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Abstract: The combination of hyperthermia, dehydration, and strenuous exercise can result in
severe reductions in kidney function, potentially leading to acute kidney injury (AKI). We sought
to determine whether six days of heat acclimation (HA) mitigates the rise in clinical biomarkers of
AKI during strenuous exercise in the heat. Twenty men completed two consecutive 2 h bouts of
high-intensity exercise in either hot (n = 12, 40 ◦C, 40% relative humidity) or mild (n = 8, 24 ◦C,
21% relative humidity) environments before (PreHA) and after (PostHA) 4 days of 90–120 min of
exercise per day in a hot or mild environment. Increased clinical biomarkers of AKI (CLINICAL) was
defined as a serum creatinine increase ≥0.3 mg·dL−1 or estimated glomerular filtration rate (eGFR)
reduction >25%. Creatinine similarly increased in the hot environment PreHA (0.35 ± 0.23 mg·dL−1)
and PostHA (0.39 ± 0.20 mg·dL−1), with greater increases than the mild environment at both time
points (0.11 ± 0.07 mg·dL−1, 0.08 ± 0.06 mg·dL−1, p ≤ 0.001), respectively. CLINICAL occurred in
the hot environment PreHA (n = 9, 75%), with fewer participants with CLINICAL PostHA (n = 7,
58%, p = 0.007), and no participants in the mild environment with CLINICAL at either time point.
Percent change in plasma volume was predictive of changes in serum creatinine PostHA and percent
changes in eGFR both PreHA and PostHA. HA did not mitigate reductions in eGFR nor increases in
serum creatinine during high-intensity exercise in the heat, although the number of participants with
CLINICAL was reduced PostHA.

Keywords: renal function; kidney injury; creatinine; heat stress; acclimation

1. Introduction

Hyperthermia, physical activity, and dehydration are commonly experienced by workers and
athletes in hot environments [1–5], resulting in a transient impairment in kidney function as blood is
redistributed from the kidneys to active musculature to maintain work intensity, and to the skin to
thermoregulate [6]. While this reduction in renal blood flow may be benign, extreme hyperthermia,
physical activity, and/or dehydration can lead to more severe reductions in renal blood flow, further
reducing glomerular filtration rate (GFR), which is often manifested as reductions in creatinine clearance
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and a rise in serum creatinine [7]. In a clinical setting, the extent of the reductions of these biomarkers
of kidney function is used to define acute kidney injury (AKI) [8,9]. Using these definitions, AKI is
thought to occur in a variety of work and athletic settings conducted in hot environments, including
the military [10], fire suppression [11], farming [12,13], American football [14], soccer [15], endurance
running [16,17], and cycling [18]. Following a recovery period of 1–3 days, clinical biomarkers of
AKI typically return to normal levels without lasting signs or symptoms of renal impairment [11,19].
However, epidemiological data demonstrate that nearly a third of individuals hospitalized with even
mild AKI developed chronic kidney disease within one year, a rate much higher than those hospitalized
without AKI [20].

Heat acclimation (HA) is a common strategy used to mitigate heat strain in physically active
populations, resulting in adaptations such as improved heat dissipation, reduced perception of effort
during activity, and greater physical performance [21–25]. HA may be a potential tool to maintain
renal function during work in the heat due to hydration-related adaptations including increased renin
and aldosterone, resulting in plasma volume expansion and increased sodium reabsorption, thereby
reducing dehydration, hyperthermia, and possibly mitigating the reduction in renal blood flow [21,26].
Plasma volume expansion and other HA adaptations, such as enhanced sweat sensitivity and increased
sweat rate reduce internal body temperature, thereby reducing heat strain [27–30]. Combined, these
adaptations mitigate thermal and cardiovascular strain during physical activity and may have the
potential to maintain kidney function and prevent kidney injury during heat strain, although this area
of research is vastly unexplored.

Thus far, only three human studies have investigated the impact of HA on kidney function. First,
an observational field study of collegiate American football players reported increases in clinical
biomarkers of AKI over a 10 day HA period, with exercising serum creatinine increasing from the first
to the tenth day of practice [14]. Over 43% of players were categorized as having Stage 1 AKI. However,
percent change of GFR was calculated from values between days 0, 5, and 10, rather than within each
day thereby limiting interpretation. Additionally, exercise intensity and duration were not reported
and likely varied among days. Nevertheless, this was the first study to report changes in clinical
biomarkers of AKI in healthy collegiate athletes throughout HA. Second, Omassoli et al. investigated
changes in clinical biomarkers of AKI across a 23 days HA period [31]. HA reduced post-exercise
serum creatinine and the number of individuals classified as having Stage I AKI during one hour of
moderate intensity work in a warm environment. The third study involved military recruits who
performed heavy intensity work during summer basic training, and reported no difference in serum
creatinine increase during days 10 and 42 of training [10]. However, AKI was not quantified and
pre-acclimatization values were not compared.

A study designed to bridge these important knowledge gaps is needed to understand the impact
of HA on kidney function during high-intensity work in a hot environment, when risk for AKI is
greatest. Determination and implementation of AKI prevention strategies would protect laborers
from this health condition while likely also leading to employer cost savings. Therefore, the purpose
of this study was to determine whether six days of HA mitigates changes in clinical biomarkers of
AKI during strenuous work in a hot environment. We hypothesized that six days of HA would be
protective against the reduction in kidney function during exercise heat stress.

2. Materials and Methods

2.1. Methods

Twenty healthy males free of cardiovascular, metabolic, respiratory, and renal diseases completed
this laboratory, intervention study. An additional 20 males were either excluded due to meeting
exclusionary criteria or withdrew from the study due to scheduling or unrelated personal reasons.
Participants were not taking any medications known to affect thermoregulatory or cardiovascular
variables. Participants began the study in a non-heat acclimated state and were tested from October to
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February in the northeastern United States where ambient temperature averaged 10 ± 2 ◦C and 70 ±
6% relative humidity (RH). All participants provided their informed consent prior to enrollment in
the study, which was conducted in accordance with the Declaration of Helsinki. The protocol was
approved by the (redacted for review) Institutional Review Board (H14-188). Upon study enrollment,
participants were pair-matched by volume of aerobic exercise training prior to the study and maximal
oxygen consumption (VO2max) and then randomized into one of two groups that exercised for six
consecutive days in either a hot (40 ◦C, 40% RH) or mild (24 ◦C, 21% RH) room during all study visits.

Preliminary testing determined participant characteristics and study eligibility. Height to the
nearest 0.5 cm and body mass to the nearest 0.02 kg were measured, as well as skinfold measurements
at the chest, abdomen, and thigh in duplicate to calculate body fat percentage [32]. A graded exercise
treadmill test and open circuit spirometry (TrueOne 2400 Metabolic Measurement System, Parvomedics,
Sandy, UT, USA) measured VO2max. Participants with a VO2max ≥ 45.0 mL·kg−1

·min−1, an average
maximal oxygen consumption for the young, male general population, were eligible to participate [33].

Laboratory visits occurred at the same time each day within subjects to account for the effect of
circadian rhythm on thermoregulation. Participants refrained from alcohol, and strenuous exercise for
24 h, and caffeine for eight hours prior to all laboratory visits. Subjects drank 500 mL of water the night
before and 250 mL of water the morning of each laboratory visit to ensure euhydration, which was
confirmed with urine specific gravity (USG) via a refractometer (A300CL, Atago, Bellevue, WA, USA)
upon arrival to the laboratory. Any subjects deemed hypohydrated (USG > 1.020) consumed 500 mL
of water prior to proceeding with the protocol. Subjects inserted a rectal thermistor (401, Measurement
Specialties, Beavercreek, OH, USA), 10–12 cm beyond the anal sphincter and wore a heart rate monitor
(Race Trainer, Timex, Middlebury, CT, USA) throughout work.

2.2. Exercise Protocol

Participants completed a six-day exercise protocol in either a hot or mild environment. On days
1 and 6, participants were weighed, entered the exercise room, and rested quietly for 20 min. On
each of these days, the exercise protocol was comprised of two, two-hour interval aerobic treadmill
exercise sessions, separated by two hours of rest in a temperate environment. Intensities rotated
among resting, walking at 4.83 km·h−1, jogging at 60% VO2max, and running at 80% VO2max to mimic
intensities of Division I National Collegiate Athletic Association football preseason and are described
elsewhere [34]. Subjects drank water ad libitum throughout all testing sessions, with the volume of
water that participants consumed recorded. Exercise was terminated early if one of the following
criteria was met: (1) Tre ≥ 40.0 ◦C, (2) unsteady gait making exercise unsafe, (3) signs or symptoms of
heat illness, or (4) participant request. Exercising rating of perceived exertion was assessed using the
validated OMNI 0–10 scale where 0 = “extremely easy” and 10 = “extremely hard” [35]. A 70 point
environmental symptoms questionnaire was administered before and after each exercise session, with
greater scores indicating more reported environmental symptoms and increased symptom severity,
including dizziness, thirst, nausea, and trouble concentrating [36]. Before and after each exercise
session, a blood draw was performed using an aseptic technique following 10 min of seated rest.
During the two hours of rest, participants consumed a standardized meal. Upon the completion of the
two exercise sessions USG was again assessed.

On day 2, participants completed a two-hour exercise session consisting of the same exercise
intensities as days 1 and 6. This was completed as a part of a larger study, the results of which have
been published previously [34]. On days 3–5, participants completed 90 min of cycling and/or treadmill
exercise. Participants in the hot environment completed a hyperthermia-clamped protocol during
which participants exercised at a self-chosen intensity to elevate rectal temperature to 38.5 ◦C during
the first 30 min. The remaining 60 min consisted of maintaining rectal temperature between 38.5 ◦C
and 39.9 ◦C through treadmill walking or cycling. Participants in the mild environment completed
treadmill walking at 50% VO2max.
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Following the blood draws, whole blood was allowed to clot—after which, samples were
centrifuged at 3000 rpm for 15 min at 4 ◦C. Serum was transported to a commercial laboratory (Quest
Diagnostics, Wallingford, CT, USA) to complete a comprehensive metabolic panel to quantify serum
creatinine using isotope dilution mass spectrometry. Shifts in hemoglobin (HB 201+, Hemocue,
Lake Forest, CA, USA) and hematocrit (model IEC MB centrifuge, Daemon/IEC Division, Needham
Heights, MA, USA) measured in duplicate estimated percent change in plasma volume [37]. Cortisol
concentration was measured by performing an ELISA in duplicate (CalBiotech, Spring Valley, CA,
USA) with an intra-assay CV of ≤4.9%.

2.3. Data Management and Statistical Analysis

Increased clinical biomarkers of AKI (CLINICAL) were defined by two criteria: (1) the Kidney
Disease Improving Global Outcomes criterion of an increase in serum creatinine ≥0.3 mg·dL−1 from
pre-exercise [9] or (2) the Risk, Injury, Failure, Loss, Endstage Renal Disease criterion of a reduction in
estimated glomerular filtration rate (eGFR) >25%, used in chronic kidney disease assessment [8]. These
criteria were chosen due to their common use in clinical settings and use in similar previous research [31].
eGFR was calculated using the Chronic Kidney Disease Epidemiology Collaboration equation [38].
Changes in serum creatinine and percent changes in eGFR were calculated using measurements at
baseline of the first exercise session and post-exercise of the second exercise session, separately on
Days 1 and 6. Sweat rate was calculated from the change in body mass during exercise, accounting
for fluid consumption and urinary losses. Area under the curve (AUC) for rectal temperature was
calculated to determine the degree minutes above baseline rectal temperature each day using all time
points (minutes 0, 15, 35, 55, 75, 95, 105, 115) during each exercise session, using a previously derived
formula [39].

Between group (hot environment, mild environment) demographic characteristics were compared
using independent t-tests. The two-way (group (hot environment, mild environment) by time (before
heat acclimation (PreHA), after heat acclimation (PostHA)) mixed model ANOVA with post-hoc t-tests
were performed to determine HA status. Evidence of HA is presented as mean differences (MD)
and effect sizes (ES). ES was calculated using the Hedges’ g equation to determine the magnitude of
differences between groups. Values of 0.2, 0.5, and 0.8 were considered small, medium, and large
ES, respectively.

We explored the impact of HA on clinical biomarkers of AKI using two-way (group (hot
environment, mild environment) by time (PreHA, PostHA)) mixed model ANOVA with post-hoc
t-tests. Because we were interested in characterizing those who had increased clinical biomarkers
of AKI (CLINICAL) and did not have increased clinical biomarkers of AKI (NO CLINICAL) during
work in the heat, we stratified participants into these categories for further analyses. The incidence
of CLINICAL was compared across time points (PreHA, PostHA) and groups (hot environment,
mild environment) using chi-squared analyses and presented as percentages. CLINICAL and NO
CLINICAL participants in the hot environment were compared to participants in the mild environment
to explore differences in hydration, changes in clinical biomarkers of AKI, and physiological responses
to exercise with separate one-way ANOVAs both PreHA and PostHA. To investigate the relationships
among cardiovascular and thermoregulatory measures and hydration indices to changes in creatinine
and percent changes in eGFR PreHA and PostHA, Pearson’s and Spearman’s Rho correlations were
performed on eight cardiovascular, thermoregulatory, and hydration measures that would most likely
predict kidney function (i.e., peak rectal temperature, rectal temperature area under the curve, percent
change in plasma volume, total fluid consumed, percent fluid loss replaced, hematocrit, peak heart
rate, and rating of perceived exertion). Stepwise linear regression analyses were performed on these
variables to determine whether they could explain changes in creatinine or percent changes in eGFR.
Statistical significance was set at p ≤ 0.05, adjusted with a Bonferroni correction when appropriate.
Data are presented as the Mean ± SD. All statistical analyses were completed with SPSS version 21.0
(IBM Corp., Chicago, IL, USA).
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3. Results

3.1. Heat Acclimation

Participants in the hot and mild environments had similar characteristics for all demographic
variables (Mean ± SD; Age: 23 ± 4 years; Height: 179.3 ± 6.3 cm; Weight: 75.7 ± 7.3 kg; Body fat
percentage: 11.2 ± 5.0%; VO2max: 53.0 ± 5.7 mL·kg−1

·min−1; p > 0.05). Although not all indicators of
HA reached statistical significance, the six-day protocol did elicit clinically relevant differences in the
hot environment as indicated by the large mean differences and moderate to large ES for the following
variables: end of exercise rectal temperature (Hot environment: MD: −0.41 ± 0.68 ◦C, ES = 0.77, p =

0.059; Mild environment: MD: −0.17 ± 0.30 ◦C, ES = 0.43, p = 0.152), peak heart rate (Hot environment:
MD: −11 ± 7 bpm, ES = 1.36, p < 0.001; Mild environment: MD: −6 ± 11 bpm, ES = 0.51, p = 0.197),
environmental symptoms (Hot environment: MD: −5 ± 7, ES = 0.55, p = 0.041; Mild environment: MD:
−2 ± 2, ES = 0.42, p = 0.049), and perceived exertion (Hot environment: MD: −2 ± 2, ES = 0.59, p =

0.014; Mild environment: MD: −1 ± 1, ES = 0.25, p = 0.170).

3.2. Impact of HA on Clinical Biomarkers of AKI in HOT and MILD

Baseline serum creatinine was not different between participants in the hot environment PreHA
(0.94 ± 0.09 mg·dL−1) and PostHA (0.96 ± 0.11 mg·dL−1, ES = 0.18, p = 0.723), with participants in the
hot environment not different from participants in the mild environment (PreHA: 1.02 ± 0.10 mg·dL−1,
ES = 0.77, p = 0.087; PostHA: 0.99 ± 0.08 mg·dL−1, ES = 0.28, p = 0.428), respectively. HA was not
protective against elevations in clinical biomarkers of AKI. Changes in serum creatinine were not
different in participants in the hot environment PreHA (0.39 ± 0.20 mg·dL−1) and PostHA (0.35 ± 0.23
mg·dL−1, ES = 0.17, p = 0.624), with participants in the hot environment greater than participants in the
mild environment at each time point (PreHA: 0.11 ± 0.07 mg·dL−1, ES = 1.70, p ≤ 0.001; PostHA: 0.08 ±
0.06 mg·dL−1, ES = 1.46, p = 0.002) (Figure 1). Following the same pattern, percent change of eGFR
in participants in the hot environment was not different PreHA (−30.2 ± 9.7%) and PostHA (−26.4 ±
12.4%, ES = 0.31, p = 0.395), with participants in the hot environment having greater reductions than
participants in the mild environment at each time point (PreHA: −10.5 ± 8.5%, ES = 1.96, p ≤ 0.001;
PostHA: −8.4 ± 5.9%, ES = 1.68, p ≤ 0.001).

3.3. Impact of Environment on CLINICAL Incidence

Clinical biomarkers of AKI only increased in participants exercising in the heat. PreHA, nine of the
12 (75%) participants in the hot environment and zero of the eight participants in the mild environment
reached the threshold for Stage 1 AKI (χ2 (1) = 10.91, p ≤ 0.001). This indicates that environmental heat
in addition to the heavy work intensity was necessary to increase clinical biomarkers of AKI.

3.4. CLINICAL, NO CLINICAL, and Mild Environment PreHA

We explored differences in heat strain and hydration between CLINICAL participants, NO
CLINICAL participants, and participants in the mild environment. By definition, CLINICAL PreHA
had a greater change in creatinine and percent change in eGFR (0.46 ± 0.17 mg·dL−1; −34.6 ± 5.7%)
than NO CLINICAL (0.17 ± 0.08 mg·dL−1, ES = 1.56, p = 0.010; −18.6 ± 8.7%, ES = 2.09, p = 0.017),
respectively. CLINICAL also had greater changes than participants in the mild environment (0.11
± 0.07 mg·dL−1, ES = 2.61, p ≤ 0.001; −10.5 ± 8.5%, ES = 3.00, p ≤ 0.001), respectively. Change in
creatinine and percent change in eGFR were similar between NO CLINICAL and participants in the
mild environment (ES = 0.68, p = 0.741; ES = 0.78, p = 0.275), respectively, although moderate-to-large
effect sizes were measured. There was a large effect size for rectal temperature between CLINICAL
(39.73 ± 0.42 ◦C) and NO CLINICAL (39.13 ± 0.35 ◦C, ES = 1.23, p = 0.059), although this did not reach
statistical significance. Rectal temperature of participants in the mild environment (38.20 ± 0.30 ◦C) was
lower than both CLINICAL (ES = 3.73, p ≤ 0.001) and NO CLINICAL (ES = 2.37, p = 0.005). Cortisol
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fold change was similar among CLINICAL (2.3 ± 1.2), NO CLINICAL (2.1 ± 0.2), and participants in
the mild environment (1.6 ± 0.5, p = 0.597). Differences in hydration indices are reported in Table 1.Int. J. Environ. Res. Public Health 2020, 17, x 6 of 13 
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biomarker AKI thresholds. * Difference between groups at the specified time point (p ≤ 0.05). † Main 
effect for group (p ≤ 0.05); HOT = hot environment; MILD = mild environment; CLINICAL = increased 
clinical biomarkers of acute kidney injury; NO CLINICAL = no increased clinical biomarkers of acute 
kidney injury. 
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Figure 1. Clinical biomarkers of acute kidney injury (AKI) before (PreHA, closed circles) and after
(PostHA, open circles) six days of heat acclimation. (A) Change in serum creatinine; (B) Percent change
in estimated glomerular filtration rate (eGFR). Dashed horizontal lines indicate clinical biomarker
AKI thresholds. * Difference between groups at the specified time point (p ≤ 0.05). † Main effect
for group (p ≤ 0.05); HOT = hot environment; MILD = mild environment; CLINICAL = increased
clinical biomarkers of acute kidney injury; NO CLINICAL = no increased clinical biomarkers of acute
kidney injury.

Table 1. Hydration markers among participants with and without increases in clinical biomarkers of
acute kidney injury before and after six days of heat acclimation.

Measurement
PreHA PostHA

Hot Mild
(n = 8) ES

Hot Mild
(n = 8) ES

CLINICAL
(n = 9)

NO CLINICAL
(n = 3)

CLINICAL
(n = 7)

NO CLINICAL
(n = 5)

Urine Specific Gravity 1.018 ± 0.009 1.012 ± 0.008 1.014 ± 0.007 0.57 1.018 ± 0.008 1.022 ± 0.010 1.018 ± 0.009 0.01

Sweat Rate (L·h−1) 1.70 ± 0.37 * 1.44 ± 0.12 * 0.76 ± 0.08 0.65 1.86 ± 0.57 2.04 ± 0.43 * 1.05 ± 0.80 0.29

Total Sweat Loss (L) 5.81 ± 1.23 * 5.29 ± 0.97 * 2.65 ± 0.52 0.37 6.31 ± 1.22 * 5.51 ± 0.85 * 2.87 ± 0.79 0.62

Fluid Consumption (L) 3.61 ± 1.33 * 4.79 ± 2.13 * 1.79 ± 0.95 0.65 4.76 ± 1.82 * 3.39 ± 1.00 1.68 ± 0.83 0.74

Percent Fluid Replaced (%) 61.9 ± 18.9 88.6 ± 25.6 70.6 ± 40.5 1.10 73.2 ± 16.4 61.9 ± 16.3 60.5 ± 33.3 0.58

Percent ∆ Plasma Volume (%) −9.0 ± 3.9 * −3.7 ± 5.6 −0.6 ± 5.8 1.04 −7.1 ± 5.4 −3.5 ± 3.3 −1.3 ± 4.5 0.65

PreHA = before heat acclimation; PostHA = after heat acclimation; Hot = hot environment; Mild = mild environment;
CLINICAL = increased clinical biomarkers of acute kidney injury; NO CLINICAL = no increased clinical biomarkers
of acute kidney injury; ES = effect size of CLINICAL and NO CLINICAL group. * Different than MILD at the
specified time point (p < 0.05).



Int. J. Environ. Res. Public Health 2020, 17, 1325 7 of 13

3.5. CLINICAL, NO CLINICAL, and Mild Environment PostHA

Following six days of exercise in a hot or mild environment, seven of the 12 (58%) participants
in the hot environment participants and zero participants participants in the mild environment were
classified as CLINICAL (χ2 (1) = 7.18, p = 0.007). By definition, CLINICAL PostHA had a greater
change in creatinine (0.50 ± 0.18 mg·dL−1) than NO CLINICAL (0.15 ± 0.07 mg·dL−1, ES = 2.01, p ≤
0.001) and was also greater than participants in the mild environment (0.08 ± 0.06 mg·dL−1, ES = 2.84,
p ≤ 0.001), with similar changes between NO CLINICAL and participants in the mild environment (ES
= 0.94, p = 0.568). PostHA percent change in eGFR was greater in CLINICAL (−24.8 ± 10.7%) than
MILD (−5.6 ± 5.9%, ES = 2.00, p ≤ 0.001), but was similar to NO CLINICAL (−12.6 ± 8.4%, ES = 1.04, p
= 0.059), which was also similar to participants in the mild environment (ES = 0.87, p = 0.347). PostHA
rectal temperature was similar between CLINICAL (39.39 ± 0.70 ◦C) and NO CLINICAL (39.35 ± 0.47
◦C, ES = 0.06, p = 1.000), with both groups having a greater rectal temperature than participants in the
mild environment (38.04 ± 0.49 ◦C; ES = 1.99, p ≤ 0.001; ES = 2.35, p = 0.002), respectively. There were
no differences in PostHA cortisol fold change among CLINICAL (1.2 ± 0.9), NO CLINICAL (2.2 ± 1.1),
and participants in the mild environment (1.2 ± 1.0, p = 0.231).

3.6. Relationships among Clinical Biomarkers of AKI and Cardiovascular Strain, Thermoregulatory Strain, and
Hydration

We conducted stepwise linear regressions with Pearson’s and Spearman’s Rho correlations to
determine the relationships among cardiovascular strain, thermoregulatory strain, and hydration
indices and change in creatinine and percent change in eGFR in participants in the hot environment
PreHA and PostHA. PreHA, percent fluid replaced and percent change in plasma volume had the
strongest relationships with change in creatinine. However, no variables were significant predictors of
change in creatinine. Percent change in plasma volume had the strongest relationship and was the only
significant predictor of percent change in eGFR PreHA (r = 0.64, p = 0.033). PostHA, percent change in
plasma volume had the strongest correlations and was the only significant predictor of both change in
creatinine (r = −0.73, p = 0.007) and percent change in eGFR (r = 0.72, p = 0.008).

4. Discussion

This is the first study to assess the impact of HA on changes in clinical biomarkers of AKI during
high-intensity exercise in a hot environment. We found that six days of HA was not protective against
the reduction in kidney function when exercising in the heat, although the number of people reaching
the clinical biomarker threshold for AKI was reduced following HA. This suggests that HA may
reduce the risk of developing AKI during high-intensity exercise in the heat, although renal function
remains impaired. Our findings in combination with the findings of others support the notion that
HA can mitigate decrements in renal function in individuals who work in hot environments, such
as agricultural workers, military members, and athletes. While this topic has only been explored in
a few studies, efforts should be continued to determine mechanistic explanations of renal function
impairment and preservation during exercise in the heat.

Renal blood flow is reduced at rest in a hot compared to a cool environment, with further reductions
during exercise in the heat, although this response is normal and considered to be benign [6,7]. GFR is
preserved during light and moderate intensity work in a cool environment, with a 15–19% reduction in
GFR during moderate work in the heat [6,7]. The addition of dehydration to exercise in the heat further
decreases GFR by up to 51% [7], surpassing the clinical biomarker threshold of a GFR reduction of
>25% in chronic kidney disease assessment [8], thereby possibly indicating increased risk of developing
AKI. The current study corroborates these observations, with an eGFR reduction of 30% following four
hours of heavy intensity work in a hot environment PreHA, classifying over half of the participants
as potentially having AKI. Reduction in GFR leads to a reduction in creatinine clearance, resulting
in an accumulation of serum creatinine, evidenced by a 0.39 mg·dL−1 increase in creatinine in our
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participants. The eGFR reduction and creatinine increase observed in HOT mirrors changes in previous
studies in soccer, downhill running, and military basic training in the heat [10,15,40].

Omassoli et al. studied the impact of HA on clinical biomarkers of AKI during moderate intensity
work in 27 ◦C Wet Bulb Globe Temperature, a slightly cooler environment than the current study [31].
Both studies used a duration of six days of HA to compare renal responses and found nearly identical
responses of GFR and creatinine PreHA. However, following six days of HA, the previous participants
experienced more preserved renal function including mitigated GFR reduction and creatinine increase
than the current study, leading to a reduced number of participants reaching the clinical biomarker
threshold for AKI PostHA. The two HA and testing protocols varied drastically, making comparisons
between studies complex. Their HA protocol consisted of 100 min walking in a warm environment
while we used a hyperthermia-clamped protocol and tested at a greater exercise intensity in a much
hotter environment. Despite any renal function benefits potentially gained during HA and possible
reduced risk of AKI, the oppressive testing environment and high-intensity work in the current study,
which is known to lead to exacerbated heat strain on the second day of two consecutive days of
work [34,41], may have overshadowed these benefits. Additionally, a more traditional HA period of
10–14 days may be needed to mitigate the rise in clinical biomarkers of AKI and reduce AKI risk.

Mechanisms of enhanced renal function following HA have been proposed but not directly
studied. Plasma volume can expand by 3–27% following HA, and generally occurs during days 3–6
of HA [21,42]. This cardiovascular variable provides a thermoregulatory benefit of improved heat
dissipation by increasing sweat volume to enhance evaporative cooling, thus mitigating core body
temperature rise [43]. Plasma volume expansion may preserve renal function by maintaining cardiac
output, mitigating the reduction in renal blood flow during heat stress through the renin-angiotensin
system, permitting a greater absolute reduction in plasma volume before vasoconstriction of the
renal arterioles. Additionally, sympathetic activation [25,44], which causes reduced blood flow to the
kidneys [6], is reduced following HA. This lends credence to HA reducing the risk of AKI, although
this hypothesis remains untested. Plasma volume expansion and reduced sympathetic activation were
likely both present in this study, as six days of HA falls within the time course of these adaptations,
although they were not directly measured. In contrast, studies in rats and hamsters indicate reduced
renal function following three to ten weeks of passive HA in warm environments, causing reduced
renal blood flow and GFR [45,46]. Thus far, no human studies have reported responses of renal blood
flow and GFR to HA.

Only participants who exercised in the heat reached the clinical biomarker threshold for AKI, both
PreHA and PostHA. Participants in the hot environment achieved a greater rectal temperature than
participants in the mild environment due to the thermally stressful environment and had a greater
fluid turnover, indicated by greater sweat losses and water consumption, although both groups ended
exercise with a similar body mass loss, indicative of similar percent dehydration at the end of exercise.
Although not measured in the current study, participants in the hot environment likely experienced
an approximately one liter per minute reduction in cardiac output as compared to participants in the
mild environment, similar to a previous study that implemented moderate-high-intensity exercise in
similar ambient conditions [47]. It is possible that CLINICAL had further reduced cardiac output than
NO CLINICAL, resulting in further reduced renal perfusion and renal function, indicated by greater
changes in serum creatinine and eGFR. This theory is supported by our data, with greater reductions
in plasma volume being predictive of greater rises in serum creatinine and greater reductions in eGFR.
Our findings suggest that mitigating plasma volume reductions during work in the heat may play a key
role in maintaining renal function, thereby preventing AKI. In practice, individuals exercising in the
heat should drink water in a manner that prevents dehydration, by either drinking to thirst or drinking
according to body mass loss when available, thereby mitigating plasma volume reductions [48].

Omassoli et al. suggested that limiting work intensity based on ratings of perceived exertion
may be useful to prevent AKI [31]. However, our results indicate similar perceived exertion among
individuals who met and did not meet the clinical biomarkers thresholds for AKI. This difference in
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findings may relate to our more intense testing protocol resulting in greater exertion and a smaller
range of responses than the previous study, with all subjects reporting at least a 4/10 on our 0–10
perceived exertion scale at the end of exercise, compared to subjects in the previous work reporting a
range from the lowest to the highest possible values for exertion (6–20 on the Borg rating of perceived
exertion scale) [49]. It is possible that perceived exertion may be predictive during lower-intensity
work, but it should be considered that AKI is more likely to occur during higher intensity work such as
our protocol in which perceived exertion was not predictive of clinical biomarkers of AKI [40,50,51].

Similar to previous studies, we measured serum creatinine and eGFR and used these biomarkers of
kidney function to classify individuals as having or not having AKI using the Kidney Disease Improving
Global Outcomes criterion of an increase in serum creatinine ≥0.3 mg·dL−1 from pre-exercise [9] and
the Risk, Injury, Failure, Loss, Endstage Renal Disease criterion of a reduction in eGFR >25%. It should
be emphasized that, while serum creatinine is a biomarker of AKI, eGFR may not be valid in the acute
setting, but instead is a valid measure of chronic kidney disease. Additionally, we did not confirm the
presence of AKI. There are over 100 studied biomarkers of AKI, with neutrophil gelatinase-associated
lipocalin (NGAL), tissue inhibitor of metalloproteinase 2 (TIMP-2), and insulin-like growth factor
binding protein 7 (IGFBP7) having been studied in laboratory-based human subjects testing. NGAL
is the most widely studied biomarker of AKI which is upregulated and released into circulation in
response to renal tubular injury, and is commonly used in the clinical setting as an early biomarker of
subclinical AKI to determine prognosis [52–55] and AKI severity [56–58]. More recently, it has been
studied as a tool to determine AKI severity during heat exposures with promising results [11,18,19].
Urinary TIMP-2 and IGFBP7 are biomarkers recently approved by the Federal Drug Administration
that successfully indicate future risk of AKI in hospitalized individuals [59–61], with the usefulness
of these markers in predicting AKI in healthy individuals during heat stress only now beginning to
be understood [62]. Therefore, future research should determine the utility of these biomarkers in
predicting future risk of AKI in individuals during acute heat exposures and throughout HA.

Future research should determine AKI risk in females during work in a hot environment.
There are a variety of protocols that induce HA using varying stressors such as the traditional
constant work rate protocol, as well as sustained forcing function based on relative intensity such as
hyperthermia-clamped or heart rate-clamped protocols [63]. The impact of HA protocols on AKI risk
warrants further investigation.

5. Conclusions

With the high number of individuals partaking in physically demanding activities in hot
environments, the potential for AKI in this population is high, generating a need to create effective
AKI prevention strategies. We demonstrated that six days of HA did not mitigate the rise in serum
creatinine during exercise in the heat, although the number of participants classified as CLINICAL
was reduced PostHA compared to PreHA. Hydration indices (Table 1) had the greatest correlation
to increased serum creatinine during work in the heat, providing a starting point for further work
to establish useful AKI prevention and intervention strategies. Additionally, determining the true
incidence of AKI during physical tasks in the heat and throughout HA is warranted.
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