel lighting was
designed based on luminance [18–20]. Light-Emitting Diodes (LEDs), which have the advantages of
low light attenuation, high luminous efficiency, long life and energy savings, have been widely used in
tunnel lighting in recent years. As the parameters of LEDs including CCT and color rendering are not
fixed, the applicability and rationality of these parameters in tunnel lighting are not clearly considered
in the current specifications. As a result, researchers have begun to focus on the effect of characteristics
of LEDs on tunnel lighting. Studies have shown that three important characteristics of LED—CCT,
color rendering, and luminous intensity—all play significant roles in driving safety [21–23]. At present,
there are many studies on the influence of luminance and CCT on tunnel driving safety [21,24–26], but
few on the influence of color rendering on tunnel driving safety.

There are some studies on the application of color rendering in tunnel lighting and open roads.
In 2009, Ekrias [27] and others stated that in road lighting environments colors have a major effect on
target visibility in road lighting with lamps of adequate color rendering properties. It is not known
whether the use of light sources with good color rendering properties can actually reduce traffic
accident rates by improving the visibility of colored targets. In 2016, Deng [28] and others studied the
effect of tunnel light color to drivers’ visual performance. Two tunnels were selected to carry out a
small target identification experiment. The results showed that the higher the color rendering, the
better drivers can identify the obstacle. In 2017, Zhang [29] and others used 15 light combinations
(five CCTs and four color rendering indexes (CRIs) incomplete traversal combinations) to study the
effect of color rendering on visual performance in tunnel. The results showed that increasing the light
color rendering can improve the visibility without increasing the light power. These studies offer
few selections for color rendering parameters. Although they chose different color rendering values
with different CCTs, they did not control the consistency of the CCT of the lights used in experiments
at different color rendering indices. Besides, not all luminaries are LEDs and their spectra are not
the same as that in tunnels. To make the results more convincing, in this paper, for the selection of
parameters, CCT is kept at the same value while different color rendering properties are selected, and
a variety of common CCTs are considered in order to maintain the accuracy and comprehensiveness
of the experimental results. As for the selection of spectrum of LEDs, it is consistent with the LED
spectrum commonly used in tunnels, both of which are bimodal discontinuous spectra to make the
conclusions easier to apply to practice.

While are few studies on the application of color rendering in tunnel lighting, there are more
in museums [30], homes and office lighting scenarios [31]. These studies generally agree that LEDs
with high color rendering are more suitable for indoor lighting. The experiments in these studies
are generally based on subjective feelings, while the research in this paper is based on an objective
parameter—reaction time. In addition, there are some studies on the effect of color rendering on visual
properties. In 2003, Chee et al. [32] studied visual acuity with different CCT and color rendering of
light sources. The results showed that visual acuity is approximately proportional to the average
color rendering index under fluorescent lamps, high pressure sodium lamps, metal halide lamps and
electrodeless discharge lamps. In 2015, Watanuki [33] found that the color rendering property certainly
affects color emotions. Males and females feel different color emotions from skin color. Males feel
“lightness” of color while females feel “activity” of color first. The lightness factor shows a correlation
with the intensity of illumination, and the activity factor has a negative correlation with the intensity
of illumination and alternative CRI. In 2017, Huang et al. [34] conducted a series of psychophysical
experiments to investigate and compare the effect of certain factors on color preference, including
spectral power distribution (SPD) of light, lighting application, observers personal color preference,
regional cultural difference and gender difference. The results showed that the impact of SPD on color
preference is significantly stronger than that of other factors, as well as their interactions. Although
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these studies did not involve specific application scenarios, they can also provide references for the
research in this paper. These studies prove that color rendering does affect some visual characteristics,
but few studies have linked color rendering to tunnel traffic safety and there is little research on the
effect of color rendering on dark adaptation in tunnel entrances. In this article, the effect of color
rendering on reaction time is mainly studied, which is directly related to personal safety.

Generally speaking, most studies on color rendering are based on subjective perception, and these
studies generally show a positive correlation between color rendering and visual characteristics. In the
past few years, our laboratory has provided lighting design recommendations for several tunnels of the
Heda highway in Jilin Province of China and accumulated some practical engineering experience and
issues to be improved. The tunnel lighting design department and management pay great attention to
the selection of color rendering, but there are no official guidelines for reference. The specifications for
tunnel lighting [35] do not yet have provisions on which color rendering LEDs are better. Therefore,
it is of great significance to study the effect of different color rendering LEDs on tunnel lighting.

Figure 1 shows an overview of several important aspects of this article. Firstly, a more suitable
color rendering valuation index in this research was discussed and selected. Four CRI2012s (a color
difference-based color rendering index) with three different CCTs were designed to simulate the
lighting environment at a tunnel entrance. Secondly, the dark adaptation was simulated by designing
a dynamic reduction in luminance based on the luminance outside and inside the tunnel. Thirdly,
a Landolt chart was designed using the common car colors for observation. The experiment was
conducted in the laboratory simulating the tunnel environment and the degree of dark adaptation is
indicated by the reaction time of the subjects.

The purpose of this paper is to investigate the effect of color rendering on dark adaptation at
tunnel entrances, which has been rarely studied so far. The results showed that high CRI2012 can
improve the dark adaptation at the tunnel entrance and reduce the reaction time of drivers. LEDs
with high CRI2012 are recommended for tunnel entrances. By improving the dark adaptation and
reducing their reaction time, drivers can identify the obstacles ahead faster. This paper provides
technical support for tunnel lighting design and a reference for tunnel lighting specifications, which is
of significance to improve driving safety and avoid traffic accidents in highway tunnels.

Int. J. Environ. Res. Public Health 2020, 17, x 3 of 23 

 

their interactions. Although these studies did not involve specific application scenarios, they can also 

provide references for the research in this paper. These studies prove that color rendering does affect 

some visual characteristics, but few studies have linked color rendering to tunnel traffic safety and 

there is little research on the effect of color rendering on dark adaptation in tunnel entrances. In this 

article, the effect of color rendering on reaction time is mainly studied, which is directly related to 

personal safety. 

Generally speaking, most studies on color rendering are based on subjective perception, and 

these studies generally show a positive correlation between color rendering and visual 

characteristics. In the past few years, our laboratory has provided lighting design recommendations 

for several tunnels of the Heda highway in Jilin Province of China and accumulated some practical 

engineering experience and issues to be improved. The tunnel lighting design department and 

management pay great attention to the selection of color rendering, but there are no official guidelines 

for reference. The specifications for tunnel lighting [35] do not yet have provisions on which color 

rendering LEDs are better. Therefore, it is of great significance to study the effect of different color 

rendering LEDs on tunnel lighting. 

Figure 1 shows an overview of several important aspects of this article. Firstly, a more suitable 

color rendering valuation index in this research was discussed and selected. Four CRI2012s (a color 

difference-based color rendering index) with three different CCTs were designed to simulate the 

lighting environment at a tunnel entrance. Secondly, the dark adaptation was simulated by designing 

a dynamic reduction in luminance based on the luminance outside and inside the tunnel. Thirdly, a 

Landolt chart was designed using the common car colors for observation. The experiment was 

conducted in the laboratory simulating the tunnel environment and the degree of dark adaptation is 

indicated by the reaction time of the subjects. 

The purpose of this paper is to investigate the effect of color rendering on dark adaptation at 

tunnel entrances, which has been rarely studied so far. The results showed that high CRI2012 can 

improve the dark adaptation at the tunnel entrance and reduce the reaction time of drivers. LEDs 

with high CRI2012 are recommended for tunnel entrances. By improving the dark adaptation and 

reducing their reaction time, drivers can identify the obstacles ahead faster. This paper provides 

technical support for tunnel lighting design and a reference for tunnel lighting specifications, which 

is of significance to improve driving safety and avoid traffic accidents in highway tunnels. 

 

Figure 1. Overview of each part of the article. CRI2012 indicates a color difference-based color 

rendering index; CCT = correlated color temperature; LED = Light-Emitting Diodes; HP-LEDs = high 

power LEDs; LEDcube indicate a kind of LED lamp. 

Figure 1. Overview of each part of the article. CRI2012 indicates a color difference-based color rendering
index; CCT = correlated color temperature; LED = Light-Emitting Diodes; HP-LEDs = high power
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2. Materials and Methods

2.1. Color Rendering iIndex Evaluation

At present, the evaluation index of color rendering is still controversial. To specify the visual
rendering properties of a light source, the Commission Internationale de l’Eclairage (CIE) proposed a
method called Color Rendering Index (CRI) [36], which has been improved over the years [37,38]. With
the advent of new types of lighting devices like LEDs, CRI cannot provide a reliable measurement [39–41],
as it fails to evaluate LEDs with discontinuous spectra [42,43]. In view of this problem, many researchers
have provided new color rendering evaluation methods considering: Color Quality Scale (CQS) [44],
Gamut Area Index (GAI) [45], CRI2012 [46], etc. Some researchers have made a series of comparisons
of these methods [47–49]. These methods have made some improvements to CRI, but also have some
limitations, as they measure the color rendering from different perspectives (color matching, fidelity,
quality, preference, memory, etc.). The most widely used luminaires in the tunnel are LED lamps with
noncontinuous spectra.

CRI2012 uses a CIE endorsed state-of-the-art color appearance model (CAM02-UCS) and for
the calculation of special indices, using uniform sampling of wavelength space to avoid selective
optimization—that is, taking advantage of the unequal contributions of different wavelength regions to
the general color rendering score—of light source SPDs [50]. Although CQS also performs well among
the above metrics, the resemblance of object colors to their appearance under a well-known reference
illuminant is critical and optimizing for an increased chroma using CQS could result in misleading
color decisions. For most general interior lighting applications, the increase of chroma is generally not
desirable. CRI2012 (a color difference-based color rendering index) eliminated the influence of CRI
that some measurement results were unreliable due to nonuniform color space. As a result, in most
general lighting applications, the CRI2012 will be the most important target parameter. Therefore, we
employ CRI2012 in this article to study the color rendering of LEDs used in tunnels.

2.2. Subjects

Twenty-five subjects with normal vision (or corrected vision) with driver’s licenses participated
in the study, including seven women and 18 men, ranging in age from 30 to 51. They all had normal
color vision in terms of the Ishihara test and none of them had night blindness.

2.3. Parameters Setting

Two kinds of LEDs were applied in the experiment: LEDcube and high power LED (HP-LED). The
LEDcube can simulate different light sources with different characteristics (CCT and color rendering)
by input SPD (SPDs are shown in Figure 2 and was used to simulate the light source environment
inside the tunnel entrance. HP-LED was used to simulate the sunlight outside the tunnel. In this
paper, the CCTs simulated by LEDcube are defined as LP-CCT, and the CCT of HP-LEDs are defined
as HP-CCT.

2.3.1. Simulation of CRI2012 and CCT in Tunnel Entrance

The color rendering index of white LEDs used in a tunnel (blue chips to excite yellow phosphors)
are generally greater than 55. As a result, four different CRI2012 values were selected (55, 65, 75 and
85, respectively). The difference in color rendering is due to the different SPD values of the LEDs.
Different SPDs will influence the CCT value of the LED. CCT can provide people with intuitive color
feelings like warm, cold, or yellow, white. Therefore, this article considered the effect of both color
rendering and CCT on dark adaptation for more comprehensive consideration. In general, the CCT of
white LEDs can cover the range of 2800 K to 6500 K [51,52]. Three different LP-CCTs were selected in
the experiment: 2800, 4500 and 6400 K, respectively. Four CRI2012s and three LP-CCTs for a total of
12 lighting conditions in the entrance zone of a tunnel were considered in the experiment.
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The SPD curves of different CRI2012s and LP-CCTs are displayed in Figure 2 and were measured by
a CS2000 spectroradiometer (Konica Minolta, Tokyo, Japan). All curves follow the dual-peak spectrum
LED used in the tunnel. Table 1 shows the specific values of various parameters of 12 experimental
luminaries simulating the tunnel lighting, including CCT, deviation of the target from the blackbody
locus (duv), CRI2012, CRI and CQS. These parameters were calculated by the software provided by
Smet [46] by entering the SPD of the LEDs.Int. J. Environ. Res. Public Health 2020, 17, x 6 of 23 
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Figure 3. Comparison of three evaluation indexes of color rendering. (a) 2800 K. (b) 4500 K. (c) 6400 K. 

  

Figure 2. Relative spectral power distribution (SPD) of Light-Emitting Diodes (LEDs) with different
CRI2012s (a color difference-based color rendering index) and LP-CCTs (the CCTs simulated by
LEDcube). (a) CRI2012 = 55 (b) CRI2012 = 65 (c) CRI2012 = 75 (d) CRI2012 = 85.

Figure 3 shows the comparison of three evaluation indexes of color rendering: CRI2012, CRI and
CQS. It can be seen that the curves of CRI2012 and CQS have a higher fitting degree, while the curve of
CRI has a lower fitting degree when CCTs are 2800 K and 4500 K.

When CCT is 6400 K, the curves of CRI2012 and CQS are slightly less fitting. In general, when the
color rendering performance is better (higher than 85), the three indicators tend to be more consistent.
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Table 1. The specific values of various parameters of 12 experimental luminaries simulating the tunnel
lighting. LP-CCT refers to the CCT simulated by LEDcube. CRI2012 refers to a color difference-based
color rendering index; CCT = correlated color temperature; duv refers to the chromaticity difference
from the Planckian or daylight locus; CRI = color rendering index; CQS = Color Quality Scale.

Experiment Parameter The Calculated Value of Experimental Parameters

LP-CCT(K) CRI2012 CCT(K) duv CRI2012 CRI CQS

2800 ± 100

55 2781 −0.02654 57 43 58
65 2894 −0.01797 65 54 63
75 2760 –0.00987 76 72 72
85 2743 +0.00008 86 82 83

4500 ± 100

55 4484 –0.03641 55 43 60
65 4494 +0.03781 65 58 66
75 4498 +0.03333 75 64 71
85 4578 –0.00192 87 85 83

6400 ± 100

55 6425 –0.02966 54 47 63
65 6379 –0.00425 64 75 75
75 6442 +0.00478 74 73 73
85 6444 –0.00160 87 85 81

Int. J. Environ. Res. Public Health 2020, 17, x 6 of 23 
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2.3.2. Simulation of CRI2012 and CCT Outside Tunnel

In 2017, Xiong et al. [53] measured the luminance and CCT of sunlight throughout the day in
different months. The results showed that the brightest hours of the day were between 12:00 and 13:00,
with CCT ranging from 5000 K to 5700 K. It can be considered that the effect of dark adaptation is most
obvious when CCT is in this range. Sunlight cannot be used in the experiment as the luminance as
its CCT can’t be controlled, which may affect the results of the experiments. As a result, HP-LEDs
with two CCTs—5700 K and 2800 K—were used to simulate the sunlight outside the tunnel. 5700 K,
which is usually defined as high CCT, represents the most accident-prone CCT outside the tunnel.
3000 K is compared with the former as a low CCT. The SPDs of HP-LEDs and the sunlight (measured
at 1 pm) was shown in Figure 4. The CRI2012 of the sunlight is 99. The CRI2012 of HP-LEDs are 80.
Although the SPD values of LEDs do not match the sunlight very well, the luminance and CCT of the
HP-LED fits the parameters of the sunlight at midday, when the luminance difference between inside
and outside the tunnel is the largest, and when traffic accidents are most likely to occur.

2.3.3. Luminance Value Setting

For the setting of the simulation of the luminance outside the tunnel, in a sunny daytime, the
luminance of road surface outside the tunnel can be more than 10000 cd/m2. The luminance of simulated
road surface using six evenly distributed HP-LEDs in our laboratory is 5000 cd/m2, which is lower than
that of sunlight in a sunny day at noon, but higher than the annual average for the same period. For the
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setting of the simulation of the luminance inside the tunnel, according to the 2014 Guidelines [35], the
luminance of the entrance zone of a tunnel ranges from 40 cd/m2 to 140 cd/m2 basing on the designed
speed (usually limited to 80 km/h), the traffic volume and other environmental factors [26]. In order to
make the experimental effect more obvious, we considered maximizing the difference between internal
and external luminance under the condition of matching the actual situation of a tunnel entrance,
therefor the luminance selected to simulate the inside of a tunnel was 40 cd/m2.
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2.3.4. Design of Observation Targets

A Landolt chart (“C” visual chart) was used in the experiment as the observation target. Its dark
adaptation was more obvious than that of the E visual chart in the preliminary experiments. The
selection of the targets’ colors refers to the common car colors. In total eight colors were selected in the
experiment, as shown in Figure 5: black, silver, white, yellow, red, blue, green, and brown, respectively.
The color of the background of targets is similar to that of the tunnel pavement. The orientation of “C”
is random, and there are many groups like Figure 5 with random orientations of each color to prevent
the subjects from remembering the object orientation and affect the experimental results.
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Figure 5. Targets used in experiment with different colors.

In order to determine the size of the target C, we asked all subjects to observe objects of eight colors
in 12 experimental lighting environments in the preliminary experiment. We made sure that everyone
could see the orientation of the targets, and made the size as small as possible. The outer diameter of
the target C used in the formal experiment finally was 20 mm. Figure 6 shows the SPDs of eight targets
with different colors, the SPD of the background of targets and the SPD of tunnel pavement measured
by a Konica Minolta CS2000 (Tokyo, Japan, Asia) in sunlight at 1 pm on a sunny day.
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Figure 6. The SPDs of eight targets with different colors, background of targets and tunnel pavement
measured by a CS2000 spectroradiometer (Konica Minolta, Tokyo, Japan) in sunlight.

2.4. Experimental Set-Up

Figure 7 illustrates a schematic diagram of experimental set-up. Figure 8 shows the real
experimental situation. Six HP-LEDs and two LEDcubes were suspended on either side of the
simulated tunnel. These LEDs were installed 1 m from the horizontal table at a spacing of 0.5 m.
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A white board was used for observation by subjects when simulating the environment outside
the tunnel. The main purpose of this was to allow the subjects to receive a full lighting spectrum, so as
to prevent partial spectrum loss from affecting the experimental results and sufficient luminance can
make the experimental results more obvious.

The target “C” with grey background was placed under the white board. The observation window
was at the same level as the target, the distance of which was 3 m. The experimental surroundings
were painted a concrete color similar to the tunnel walls to simulate the true environment of tunnel
as possible. The target “C” was randomly placed in a 1 m2 square restricted area (shows in Figure 5,
the black border around the target). In each observation experiment, only one target of one color was
placed in front of the observer’s line of sight. The orientation of the target was random. The stopwatch
was controlled by the observers for timing.

2.5. Procedure Specification

Firstly, HP-LEDs and LEDcubes were adjusted to the demanded luminance (5000 cd/m2 and
40 cd/m2). One kind of CCT of HP-LEDs was selected. LEDcubes were adjusted to a demanded SPD
(one kind of CCT and CRI2012) in a random order every time. A target of one color was placed in front
of the view. Subjects were asked not to glance the target but to observe the white board through the
observation window and take 5 minutes to adjust to ambient brightness.

Secondly, the experimenter turn off HP-LEDs and meanwhile, the subjects detected a change in
brightness, pressed the timer in their hand, and looked down at the target area to look for the randomly
placed target C. When the subjects perceived the location and then the orientation the target, they
pressed the timer again to stop timing. The experimenter recorded the dark adaptation time.

Thirdly, the experimenter changed the color, position and orientation of the target and repeated
the procedure above. After eight different colors of objects were tested under the same luminance
circumstances, the experimenter adjusted the LEDcubes to another demanded SPD with different CCT
or CRI2012. The above process was repeated until all the combinations were tested.

2.6. Instruction

To make the results more accurate, each subject underwent three complete experiments, whose
results were averaged. In order to familiarize the subjects with the whole experimental process, three
preliminary experiments were be conducted in a lighting environment before the formal experiment
begins, and these three results are not be considered in the final data. In order to prevent visual
fatigue from affecting the results of the experiments, subjects were given a 5-minute rest before the
next experiment.

Figure 9 shows the driving conditions of the actual tunnel entrance and the visual states of the
subjects in the experiment to illustrate the feasibility of the experiment. The whole process of dark
adaptation is refined into four states. Firstly, before the driver accesses the entrance of tunnel, the
human eyes are exposed to a high luminance. In the experimental environment, HP-LED was used
to simulate this high luminance. Secondly, as the driver enters the tunnel entrance, the human eyes
experience a sharp reduction in luminance and a sight loss. In the experimental environment, the
HP-LED is turned off to achieve this effect. Thirdly, after a period of time, the driver gradually regains
his vision and can perceive the presence of obstacles ahead. In the experiment, the subjects could
perceive the presence of target C in the designated area after a period of time. Finally, the driver was
able to tell the details of the obstacle ahead. In the experiment, after some time, the subjects were able
to tell the orientation of the target C.

Although the experimental environment is not completely consistent with a real driving
environment, the inevitable errors in a real tunnel, such as changing outdoor luminance, can be
avoided in the laboratory. The dynamic process of the tunnel entrance is simulated. The effect of color
rendering on reaction time can be obtained accurately by this method.
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Figure 9. The driving condition of the actual tunnel entrance and the visual states of the subjects in the
experiment. SPD = spectral power distribution; LED = light-emitting diode; CRI2012 refers to a color
difference-based color rendering index.

3. Results and Discussion

To measure the error of the experiment, in a preliminary experiment, five of 25 subjects were asked
to observe a black target and conduct dark adaptation for 10 times using LEDcubes with CRI2012 of
85 and LP-CCT (the CCTs simulated by LEDcube) of 2800 K as the lighting sources. The HP-CCT is
5700 K. The reaction times of the five subjects are shown in Figure 10. It can be seen that the reaction
time value is between 2.5 s and 3.5 s and the value of standard deviation is less than 0.2.
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Figure 10. Ten repetitions reaction time of five subjects. CRI2012 = 85, LP-CCT = 2800 K. Error bars
indicate the standard deviation.

Figures 11 and 12 show the mean reaction time of all subjects under different CRI2012s and
LP-CCTs under different HP-CCTs. It can be seen that the color of targets greatly affect the reaction
time, the CRI2012 and CCT affect the reaction time relatively less. In Figure 11, the experimental data
of most colors (black, blue, red, silver, white and brown) showed that the reaction time decreased with
the increase of CRI2012. The green one showed that the CRI2012 was positively correlated with the
reaction time. The yellow one had no obvious uniform trend for CRI2012 and the reaction time may
because that the short reaction time results in an insignificant regularity. In Figure 12, most of the
results follow a similar trend to the results in Figure 11 except for the blue target, which showed a
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positive correlation between color rendering and reaction time. Comparing Figures 11 and 12, their
trends were similar and the range of reaction time was close. When HP-CCT = 5700K, the trends of
CRI2012 and reaction time were more linear. When HP-CCT = 5700K, LP-CCT = 2800K, the response
time difference under different CRI2012s is larger than that under other lighting conditions. It can be
seen that the difference of reaction time is less than 1 s under different lighting conditions. However, a
difference of 0.1 s in reaction time can greatly increase the probability of traffic accidents [54].
Int. J. Environ. Res. Public Health 2020, 17, x 12 of 23 
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Figure 11. The mean reaction time of all subjects under different CRI2012s (a color difference-based 

color rendering index) and LP-CCTs (the CCTs simulated by LEDcube) when HP-CCT (the CCT of 

HP-LEDs) is 5700 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K. Error bar shows 

the standard deviation. CRI2012 refers to a color difference-based color rendering index. 

  

Figure 11. The mean reaction time of all subjects under different CRI2012s (a color difference-based
color rendering index) and LP-CCTs (the CCTs simulated by LEDcube) when HP-CCT (the CCT of
HP-LEDs) is 5700 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K. Error bar shows
the standard deviation. CRI2012 refers to a color difference-based color rendering index.
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Figure 12. The mean reaction time of all subjects under different CRI2012s and LP-CCTs when HP-

CCT is 3000 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K. Error bar shows the 

standard deviation. 

  

Figure 12. The mean reaction time of all subjects under different CRI2012s and LP-CCTs when HP-CCT
is 3000 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K. Error bar shows the
standard deviation.

Figures 13 and 14 show the probability distribution of the correlation between CRI2012 and
reaction time for 25 subjects observing different colors. For example, when the 25 subjects were asked to
observed the black target under LP-CCT = 2800K and HP-CCT = 5700 K, the results of the reaction time
showed that among the 25 subjects, eight subjects showed a positive correlation, 10 subjects showed a
negative correlation, and seven subjects showed no significant correlation. For the determination of
correlation, we judge that if three or four CRI2012s are correlated with reaction time, the CRI2012 are
identified as correlated with reaction time. Figure 15 shows several possibilities for determining the
correlation. It can be seen in Figures 13 and 14 that the probability of most colors showing a negative
correlation is higher, while the probability of showing a positive correlation and no correlation is lower.
Although the experimental results of each subject were different, the experimental data of most subjects
showed a relatively consistent trend, that is, when observing objects of different colors, the reaction
time of most colors decreased with the increase of CRI2012. As a result, it can be concluded that higher
CRI2012 can improve the dark adaptation of human eyes and reduce the reaction time.
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Figure 13. The probability distribution of the correlation between CRI2012 and reaction time when
HP-CCT is 5700 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K.
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Figure 14. The probability distribution of the correlation between CRI2012 and reaction time when
HP-CCT is 3000 K. (a) LP-CCT = 2800 K. (b) LP-CCT = 4500 K. (c) LP-CCT = 6400 K.
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difficult to identify the orientation of the gap in the target. It can be explained by the fact that the 

contrast between the red target and the cement background is low, which results in the subjects’ 
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Figure 15. Several possibilities for determining the correlation.

The effect of targets with different colors on reaction time is the only consideration in Figure 16.
The reaction time of all subjects to observe the same color of targets under different lighting conditions
(four CRI2012s and three CCTs) was averaged. It can be seen that, under two HP-LEDs, the two bar
charts are similar except for the yellow group. When HP-CCT is 5700 K, the reaction time ranking
of different colors from low to high is white, yellow, silver, black, blue, green, red and brown. When
HP-CCT is 3000 K, the reaction time of the yellow target is significantly higher. When HP-LED =5700
K, the average reaction time of all colors was longer than that of HP-LED =3000 K, except for the
yellow group.
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Figure 16. The mean reaction time of different colors under different lighting conditions when HP-CCT
= 5700 K and 3000 K. The error bars indicate the standard deviation of different lighting conditions.

Despite red being intuitively a more striking color, the reaction time of a red target is relatively long
in this experiment. Most of the subjects reported in the experimental feedback that when they looked
at the red target, they could quickly detect the position and outline of the target, but it was difficult
to identify the orientation of the gap in the target. It can be explained by the fact that the contrast
between the red target and the cement background is low, which results in the subjects’ discrimination
of details being low. The experimental results of this part can provide reference for the color selection
of traffic signs at the tunnel entrance. White, yellow and silver are recommended because they are
easier to identify by drivers than the other colors. At the same time, cars of these three colors will be
more easily perceived by other drivers at the entrance of the tunnel, which should be safer in theory.

Figures 17 and 18 show the reaction time under 12 lighting conditions in Figures 11 and 12. The
reaction time of eight colors under each lighting condition is averaged. It can be seen in Figure 17
that when LP-CCT = 2800 K and 4500 K, CRI2012 is negatively correlated with reaction time. When
LP-CCT = 6400 K, although CRI2012 is positively correlated with reaction time, the reaction time of
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high CRI2012 (85) was also very short. In Figure 17b, when CRI2012 = 55 and 65, CCT is negatively
correlated with reaction time. When CRI2012 = 75 and 85, CCT is positively correlated with reaction
time. In Figure 18, when LP-CCT = 2800 K, CRI2012 is positively correlated with reaction time. When
LP-CCT = 4500 K and 6400 K, CRI2012 is negatively correlated with reaction time. It can be seen that
the effect of CCT on dark adaptation is inaccurate if only CCT is considered without consideration
of CRI2012.
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It can be concluded that considering multiple colors, high CRI2012 provides shorter reaction time
and improves dark adaptation at tunnel entrance. Under two different HP-CCTs, the reaction time is
the shortest when LP-CCT = 3000 K and CRI2012 = 85. Considering both the influence of CCT and
CRI2012, LEDs with low CCT (2800 K) and high CRI2012 (over 85) are recommended for the lighting
of tunnel entrance. From the experimental results, no significant differences and rules were found in
the reaction time data of different genders and ages.

Table 2 shows the significance analysis of the above factors including CRI2012, color, LP-CCT and
HP-CCT with reaction time as the dependent variable. It can be seen that the difference of CRI2012,
Color, LP-CCT, CRI2012 × Color, Color × LP-CCT and Color × HP-CCT are statistically significant
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(p < 0.05). Color has the most significant effect on reaction time, followed by CRI2012 and LP-CCT,
while HP-CCT has no significant effect on reaction time. When studying the effect of LED characteristics
on visual characteristics, it is necessary to consider multiple colors as the observation target as they
will have a significant impact on the results.

Table 2. P value of significance analysis for the above factors

CRI2012 Color LP-CCT HP-CCT
0.002 0.000 0.002 0.527

CRI2012 × Color CRI2012 × LP-CCT CRI2012 × HP-CCT Color × LP-CCT
0.000 0.244 0.771 0.000

Color × HP-CCT LP-CCT × HP-CCT CRI2012 × Color ×
LP-CCT

CRI2012 × Color ×
HP-CCT

0.000 0.090 0.952 0.206

CRI2012 × LP-CCT ×
HP-CCT

Color × LP-CCT ×
HP-CCT

CRI2012 × Color ×
LP-CCT × HP-CCT

0.312 0.269 0.394

Figure 19 shows the simple effect analysis of three groups of significant interactions including (a)
CRI2012 × Color, (b) Color × LP-CCT and (c) Color ×HP-CCT. In Figure 19a,b, the effect of CRI2012
on reaction time is significantly different when the colors are green, red and brown. In Figure 19c, the
effect of CRI2012 on reaction time is significantly different when the colors are red, yellow and brown.
Based on the above experimental results, we can condense the following conclusions:

(1) The effect of different colors on reaction time is greater than that of CRI2012 and CCT.
(2) Yellow, silver and white can provide the shortest reaction times, which can provide a reference

for the design of road signs and warning signs at tunnel entrances.
(3) For targets of different colors and different CCTs, most subjects had shorter reaction times under

high CRI2012, which can lead to the conclusion that LEDs with high CRI2012 are recommended
for the lighting design in tunnel entrances. According to the trend of experimental data, it can
be inferred that LEDs with CRI2012 value approaching 100 is more suitable for the lighting in
tunnel entrance.

(4) For the CCT of LED, under different CRI2012 conditions, the change trend of reaction time with
the increase of CCT is not consistent. According to the current experimental results, on the basis
of determining the high CRI2012 of LED, the CCT should be selected at a lower value (about
2800 K).

In a previous study [26], we used a method similar to the one described in this article to study
the effect of CCT on reaction time at tunnel entrances. However the previous study ignored the
interaction of color rendering and CCT on reaction time. This paper is a more comprehensive study
on the parameter design of LED at tunnel entrances. Compared with previous studies by other
researchers [28,29], this paper considered more kinds of color rendering and CCT, used more colors as
the observation targets, and has updated the selection of light sources and evaluation methods for
color rendering, which made the results more convincing and obtained conclusions more applicable to
actual tunnel entrances.

Although the results presented in the paper can lead to some positive conclusions, there are
also some limitations. Firstly, the small sample size may lead to deviation of data regularity and
affect the accuracy of the results. Thus, the future studies should increase the case studies sample
to ensure a convincing result. Meanwhile, the results will be more accurate by taking into account
different characteristics of the samples, such as driving experience and frequency through the tunnel.
Secondly, although the experimental environment to the greatest extent represents a real environment,
the differences between the two are difficult to assess. Therefore, in the following research, experiments
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will be conducted in real tunnels. Eye trackers and other devices will be applied to measure
reaction times. Comparing further results with the conclusions of this paper may lead to more
convincing conclusions.
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4. Conclusions

In this paper, the effects of color rendering on dark adaptation of human eye in tunnel entrance
were analyzed from the point of view of traffic safety. Firstly, the influence of dark adaptation at
tunnel entrances on traffic safety is discussed. Color rendering is one of the important characteristics
of LEDs, and its research significance to driving safety is discussed. It is explained that the current
color rendering evaluation index (CRI) is not applicable to evaluate LEDs. Several new evaluation
indexes were compared, and it is considered that CRI2012 is more suitable for evaluating the color
rendering of LEDs used at tunnel entrances.

Then, a reaction time experiment was designed to investigate the relationship between CRI2012
and reaction time. In the experiment, four CRI2012s, three CCTs and eight colors of targets were used
to simulate in the laboratory the visual dynamic state of a driver at the entrance of a tunnel. In the
experiments, the method of switching from HP-LED to low-brightness LED was used to simulate
the dark adaptation phenomenon at the tunnel entrance. The similarities and differences between
experimental environment and the actual tunnel are discussed. Twenty five subjects with different
driving experiences on open road and frequencies through tunnels attended the experiment.
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The results showed that the color of targets greatly affects the reaction time, the CRI2012 and CCT
affecting the reaction time less, relatively, which can provide a reference for the design of road signs
and warning signs at tunnel entrances. High CRI2012 can improve the dark adaptation at the tunnel
entrance and reduce the reaction time of drivers. When designing the luminaires at the tunnel entrance,
the luminance should be designed considering LEDs with high color rendering. Theoretically, the
higher the color rendering of the LEDs, the better for traffic safety. This paper provides a reference for
the design of traffic signs, warning signs and vehicle colors at the tunnel entrance combined with color
rendering performance. This paper provides a reasonable reference for tunnel lighting specification
and tunnel lighting design departments, which can make a contribution to ensuring personal safety
and avoiding traffic accidents at tunnel entrances.
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