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Abstract: The machine comprehension research of clinical medicine has great potential value in
practical application, but it has not received sufficient attention and many existing models are
very time consuming for the cloze-style machine reading comprehension. In this paper, we study
the cloze-style machine reading comprehension in the clinical medical field and propose a Gated
Dilated Convolution with Attention (GDCA) model, which consists of a gated dilated convolution
module and an attention mechanism. Our model has high parallelism and is capable of capturing
long-distance dependencies. On the CliCR data set, our model surpasses the present best model on
several metrics and obtains state-of-the-art result, and the training speed is 8 times faster than that of
the best model.

Keywords: clinical medicine; machine reading comprehension; cloze-style; Gated Dilated
Convolution; attention mechanism

1. Introduction

Machine reading comprehension is a challenging task in natural language processing, and the
purpose of this task is to measure the extent to which the machine understands natural language
by having the computer read a document and answer its questions [1]. The machine reading
comprehension task has made significant progress in the open domain and becomes the research
focus of academia and industry. With the development of machine reading comprehension research,
many successful models have been proposed. Although the models trained in the general fields can
adapt to the new target domain, but the domain mismatch problem usually leads to their performance
degradation [2]. Therefore, building new models for specific fields is a challenge.

Due to the lack of large-scale data sets, there are currently no universal systems that can answer
the natural questions raised by doctors in clinical reports. In the clinical field, machine reading
comprehension tasks are still relatively unexplored [3]. Some research communities began to launch
competitions on machine reading comprehension in the clinical field, such as MEDIQA 2019 [4],
BIOASQ [5], etc. These tasks have attracted some researchers to carry out various researches, and have
played dramatic roles in promoting researches in the clinical medical field [6]. And some related data
sets have been proposed, such as CliCR [7], PubMedQA [8], Chimed [2] and emrQA [3] etc. Besides,
the clinical field has accumulated extensive experience and knowledge, some of which have been
uploaded to PubMed, one of the literature databases in the biomedical field, and has nearly 2 million
publications with case types [9,10]. These articles are indexed and account for approximately 7% of all
biomedical articles [11]. Clinical case reports can provide valuable, unique, noisy, and underutilized
evidences [12]. Often, a case report has only one major finding, which first represents the reason for
the report [13]. Therefore, automatic analysis of clinical medical reports by machines will bring great
value to future medical research and practical applications.
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Currently, clinicians address patient-specific problems by manually browsing or searching for
literature and electronic health records. The Question Answering system can simplify this task and
bring convenience to medical research. Moreover, in the cloze-style machine reading comprehension
task, there is still a lack of research in the field of clinical medicine. Till now, only the CliCR data set
has been proposed, and the Stanford Attentive reader(SA) [14] and Gated-Attention Reader (GA) [15]
are used as the benchmark models. In the open domain, many models have been proposed, but
they are not very suitable for the clinical medical field, and the training time for these models is
generally long, which is not conducive to do more research [16]. Therefore, it is particularly essential
to propose a cloze-style machine reading comprehension model that is efficient and suitable to the
clinical medical field.

In this paper, we investigate the cloze-style machine reading comprehension on clinical medical
data. The data set of this study is CliCR, which uses clinical case reports for a total of nearly
12,000 reports, ranging from 2005 to 2016, and around 100,000 gap-filling queries about these cases.
An example from this data set is shown in Figure 1.

Figure 1. An example from the CliCR data set.

The main motivations to design our model are as follows: (1) Most of the existing models are
composed of the recurrent model and attention mechanism; (2) The recurrent model is not parallel
computing [17], and as the length of the text increases, the amount of computation and time will
also increase substantially. To overcome the above-mentioned shortcomings, the structure of our
model consists of convolution and attention mechanisms, because the convolution can capture local
features, and has high parallelism, which does not increase the time as the length of the text increases.
The attention mechanism can capture the interaction information between the document and the query.

2. Related Work

The cloze-style machine reading comprehension task can be expressed with a four-tuple form
(d, q, a, c), in which d is the machine-readable document, q is the query corresponding to the document
d, a is the answer to the query q, and c is the candidate answer pool for the query q. Next, we introduce
the research development of the cloze-style reading comprehension for the open domain and its current
research in the clinical medical field [18,19].

In the open domain, there are already many proposed data sets, such as the CNN/Dailymail data
set [20], which is about one million pieces of news data, the Children’s Book Test(CBT) data set [21],
which is collected in 108 children’s books [22]. The LAMBADA data set [23] was proposed to expand
the language model to solve the problem of discourse. The Who-did-What data set was proposed
by Onishi et al. [24], and was only focused on the personal name entity. The CLOTH data set [25]
was collected from the English test for Chinese students. Based on these data sets, many models
were proposed. For example, the MemNets model [26] has long-term and easy-to-read memory; the
EpiReader model [27] can first perform a simple interaction to get a small set of candidate answers,
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and then use the hypothetical method to reorder and select the final answer; Chen et al. [14] proposed
a bilinear matching function in the Stanford Attentive reader(SA) model; Kadlec et al. [28] believed
that the correct answer word would appear more times in the document, so the Attention Sum reader
was proposed; Cui et al. [29] proposed a new approach(AOA), by adding a new level of attention
to the original one to describe the importance of each attention. The Iterative Attentive reader by
Sordoni et al. [30] dynamically constructs the correlation between the query, document, and inference
states. Dhingra et al. [15] proposed a Gated-Attention(GA) model different from the traditional
attention mechanism. Shen et al. [31] proposed a model to dynamically determine the number
of rounds of reasoning by reinforcement learning. BiDAF [32] uses a multi-stage and hierarchical
process, which makes it possible to capture features of different sizes of the original text. Meanwhile,
a bidirectional attention flow mechanism is used to obtain the representation between the relevant
question and the original text in the case of without early summarization. Among them, the GA
model has obtained state-of-the-art results on many data sets. These models have two characteristics:
the recursive module to encode sequential inputs to get sequential information, and the attention
mechanism to capture interactive features.

However, for the clinical medical field, there is a lack of research on cloze-style reading
comprehension, and there’s only one CliCR data set. The state-of-the-art GA model in the open
domain is the best one on this data set. For the CliCR data set, we propose a GDCA model, which
exceeds the GA model in multiple evaluation metrics and obtains state-of-the-art result. It is nearly 8
times faster than the GA model in the training time.

3. Model

In this section, we introduce the proposed GDCA model, which consists of six parts: the input
layer, the embedding layer, the encoding layer, the interaction layer, the modeling layer, and the output
layer. First, the documents and queries are transformed into high-dimensional word vectors through
the embedding layer, respectively. Then the respective features of the documents and queries are
extracted through the gated dilated convolution module in the encoding layer [33,34]. In the interaction
layer, we use the gated attention mechanism and the attention pooling mechanism to process the
features of the documents and queries and obtain a new document representation vectors. Next in
the modeling layer, we use stacked gated dilated convolution module to capture the words that are
more relevant to the query in the document. We further calculate the relations between words for the
document in the modeling layer, and predict the results in the output layer. The structure of our model
is shown in Figure 2.

• Input layer: This layer inputs the documents and queries into the model, and a variable-length
approach is adopted so that the input text won’t be truncated.

• Embedding layer: In this layer, we convert the words of the input texts into word vector
representations. The corpus for the word embedding is only from the CliCR training set and is
learned by GloVe [35].

• Encoding layer: The encoding layer is a stack of gated dilated convolution modules, whose
structure is similar to the Gated Linear Unit(GLU) [34,36]. The GLU structure is proposed by
Facebook, and its advantage is that it hardly has to worry about the gradient disappearing
because part of it is without any activation function. And dilated convolution can capture farther
distances than conventional convolutions without causing any increase in parameters [37]. Once
the convolution kernel and the step size are determined, the receptive field of the conventional
convolution has a linear relationship with the number of layers of convolution, and the dilated
convolution is an exponential relationship. The structure of the Gated Dilated Convolution
module(GDConv) is shown in Figure 3.
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Figure 2. The architecture of Gated Dilated Convolution with Attention model.

Figure 3. The architecture of Gated Dilated Convolution module..

Assuming the document sequence D = [d1, d2, ..., dk], where k is the number of sentences in the
document, the query sequence Q = [q1, q2, ..., qn], where n is the number of sentences in the query.
We input them into the dilated convolution layer and get a single output element Dc and Qc,
respectively, with the dimension of 2d:

Dc = DilatedConv(D),

Qc = DilatedConv(Q).
(1)
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We divide the above outputs into two equal parts X and Y, both with the dimension d, which can
be expressed as Dc = [XD YD], Qc = [XQ YQ]. Then, we use the activation function sigmoid on Y
to control which inputs X of the current context are relevant to, and perform the element-wise
multiplicative operation with X. The formula is as follows:

Dg = XD ⊗ f (YD),

Qg = XQ ⊗ f (YQ).
(2)

In order to solve the gradient disappearance problem and make the information transmit through
multiple channels, the residual structure is used here, and the input sequence is also added.
The formula is as follows:

Dg = D⊗ (1− f (YD)) + XD ⊗ f (YD),

Qg = Q⊗ (1− f (YQ)) + XQ ⊗ f (YQ).
(3)

Then we use a droppath-like regularization method to make the model more robust:

Dg = D⊗ (1− f (YD ⊗ (1 + ε))) + XD ⊗ f (YD ⊗ (1 + ε)),

Qg = Q⊗ (1− f (YQ ⊗ (1 + ε))) + XQ ⊗ f (YQ ⊗ (1 + ε)).
(4)

• Interaction layer: Here we use the gated attention module proposed by Dhingra et al. [15], which
obtains q by the soft attention, and then performs the element-wise multiplicative operation with
the document representation vector d. The formula is as follows:

xi = di ⊗ (Qgso f tmax(QT
g di)). (5)

Here we use the additive attention mechanism instead of simple pooling to complete the
integration of the sequence information [38], namely, to encode the vector sequence of the
query into a total query vector. Its formula is as follows:

αi = so f tmax(βT f (Wqi)),

q̃ =
n

∑
i=1

αiqi.
(6)

We concatenate the total query vector into the document representation Dg and get the new
document representation vector Dh

Dh = xi ⊕ q̃. (7)

• Modeling layer: The input to this layer is Dh, which encodes the new representation of document
words. Unlike the coding layer, since the representation of these words contain information about
query’s integration, it can capture the words that are more relevant to the query in the document.
We use five layers of Gated Dilated convolution(GDConv). Moreover, the dilated_rate of each
layer is almost doubled, with the aim of establishing a farther relationship between words

D f = DilatedConv(Dh). (8)

• Output layer: In this layer, we calculate the inner product of the resulting document
representation D f and the query representation Qg and pass them through a softmax layer
as the normalizing weights

s = so f tmax(QT
g D f ). (9)
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The vector s represents the probability of a word in the document. Then we integrate the
probability of all the same words in the document for candidate set C. And this operation is the
same as that in the AS model [28]:

Pr(c|d, q) ∝ ∑
i∈(c,d)

si, (10)

where (c, d) indicates that the set of candidate c appears in document d.

Finally, we calculate the candidate answer c with the highest probability as the final
predicted answer:

â = argmaxc∈CPr(c|d, q). (11)

4. Experiments and Results Analysis

4.1. Data Set Description

Our research is based on the CliCR data set, which is sourced from the BMJ Case Reports. About
100,000 queries in this data set are answered by 50,000 distinct entities. For each entity, a Concept
Unique Identifier (CUI) is also used to link it to UMLSR Metathesaurus. The maximum doc length of
the document in the data set exceeds 3000, and the average doc length is 1466. So the model must have
long-term dependencies. The numbers of queries in the training set, validation set, and test set are
91,344, 3691, and 7184, respectively. Since no candidate answers are provided in the data set, we limit
the candidate to the collection of entities in the paragraph. The specific data set details are shown
in Table 1.

Table 1. The data set details for CliCR.

Category Number

Cases 11,846
Queries in train/dev/test 91,344/6391/7184
Tokens in documents 16,544,217
Distinct answers 56,093
Distinct answers(extended) 288,211
Entity types in documents 591,960

4.2. Experiment Setting

For the gated convolution module in our model, all convolutions have a window size of 3 and
the interference term ε of 0.1. In the coding layer, we use two layers of DGConv for the document,
and their dilated_rate are 1 and 2, respectively; and the query uses three layers of DGConv, the
dilated_rates are 1, 2 and 1, respectively. In the modeling layer, we use five layers of DGConv for the
document, their dilated_rates are 1, 2, 5, 9, and 17, respectively. This is to ensure that the dilated_rate
in the stack convolution has no common divisor greater than 1, to guarantee the consistency of the
information. In the interaction layer, we add a dropout layer, and the drop_rate is 0.4, to prevent the
model from overfitting and improve the performance of the model [39]. The reason for the design of
the hyperparameters is the optimal solution found by the grid search algorithm. In addition, for the
dilated convolution, if the dilatedrate of the previous layer and the subsequent layer have the same
common divisor, the continuity of information will be lost.

During the training stage, we set the batch size to 40 and the epoch to 3. The loss function of this
model is cross-entropy, and the optimizer is Adam [40].

Word embedding. Since many words from the data set are not in the existing pre-trained word
embedding and there are a large number of unknown words. So we use the CliCR training set as
a corpus to build word embedding by GloVe. We set the dimension of the word embedding to 100,
window_size to 15, vocab_min_count to 0, max_iter to 100.
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4.3. Results Analysis

Metrics. Our main evaluation metrics are exact match(EM) and F1 score, which are the two
popular evaluation metrics in machine understanding. For the EM, the predicted answers and the
ground truth answers must be exactly matched. The F1 scores is a common indicator in machine
reading comprehension tasks, in which candidate answers and reference answers are both considered
token bags, and the final predicted results can be divided into true positives (TP), false positives (FP),
true negatives (TN) and false negatives (FN). Then precision(P) and recall(R) can be calculated by the
following formula

P =
TP

TP + FP
,

R =
TP

TP + FN
.

(12)

Then, the formula for the F1 score is as follows

F1 =
2PR

P + R
. (13)

In addition, the CliCR data set also introduces two additional metrics BLEU-2(B-2) and
BLEU-4(B-4), because medical entities may have potential large lexical and word order variation.
The BLEU score not only evaluates the similarity between the candidate answer and the real answer,
but also tests the readability of the candidate, which is calculated as follows:

Pn(C, A) =
∑i ∑j min(hj(ci), max(hj(ai)))

∑i ∑j hj(ci)
,

BLEU = BP.exp(
n=1

∑
N

wnlogPn).

(14)

where hj(ci) calculates the number of j-th n-grams appearing in candidate answer ci; similarly, hj(ai)

represents the number of occurrences of the n-gram in gold answer ri. BP is a penalty term, and when
the length of candidate answer is greater than real answer, BP = 1, otherwise BP = e1− na

nc , na and
nc are the length of answer and candidate answer, respectively. N means n-grams up to length N,
wn = 1

N .
Results. Our results are shown in Table 2. Our model has reached the highest in all of the above

metrics. Compared with the previous best GA-Anonym model, our model is 1.2% higher for the
EM, 2.1% higher for the F1 score, and the other two metrics B-2 and B-4 are also improved by 0.01.
Compared with GA-NoEnt, our model has an increase of 10.8% for the EM and a 1.4% improvement
for the F1 score. There are also significant improvements in the other two additional metrics B-2 and
B-4, which are 0.08 and 0.10, respectively.

The performances of the baselines rand-entity and maxfreq-entity presented in [7] are very poor
because a random entity and the most frequent entity in the passage are used as answers, respectively.
The lang-model method performs poor because it is based on queries only, without reading the
document, it is difficult to provide accurate answers. The sim-entity method is a traditional one and is
inferior to the neural network model because the method only compares the similarity of the words
between the query and the document, and does not further infer the words from the document. The SA
model is an end-to-end neural network, which learns semantic matches involving paraphrasing or
lexical variation between the two sentences, but the performance is still not satisfying. The GA model
is more effective than all the previous models, but we observe that the model can only infer the
relationship between the closer words in the document during the reasoning process, and the possible
relations between the more distant words have not been obtained. Therefore, our proposed GDCA
model outperforms the previous models with the gated dilated convolution module to make long-term
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dependencies between words and attention pooling mechanism to integrate the features of the query
into a vector to assist the document’s further reasoning.

Table 2. Results on test set for CliCR (EM and F1 scores are in percentage) [7].

Model EM F1 B-2 B-4

human− expert 35 53.7 0.46 0.23
human− novice 31 45.1 0.43 0.24

rand-entity 1.4 5.1 0.03 0.01
maxfreq-entity 8.5 12.6 0.10 0.05

lang-model 2.1 3.5 0.00 0.00
sim-entity 20.8 29.4 0.22 0.15

SA-Anonym 19.6 27.2 0.22 0.16
SA-Ent 6.1 11.4 0.07 0.05

GA-Anonym 24.5 33.2 0.28 0.20
GA-Ent 22.2 30.2 0.25 0.18

GA-NoEnt 14.9 33.9 0.21 0.11

Our model 25.7 35.3 0.29 0.21

Speedup over GA model. We compare the GA model on the training time with our model under
the same hardware. The comparison results are shown in Table 3. In our experiments, we use a
GTX1080 Ti GPU, both models are based on the Keras framework with the Theano as the backend, and
the batch size is 40.

Table 3. The training time comparison between GA Reader model and our model on CliCR data set.

Model Time per epoch

GA Reader 6 h 40 min
our model 50 min

It is not difficult to observe from the above table that our model is 8 times faster than the GA
model during the training stage, which proves the high efficiency of our model.

4.4. Ablation Study for Model Components

In the following, we perform ablation studies on the components of our model on the CliCR data
set. We experiment with the four components of embedding, dilated convolution, attention pooling,
and gated attention. And we only use the two metrics of EM and F1 score for ablation study.

The Influence of Word Embedding. The comparison between the pre-trained word
embedding [15] and the word embedding based on the CliCR training set is shown in Table 4. For the
pre-trained word embedding, nearly 55% of the words are unknown, so they are randomly initialized.
As can be seen from the table, these unknown words adversely affect the performance of the model.

Table 4. The comparison between the CliCR training set embedding and the pre-trained embedding.

Embedding EM F1

Pre-trained 25.4 34.7
CliCR training set 25.7 35.3

The Influence of Dilated Convolution. It is not enough to establish a relationship between
words and the surrounding words. Therefore, we use the dilated convolution to make a long-term
dependency similar to RNN. This approach is demonstrated to be effective from experiments, and the
results of the comparison between convolution and dilated convolution in the model are shown
in Table 5.



Int. J. Environ. Res. Public Health 2020, 17, 1323 9 of 11

Table 5. The comparison between the convolution and dilated convolution.

Method EM F1

Convolution 24.6 34.0
Dilated convolution 25.7 35.3

Note: the number of Convolution layers is the same as that of Dilated Convolution layers.

The Influence of Attention Pooling. The information of the query is integrated into the words
in the document, so that the model can better infer the answer and improve the performance of the
model. The results of the model with and without attention pooling are shown in Table 6.

Table 6. The comparison between the model with and without attention pooling.

Method EM F1

Attention pooling/o 25.0 34.9
Attention pooling/w 25.7 35.3

The Influence of Gated Attention. The interaction between the document and the query is critical,
it can measure the importance of the words related to the problem in the document. From Table 7, we
can see the importance of the gated attention.

Table 7. The comparison between the model with and without gated attention.

Method EM F1

Gated attention/o 19.2 27.3
Gated attention/w 25.7 35.3

5. Conclusions

In this paper, we present a DGCA model, which has high parallelism and is nearly 8 times faster
than the previous best GA model. It saves a lot of training time and can train more data than other
models with the same time. This brings great convenience to practical applications and scientific
research. On the CliCR data set, our model achieves the highest score on several metrics and obtains
state-of-the-art result. Because the convolution has no way to get the sequential information well,
we will try to solve this problem in our future work, so that the model can improve performance
without slowing down the training speed. In addition, we’ll study how to handle natural language in
connection with reinforcement learning to further improve our model’s performance in the future.
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