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Abstract: Biochar (BC)-supported nanoscale zero-valent iron (nZVI-BC) was investigated as a
heterogeneous Fenton-like activator to degrade the antibiotic ornidazole (ONZ). The characterization
of nZVI-BC indicated that BC could enhance the adsorption of ONZ and reduce the aggregation
of nZVI. Thus, nZVI-BC had a higher removal efficiency (80.1%) than nZVI and BC. The effects of
parameters such as the nZVI/BC mass ratio, pH, H2O2 concentration, nZVI-BC dose, and temperature
were systematically investigated, and the removal of ONZ followed a pseudo-second-order kinetic
model. Finally, possible pathways of ONZ in the oxidation process were proposed. The removal
mechanism included the adsorption of ONZ onto the surface of nZVI-BC, the generation of •OH by
the reaction of nZVI with H2O2, and the oxidation of ONZ. Recycling experiments indicated that the
nZVI-BC/H2O2 system is a promising alternative for the treatment of wastewater containing ONZ.
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1. Introduction

Ornidazole (ONZ), which is a third-generation 5-nitroimidazole antibiotic, is widely used to
treat infections owing to its excellent activity against anaerobic bacteria [1,2]. Compared with other
antibiotics, ONZ has a longer elimination half-life and greater capacity to penetrate into lipidic tissues,
which makes it a good choice in dental and gastrointestinal surgery [3]. However, it poses a risk
to humans and wildlife if it is discharged into the environment owing to its potential genotoxic,
carcinogenic, and mutagenic properties [4,5]. The presence of ONZ in the environment, such as surface
water and ground water, was investigated [6]. Wastewater containing ONZ must be treated before
entering the environment. However, the high aqueous solubility (4.33 g/L) and low biodegradability of
ONZ make it challenging to remove ONZ via traditional treatment techniques. A few studies were
performed to eliminate ONZ using photocatalysts [7,8]. However, the complex procedures of these
methods may limit their large-scale application, and it is desirable to develop more low-cost and
efficient technologies to remove ONZ from wastewater.

Advanced oxidation processes (AOPs) are widely employed for the treatment of organic
contaminants. Among the AOPs, the Fenton reaction is one of the most popular and effective
methods for dealing with many pollutants [9,10]. The conventional Fenton reaction involves ferrous
salts reacting with hydrogen peroxide under acidic conditions, generating hydroxyl radicals (•OH,
oxidation potential of 2.8 eV) which can oxidize a wide range of contaminants rapidly. However,
Fe3+ is easily precipitated as Fe(OH)3 sludge, which causes secondary pollution and reduces the
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degradation efficiency [11]. Nanoscale zero-valent iron (nZVI) was proposed as an alternative iron
source to activate H2O2. nZVI can supply Fe2+ continuously and produce less sludge owing to ferric
ion recycling in the system [12].

Fe2+ + H2O2 → Fe3+ + •OH + OH−. (1)

2Fe3+ + Fe→ 3Fe2+. (2)

The heterogeneous Fenton process using nZVI was employed for the degradation of organic
contaminants, particularly in the treatment of personal care products [13,14]. However, nZVI was easily
oxidized in the presence of oxygen and tended to aggregate because of high surface energy [15], which
had detrimental effects on the stability and catalytic activity. To overcome these drawbacks, porous
materials such as zeolites [16], mesoporous carbon [17], montmorillonite [18], and mesoporous silica [19]
were used as the supporting materials for nZVI immobilization, which reduced the aggregation and
enhanced its transport.

Biochar (BC) is a carbon-rich material with a large surface area and a porous structure, and it
is produced by the thermal conversion of biomass under oxygen-limited conditions. Recently, the
application of BC in water treatment attracted considerable attention because BC is low-cost and
abundant, and it has extraordinary adsorption properties for removing organic contaminants [20].
Several studies reported that BC with a large surface area can serve as an effective supporter of
nZVI [21,22]. A biochar-supported nanoscale zero-valent iron composite was successfully used as a
persulfate activator for removing nonylphenol and trichloroethylene [22,23]. In the present study, we
attempted to degrade ONZ and analyze the related mechanism using an nZVI-BC/H2O2 system owing
to its strong oxidative capacity. So far, there are no reports on this. Therefore, the application of the
nZVI-BC/H2O2 system for the removal of ONZ is of great importance.

The objectives of this study were as follows: (1) to synthesize and characterize the nZVI-BC
composites, (2) to investigate the effects of the initial pH, H2O2 concentration, nZVI-BC dose, and
temperature on the degradation of ONZ, (3) to assess the reusability and stability of nZVI-BC, and (4)
to clarify the removal mechanism and possible pathways of ONZ in the nZVI-BC/H2O2 system.

2. Experimental Methods

2.1. Chemicals

ONZ (>98%), sodium borohydride (NaBH4, >98%), ferrous sulfate heptahydrate (FeSO4·7H2O,
>99%), hydrogen peroxide (H2O2, 30% aqueous solution), tert-butyl alcohol (TBA, >99.5%), and absolute
ethyl alcohol were purchased from Aladdin, Shanghai. All the chemicals were analytical-grade, and
ultra-pure water (18.2 MΩ) was used in this study.

2.2. Preparation of nZVI-BC

BC was produced via pyrolysis of bamboo sawdust. The bamboo sawdust was collected from a
farm in Gongyi (Henan Province, China), washed several times, and dried at 80 ◦C overnight. The raw
material was crushed and passed through a 40-mesh sieve. Then, it was placed into tightly filled
ceramic crucibles and pyrolyzed in a muffle furnace at 600 ◦C under an oxygen-limited environment
for 2 h. The obtained BC was treated with 1 M HCl for 2 h to remove inorganic components and
washed with distilled water several times to remove any residual acids.

The nZVI-BC was synthesized via a conventional liquid-phase reduction method. In brief, 4.96 g
of FeSO4·7H2O and BC (0.5, 1.0, 2.0, 3.0 g) were added to 100 mL of a water–ethanol solution (w/w = 3:2)
with stirring for 60 min. Then, 100 mL of a 0.36 M NaBH4 solution was added to this mixture dropwise
under vigorous mechanical agitation. Subsequently, the mixture was stirred for 1 h. The black
precipitant was collected via vacuum filtration and quickly washed with absolute ethyl alcohol and
water three times each. Then, it was dried under vacuum conditions overnight and stored in an N2
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atmosphere for further use. The four types of nZVI-BC composites with Fe0/BC mass ratios of 2:1,
1:1, 1:2, and 1:3 were denoted as nZVI-BC1, nZVI-BC2, nZVI-BC3, and nZVI-BC4, respectively. nZVI
was prepared via the same method without the addition of BC. The process can be described by the
following reaction [13,24]:

Fe2+ + 2BH−4 + 6H2O→ Fe + 2B(OH)3 + 7H2 ↑ . (3)

2.3. Characterization

The morphological characteristics were analyzed using scanning electron microscopy (SEM,
S-4800, Hitachi Company, Japan) and transmission electron microscopy (TEM, JEM-1200EX, JEOL Ltd.,
Japan). The surface structure and composition were examined via X-ray diffraction (XRD) analysis
using a Bruker D8 Advanced diffractometer with Cu/Kα radiation (λ = 1.5406 Å), as well as X-ray
photoelectron spectroscopy (XPS, ESCALAB 250Xi, Thermo Corporation, USA). The specific surface
area and the pore structure were determined using a Brunauer–Emmett–Teller (BET) analyzer (ASAP
2460, Micromeritics, USA). The Fourier-transform infrared (FTIR) spectra were acquired using a Nicolet
380 spectrometer. The zeta potentials were measured using a Zetasizer Nano ZS 90 (Malvern, UK).

2.4. Batch Experiments

All batch experiments were performed in 500-mL conical flasks sealed with rubber plugs in a
water bath at a speed of 400 rpm. To initiate the experiments, different amounts of H2O2 and nZVI-BC
were added to 300 mL of a 100 mg/L ONZ solution. The effects of the initial solution pH (2.0–6.0),
initial H2O2 concentration (4–24 mM), nZVI-BC dose (0.05–0.40 g/L), and temperature (15–45 ◦C) were
investigated by changing one factor while keeping the others constant. The pH of the ONZ solution
was adjusted using 0.1 M H2SO4 or NaOH. At regular intervals, an aliquot amount (3 mL) of the
reaction solution was withdrawn, filtered through a 0.22-µm membrane film, and quenched with
TBA immediately for further analysis. All batch experiments were performed in triplicate to ensure
reproducibility, and the relative errors were controlled within ±5%. The removal efficiency of ONZ
was calculated as follows:

R(%) =
C0 −Ct

C0
× 100, (4)

where C0 and Ct (mg/L) represent the ONZ concentrations at the initial time and time t, and R (%)
represents the ONZ degradation efficiency.

2.5. Analytical Methods

The concentration of ONZ was measured in a Waters e2695 HPLC system equipped with an
Agilent C18 column (4.6 × 250 mm, 5 µm). The mobile phase was composed of methanol and water
(20:80, v/v) with a flow rate of 1.0 mL/min. The ONZ was measured at a wavelength of 318 nm, and
the column temperature was 30 ◦C. An ultraviolet–visible light (UV–Vis) spectrophotometer (D6000,
Hach, USA) was used to obtain the UV spectra of the ONZ solution. The chemical oxygen demand
(COD) and total organic carbon (TOC) were measured using a COD tester (DRB200, Hach, USA) and
a TOC analyzer (TOC-VCPH, Shimadzu Corporation, Japan), respectively. The pH of the solution
was measured using a Mettler-Toledo pH meter. An ion chromatograph (DX600, Dionex, USA) was
used to detect the inorganic ions. The carbon content was determined by element analysis (Vario EL
III, Elementar, Germany). The iron content was determined with inductively coupled plasma atomic
emission spectrometry (ICP-OES, ICPOES730, Agilent, USA) after HNO3 digestion.
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3. Results and Discussion

3.1. Characterization of nZVI-BC

The BET specific surface area and pore volume of the BC and the different nZVI-BC composites
are presented in Table 1. The specific surface area and pore volume of the nZVI-BC were significantly
increased compared with those of the nZVI. The fraction of nZVI loaded on BC decreased from 50.8%
to 21.6% when the Fe0/BC mass ratio increased from 2:1 to 1:3 (Table S1, Supplementary Materials).
The specific surface area of the nZVI-BC increased with an increase in the BC proportion. This may be
because the BC provided enough sites for iron particles, and higher BC content favored the dispersion
of nZVI. However, a further increase of BC content resulted in a lower BET surface area value due to
the increasing aggregation of BC sheets [25,26].

Table 1. Characteristics of nanoscale zero-valent iron (nZVI), biochar (BC) and different
nZVI-BC composites.

Name Specific Surface Area
(m2/g)

Pore Volume
(cm3/g)

nZVI 12.56 0.0024
BC 227.45 0.1745

nZVI-BC1 (2:1) 62.03 0.1003
nZVI-BC2 (1:1) 73.12 0.1205
nZVI-BC3 (1:2) 89.93 0.1278
nZVI-BC4 (1:3) 86.39 0.1305

The SEM images revealed that the BC had a microporous structure (Figure 1a), which was
conducive to the impregnation of nZVI. The nZVI particles aggregated as clusters owing to the van
der Waals forces (Figure 1b) [27]. In contrast, numerous small globular particles were distributed well
on the BC surface (Figure 1c), indicating that iron nanoparticles successfully attached onto the BC
without significant aggregation. The particles lost their spherical shape after the reaction (Figure 1d),
suggesting the corrosion of Fe0 and the formation of iron-oxide products on the BC. Additionally,
a TEM image indicated that the particles were attached uniformly onto the surface of BC, and that the
size of nZVI-BC3 was approximately 20–50 nm (Figure 1f), which was in the nanoscale range. However,
the nZVI particles were densely distributed, and their size was larger than that of nZVI-BC3 (Figure 1e).
The results indicated that the BC reduced the aggregation of nanoparticles and effectively supported
the nZVI.

The XRD analysis results for the BC and nZVI-BC3 before and after the reaction are presented in
Figure 2. The broad peak at 2θ = 22.4◦ indicates the presence of amorphous BC [28,29], corresponding
to a d-spacing of 0.4 nm according to Bragg’s Law. The large d-spacing was attributed to the presence
of C–O and O=C–O [30]. For nZVI-BC3, the peak at 2θ = 44.9◦confirmed the presence of Fe0 [31].
Furthermore, a peak at 22.4◦ was observed, but the intensity was weakened, indicating that nZVI was
successfully loaded in the pores of the BC. For the reacted nZVI-BC3, characteristic peaks of Fe3O4

(2θ = 35.4◦/57.2◦) and Fe2O3 (2θ = 62.7◦) appeared [13]. The peak of Fe0 was still present, but was less
pronounced than that for the fresh nZVI, indicating that some of the Fe0 was consumed in the reaction.
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Figure 2. X-ray diffraction (XRD) patterns of BC, and nZVI-BC3 before and after reaction.

Figure 3 presents the XPS patterns of nZVI-BC. For fresh nZVI-BC, the peaks at 706.9 and 720.2 eV
indicated the presence of Fe0 in nZVI-BC, and the peak at 711.1 eV indicated Fe3+ (Fe2O3) [32]. These
results suggest that the iron particles were covered by an oxide film, which formed a core–shell
structure [33]. For the reacted nZVI-BC, the peaks at 711.1 and 725.1 eV corresponded to Fe2O3.
Moreover, the O 1s feature peaks at 530 eV in this region confirmed that Fe2O3, Fe3O4, and FeOOH
all existed on the surface of nZVI before and after the reaction [34], and the iron hydroxides were
dehydrated to oxides. These results indicate that the nZVI-BC was oxidized after the reaction, in
accordance with Equations (5)–(8), which is consistent with the XRD results [13,35]. BC was mainly
represented by C 1s with a peak of 284.8 eV.

4Fe2+ + 4H+ + O2 → 4Fe3+ + 2H2O. (5)

Fe3+ + 2H2O→ FeOOH + 3H+. (6)

2FeOOH→ Fe2O3 + H2O. (7)

6Fe2+ + O2 + 6H2O→ 2Fe3O4 + 12H+. (8)
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The FTIR spectra of BC and nZVI-BC are presented in Figure 4. BC is a carbonaceous material
with abundant functional groups [23]; therefore, many adsorption peaks were observed. The peaks at
1590 and 3430 cm−1 corresponded to aromatic C=C and –OH, respectively. The adsorption band at
1120 cm−1 corresponded to the stretching vibration of the C–O bond. The signal at 592 cm−1 was the
Fe–O adsorption peak, which indicated that the nZVI was oxidized on the BC [36].
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These functional groups were believed to play a crucial role in the adsorption of ONZ and the
support of nZVI. These functional groups immobilized nZVI and reduced the electrostatic attraction
with nZVI [36]. A previous study indicated that nitroimidazoles can be adsorbed onto organic matter
through interactions between the π electrons in the aromatic rings [37]. BC had abundant C=C and
hydroxyl groups which acted as electron donors in the π–π aromatic interactions [33], while the nitro
groups of ONZ acted as π-electron acceptors [38]. The π–π interactions enhanced the transfer of ONZ
onto the surface of the BC, which increased the contact of ONZ and nZVI-BC.

3.2. Degradation of ONZ in Different Systems

To examine the role of different materials, experiments were conducted in different systems,
including BC, nZVI, and different nZVI-BC samples without H2O2. According to previous reports,
ONZ is stable at a pH < 6 [8], and the result of the blank experiment was not presented. As shown in
Figure 5a, the removal efficiency of ONZ was 45.8% in the nZVI system over 12 min, and the results
were consistent with previous reports indicating that ONZ can be degraded by nZVI [39]. For the
nZVI-BC system, the removal efficiency increased from 55.7% to 74.9% with an increase in the nZVI to
BC mass ratio from 2:1 to 1:2. The results indicated that the BC played an important role in enhancing
the activity of the nZVI [33]. As shown in Table 1, the BC had a larger specific surface area and total
pore volume than the nZVI, and the attachment of the nZVI on the BC increased the dispersion and
reduced the aggregation. Accordingly, the removal efficiency increased as the number of active sites
increased. However, with a further increase in the mass ratio to 1:3, the removal efficiency decreased to
64.7%. This may be because the nZVI particles were enclosed by the excess BC [23,26], which hindered
the contact of nZVI and ONZ.
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Figure 5. Comparison of ornidazole (ONZ) degradation for different systems: without H2O2 (a)
and with H2O2 (b). Operating conditions: C0 = 100 mg/L, pH = 3.0, T = 25 ◦C, [H2O2]0 = 12 mM;
BC = 0.2 g/L; nZVI = 0.1 g/L; nZVI-BC1 = 0.15 g/L (mass ratio of 2:1); nZVI-BC2 = 0.2 g/L (mass ratio of
1:1); nZVI-BC3 = 0.3 g/L (mass ratio of 1:2); nZVI-BC4 = 0.4 g/L (mass ratio of 1:3).

In the experiment, approximately 7.5% of the ONZ in the BC was removed owing to the adsorption
property of the BC. The variation of the pH in the degradation process was measured (Figure S1,
Supplementary Materials). The pH increased from 3.0 to a final value of 3.5, indicating the corrosion of
iron (Equation (9)). The pKa value of the ONZ was 2.4 [40]. The ONZ was deprotonated and existed as
an anionic species in the experiments. All the pHPZC values of the catalysts were significantly higher
than 3.5, and the surface was positively charged. Thus, the electrostatic interactions between the
positively charged materials and anionic ONZ involved an attractive force. The adsorption behavior of
the ONZ was mainly attributed to the π–π interactions and electrostatic attraction in our experiments,
and the former was discussed in Section 3.1.

Fe + 2H+
→ Fe2+ + H2. (9)

Figure 5b shows the degradation of ONZ in the BC, nZVI, and different nZVI-BC composites in the
presence of H2O2. The decomposition of ONZ was 2.2% in the H2O2 system, and approximately 9.9%
of the ONZ in the BC/H2O2 system was eliminated, indicating that the BC was insufficient to induce
H2O2 decomposition. For the nZVI/H2O2 system, H2O2 was activated with 48.3% ONZ removal.
In contrast, the application of nZVI-BC enhanced the activation of H2O2, and >63% of the ONZ was
removed in 12 min. The ONZ removal efficiencies were 72.3%, 76.6%, 75%, 80.1%, and 63.8% for
nZVI/BC mass ratios of 2:1, 1:1, 1:2, and 1:3, respectively. Compared with nZVI, nZVI-BC had a larger
surface area, which was beneficial for the distribution of nZVI and the adsorption of ONZ. Thus, the
removal efficiency increased with the number of active sites. The results also indicated that nZVI-BC3

exhibited the highest removal efficiency; high BC content in nZVI-BC4 may cause the aggregation
of BC sheets, which covered the reactive sites on the surface, reducing the removal efficiency [23,26].
Therefore, nZVI-BC3 was selected as the optimal composite in the subsequent experiments.

Although high ONZ removal efficiencies were obtained for both the nZVI-BC and nZVI-BC/H2O2

systems, more COD and TOC were removed in nZVI-BC/H2O2 than in nZVI-BC (Figure S2,
Supplementary Materials). This may be because reduction was the removal mechanism in the
nZVI-BC system [40], whereas, in the nZVI-BC/H2O2 system, a large number of carbon atoms in the
ONZ molecules were converted into CO2 [7]. Similar results were obtained in previous studies [13].
Thus, nZVI-BC/H2O2 was selected as the optimal candidate system in this study.
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3.3. Effects of Different Parameters on Degradation of ONZ

3.3.1. Effect of Initial pH

As shown in Figure 6a the degradation was significantly affected by the solution pH, and the
optimal pH was 3.0. The removal efficiencies were 74.7% and 80.1% when the pH was 2.0 and 3.0,
respectively. When the pH was <3.0, H+ atoms acted as •OH scavengers [41], and H2O2 was solvated
to form a stable oxonium ion when a large number of H+ ions existed [42,43]. Consequently, the
degradation efficiency at a pH of 2.0 was lower than that at a pH of 3.0. The removal efficiency
decreased significantly as the initial pH increased. When the pH increased to 4.0 and 5.0, the ONZ
removal efficiency decreased to 61.1% and 40.3%, respectively. At a pH of 6.0, no significant removal of
ONZ was observed. Possible reasons for the foregoing findings are manifold. Firstly, the corrosion
of Fe0 was faster and easier at lower pH values [32], which increased the concentration of Fe2+ and
generated more •OH. Secondly, the oxidation potential of •OH was significantly influenced by the
solution pH. At a higher pH, the oxidation ability of •OH was reduced [44]. Thirdly, the hydrolysis
of iron ion at higher pH also had adverse effects on the formation of hydroxyl radicals due to the
precipitation of FeOOH on the surface of nZVI [45,46]. Lastly, the iron–peroxo complex, which was the
intermediate of Fenton reaction, becomes more stable with increasing pH and might yield less •OH for
the degradation [47].
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Figure 6. Effects of factors on the degradation of ONZ by nZVI-BC/H2O2: (a) initial pH; (b) H2O2

concentration; (c) nZVI-BC dose; (d) temperature. Except for the investigated parameter, other operation
parameters were fixed as C0 = 100 mg/L, T = 25 ◦C, pH = 3.0, [H2O2]0 = 12 mM, and nZVI-BC3 = 0.3 g/L.

In conclusion, the pH significantly influenced the Fenton-like processes by controlling the catalytic
activity of the iron species and the stability of H2O2 [41].
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3.3.2. Effect of Initial H2O2 Concentration

The effects of different initial H2O2 concentrations within the range of 4–24 mM were investigated.
As shown in Figure 6b, H2O2 played a dual role in the degradation of ONZ. The ONZ removal
efficiency increased from 68.1% to 80.1% when the H2O2 concentration increased from 4 to 12 mM,
and it decreased from 80.1% to 73.3% when the H2O2 concentration increased from 12 to 24 mM.
These results are consistent with previous reports [48]. At a low H2O2 concentration, the produced
hydroxyl radicals were insufficient. With an increase in the initial H2O2 concentration, more H2O2

molecules could contact the nZVI-BC, leading to the generation of more •OH; thus, the removal
efficiency increased. However, with excessive H2O2, excess H2O2 reacted with •OH and produced
HO2• and O2• in accordance with Equations (10)–(12), which were more selective than •OH [49].
Therefore, the optimal H2O2 concentration for ONZ removal was 12 mM in the nZVI-BC/H2O2 system.

•OH + H2O2 → OH2•/O2•+ H2O. (10)

HO2•+ •OH→ H2O + O2. (11)

•OH + •OH→ H2O2. (12)

3.3.3. Effect of nZVI-BC dose

The effect of the nZVI-BC dose on the degradation of ONZ is shown in Figure 6c. The removal
efficiency after 12 min increased from 67.2% to 80.1% when the dose increased from 0.1 to 0.3 g/L.
However, with a further increase in the dose to 0.4 g/L, the removal efficiency decreased to 76.5%.
The Fenton reaction was significantly affected by the ferrous irons provided by Fe0, which plays a
major role in the formation of hydroxyl radicals [50,51]. The number of active sites increased with an
increase in the nZVI-BC dose within the range of 0.1–0.3 g/L, leading to the release of more Fe2+ to
react with H2O2 and the generation more •OH, which improved the removal efficiency. When the
nZVI-BC dose further increased to 0.4 g/L, the ONZ removal efficiency may have decreased owing
to the •OH scavenging effect of extra nZVI-BC through an undesirable reaction (Equation (13)) [14].
Consequently, the optimal nZVI-BC dose was 0.3 g/L in this study.

Fe2+ + •OH→ Fe3+ + OH−. (13)

3.3.4. Effect of Temperature

The effect of the temperature was also investigated, and the results are shown in Figure 6d.
The general trend was that increasing the temperature enhanced the removal of ONZ. The degradation
efficiency increased from 71.4% to 86.3% when the temperature increased from 15 to 45 ◦C. A high
temperature promoted the production of hydroxyl radicals [52] and enhanced the contact of ONZ
molecules with nZVI-BC [53], leading to a higher degradation efficiency.

3.3.5. Kinetics Study

According to previous studies [13,35], two kinetic models were used to analyze the organic
compound degradation in the Fenton-like reaction (Figure S3, Supplementary Materials).

Pseudo-first-order reaction:

ln
(

Ct

C0

)
= −k1t. (14)

Pseudo-second-order reaction:
1

Ct
−

1
C0

= k2t. (15)

Here, k1 (min−1) and k2 (L·mg−1
·min−1) represent the kinetic rate constants of the pseudo-first-order

and pseudo-second-order reactions, respectively, and C0 and Ct represent the concentrations of ONZ
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(mg/L) at time t = 0 and at time t (min), respectively. The k values are presented in Table 2. The results
indicated that the pseudo-second-order reaction model was more suitable for describing the degradation
process (R2 > 0.95). The kinetic rate constants increased as the temperature increased. The activation
energy of ONZ degradation was calculated using the Arrhenius equation.

lnk = −
Ea

RT
+ lnA, (16)

where k (L·mg−1
·min−1) represents the rate constant, Ea represents the Arrhenius activation energy

(kJ/mol), A represents the Arrhenius factor, R represents the gas constant (8.314 J/(mol K)), and T
represents the temperature. The Ea was calculated as 24.1 kJ/mol, indicating that the degradation of
ONZ was a diffusion-controlled reaction [13]. It can be concluded that the degradation of ONZ in the
nZVI-BC/H2O2 was easily achieved owing to the relatively low activation energy [54].

Table 2. The degradation rate constants and R2 for different kinetic models. Operating conditions:
C0 = 100 mg/L, pH = 3.0, T = 25 ◦C, [H2O2]0 = 12 mM, nZVI-BC3 = 0.3 g/L.

T (◦C)
Pseudo-First-Order Model Pseudo-Second-Order Model

k1 (min−1) R2 k2 (L·mg−1·min−1) R2

15 0.1033 0.8562 0.0021 0.9568
25 0.1336 0.8536 0.0035 0.9689
35 0.1482 0.8316 0.0045 0.9737
45 0.1605 0.8051 0.0055 0.9651

3.4. Stability and Reusability of nZVI-BC

The stability of nZVI-BC was investigated through an experiment involving consecutive cycles
under the same conditions. After each cycle, the nZVI-BC was collected via vacuum filtration and
washed several times for further use. As shown in Figure 7, the removal efficiency decreased from 80.1%
to 63.2% after three recycling runs, owing to the release and consumption of Fe0 from nZVI-BC [23,24].
However, this was still a good value considering that a high concentration of the ONZ solution was
treated in the experiments. In the future, efforts should be directed toward reducing the iron leaching
and improving the recycling performance of nZVI-BC/H2O2 systems.
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Figure 7. The recycling degradation of ONZ by the nZVI-BC/H2O2 system. Operating conditions: C0 
= 100 mg/L, pH = 3.0, T = 25 °C, [H2O2]0 = 12 mM, nZVI-BC3 = 0.3 g/L. 
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The role of •OH in the degradation of ONZ was examined by conducting a control experiment 
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•OH during the Fenton reaction [55]. The removal of ONZ was almost completely inhibited with 0.5 
mL of TBA. Therefore, the •OH played a decisive role in the oxidation of ONZ. 
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C0 = 100 mg/L, pH = 3.0, T = 25 ◦C, [H2O2]0 = 12 mM, nZVI-BC3 = 0.3 g/L.
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3.5. Possible Oxidation Degradation Mechanism

The role of •OH in the degradation of ONZ was examined by conducting a control experiment in
an H2O2 system with the presence of TBA. As shown in Figure 8, the removal efficiency decreased
significantly with an increase in the TBA concentration. TBA is a good •OH scavenger and captures
•OH during the Fenton reaction [55]. The removal of ONZ was almost completely inhibited with
0.5 mL of TBA. Therefore, the •OH played a decisive role in the oxidation of ONZ.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 12 of 17 

12 

0 2 4 6 8 10 12

0

20

40

60

80

100
 no TBA           0.05 mL TBA
 0.10 mL TBA  0.50 mL TBA

R
em

ov
al

 e
ffi

ci
en

cy
 /%

Time (min)  
Figure 8. Degradation of ONZ with different tert-butyl alcohol (TBA) addition. Operating conditions: 
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Nitrite, nitrate, and chloride ions were detected in the solution after the reaction (Figure S4, 
Supplementary Materials), indicating that these ions were formed in the oxidation process. The NO2− 
ions are attributed to the N-denitration via radical attack [57], and they were released by radical 
substitution [31]. The NO3− ions may have been related to the opening of the imidazole ring [57]. The 
Cl− ions may have come from the formation of ornidazole epoxide via the attack of •OH on the ONZ 
[7] or the hydrogen chloride cleavage in the process of oxidation [8]. •OH is a strongly active non-
selective agent, which was likely responsible for the scission of the C–N and C–C bonds [7]. 
According to these results, plausible pathways are proposed in Figure 10. 

200 300 400 500 600

 0min  1min
 2min  3min
 4min  6min
 8min  10min
 12min

A
bs

or
ba

nc
e

Wavelength (nm)

318nm

t

Figure 8. Degradation of ONZ with different tert-butyl alcohol (TBA) addition. Operating conditions:
C0 = 100 mg/L, pH = 3.0, T = 25 ◦C, [H2O2]0 = 12 mM, nZVI-BC3 = 0.3 g/L.

The UV–Vis spectrum of ONZ oxidation removal is presented in Figure 9. The characteristic
absorption band of ONZ was approximately 318 nm and decreased with the increasing reaction time.
A new adsorption band between 260 and 280 nm appeared and decreased, which may correspond to
intermediates [56]. Furthermore, the peak between 220 and 240 nm increased significantly after the
reaction started and remained relatively stable during the reaction, possibly indicating the formation
of final products.
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Figure 9. Ultraviolet–visible light (UV–Vis) spectrum of ONZ at various times. Operating conditions:
C0 = 100 mg/L, pH = 3.0, T = 25 ◦C, [H2O2]0 = 12 mM, nZVI-BC3 = 0.3 g/L.
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Nitrite, nitrate, and chloride ions were detected in the solution after the reaction (Figure S4,
Supplementary Materials), indicating that these ions were formed in the oxidation process. The NO2

−

ions are attributed to the N-denitration via radical attack [57], and they were released by radical
substitution [31]. The NO3

− ions may have been related to the opening of the imidazole ring [57].
The Cl− ions may have come from the formation of ornidazole epoxide via the attack of •OH on
the ONZ [7] or the hydrogen chloride cleavage in the process of oxidation [8]. •OH is a strongly
active non-selective agent, which was likely responsible for the scission of the C–N and C–C bonds [7].
According to these results, plausible pathways are proposed in Figure 10.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 13 of 17 
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On the basis of these analyses, a possible mechanism of ONZ degradation in the nZVI-BC/H2O2

system is proposed. Firstly, the ONZ molecules were adsorbed onto the surface of nZVI-BC, and then
Fe2+ was formed on the surface of iron nanoparticles via the corrosion of Fe0. Secondly, the H2O2 was
activated by Fe2+, and highly reactive •OH was produced continuously. Finally, the •OH attacked
the ONZ, and a part of the ONZ was mineralized into CO2 and H2O on the surface of nZVI-BC.
Meanwhile, Fe3+ in the solution was gradually turned back and formed an oxidation layer on the
Fe0 surface. In the process, the adsorption capacity and support ability of BC were fully exploited to
improve the removal efficiency of ONZ.

Thus, the removal of ONZ can be described as follows:
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(1) Adsorption of ONZ on nZVI-BC

nZVI− BC + ONZ→ nZVI− BC−ONZ.

(2) Generation of hydroxyl radicals

Fe + 2H+
→ Fe2+ + H2.

Fe2+ + H2O2 → Fe3+ + •OH + OH−.

2Fe3+ + Fe→ 3Fe2+.

(3) Reaction of ONZ and hydroxyl radicals

ONZ + •OH→ intermediates.

intermediates + •OH→ CO2 + H2O.

4. Conclusions

In this study, nZVI-BC was used as an activator for the Fenton-like oxidation of ONZ. Compared
with nZVI and BC, the nZVI-BC had the highest removal efficiency for ONZ. The presence of BC in
nZVI-BC not only enhanced the adsorption of ONZ but also provided more active sites. The results
indicated that nZVI-BC3 (nZVI:BC = 1:2), which had the highest BET surface area, exhibited the best
degradation performance among the samples tested. The effects of the initial pH, H2O2 concentration,
nZVI-BC dose, and temperature on the degradation performance were examined in detail, and the
degradation of ONZ followed a pseudo-second-order kinetics model (R2 > 0.95). The stability of
nZVI-BC was also investigated, which exhibited a good performance even after three recycling runs.
The mechanism of ONZ degradation involved the activation of H2O2 by nZVI-BC to generate •OH
and the mineralization of ONZ into CO2 and H2O. Furthermore, the possible degradation pathways of
ONZ degradation were proposed according to the variation of ions in the system. Overall, the study
demonstrated that the nZVI/BC system has potential for removing ONZ from wastewater.
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