Name	Fe (wt %)	C (wt %)	Fe/C	pH _{PZC}
nZVI	94.9	0.8	-	7.7
BC	0.4	80.2	-	5.1
nZVI-BC ₁ (2:1)	50.8	27.7	1.8:1	6.8
nZVI-BC ₂ (1:1)	40.2	43.8	1:1.1	6.5
nZVI-BC ₃ (1:2)	30.1	56.2	1:1.9	6.1
nTVIRC(1.3)	21.6	62.0	1.20	50

Table S1. The Fe/C mass ratio and pHPzc of nZVI, BC and different nZVI-BC composites.

Figure S1. The removal efficiency of ONZ and pH change during the degradation of ONZ. Operating conditions: $C_0 = 100 \text{ mg/L}$, pH = 3.0, T = 25 °C, [H₂O₂]₀ = 12 mM, nZVI-BC₃ = 0.3 g/L.

Figure S2. The removal efficiency of COD and TOC in different systems. Operating conditions: $C_0 = 100 \text{ mg/L}$, pH = 3.0, T = 25 °C, (1) nZVI-BC system: nZVI-BC₃ = 0.3 g/L; (2) nZVI-BC/H₂O₂ system: nZVI-BC₃ = 0.3 g/L, [H₂O₂]₀ = 12 mM.

Figure S3. Plots of pseudo-first-order (**a**) and pseudo-second-order models (**b**). Operating conditions: $C_0 = 100 \text{ mg/L}$, pH = 3.0, [H₂O₂]₀ = 12 mM, nZVI-BC₃ = 0.3 g/L.

Figure S4. The concentration of different ions. Operating conditions: $C_0 = 100 \text{ mg/L}$, pH = 3.0, T = 25 °C, $[H_2O_2]_0 = 12 \text{ mM}$, $nZVI-BC_3 = 0.3 \text{ g/L}$.