Supplementary material

Elsa-Brasil Cohort description

The Longitudinal Study of Adult Health - ELSA Brazil - is a multicenter cohort investigation composed of 15,000 employees from six public higher education and research institutions in the Northeast, South and Southeast of Brazil. The aim is to investigate the incidence and risk factors for chronic diseases, in particular cardiovascular diseases and diabetes.

In each center of the study, the studied population - aged 35 to 74 years - take exams and interviews about as living conditions, social differences, and work relationship, gender and diet habits. In addition to fostering the development of new investigations, the study will be fundamental for adapting public health policies to national needs. The RMSP study has 5061 volunteers aged 35 to 74 years old who are all employees of the University of São Paulo, followed since 2008. The ELSA coordination in the state of São Paulo is under the responsibility of Paulo Andrade Lotufo and Vice-Coordinator of Isabela Judith Martins Benseñor. In São Paulo, the ELSA Research Center (CI - SP) is located at the University Hospital of the University of São Paulo (USP), located at Av. Lineu Prestes, 2565 - University City - ZIP Code 05508-900 - São Paulo - SP, see http://www.elsa.org.br/objetivos.html.

More information can be found at:

- Aquino, E. M., Barreto, S. M., Bensenor, I. M., Carvalho, M. S., Chor, D., Duncan, B. B., ... \& Azeredo Passos, V. M. (2012). Brazilian longitudinal study of adult health (ELSA-Brasil): objectives and design. American journal of epidemiology, 175(4), 315-324.
- Bastos, M. S., Lotufo, P. A., Whitaker, A. L., \& Bensenor, I. M. (2012). Validation of the short-version of Rose Angina Questionnaire in Brazil. Arquivos brasileiros de cardiologia, 99(5), 1056-1059.
- Lotufo, P. A. (2013). Setting up the longitudinal study for adult health (ELSABrasil). Revista de saude publica, 47, 3-9.
- Schmidt, M. I., Duncan, B. B., Mill, J. G., Lotufo, P. A., Chor, D., Barreto, S. M., ... \& Carvalho, M. S. (2014). Cohort profile: longitudinal study of adult health (ELSA-Brasil). International journal of epidemiology, 44(1), 68-75.

34 Results

35 Descriptive statistics (means, SDs, percentages) were firstly calculated to describe and 36 summarize the variables used in this study. Table S1 shows the proportions of land cover 37 variables and number of street trees in the 300 m buffers, 96 city district and 32 regional 38 government boundaries.

40 Table S1. descriptive statistics - Mean (\%), standard deviation (\%SD), minimum (\%) e
41 maximum (\%) land cover classes of 300 m buffers, districts and regional government
42 boundaries

		Street trees (n)	Treetop (\%)	Grass (\%)	Green spaces (\%)	Soil (\%)	River/lake (\%)	Swiming pool (\%)	White roof (\%)	Dark roof (\%)	Gray roof (\%)	Ceramic roof (\%)	Roofs (\%)
300 m Buffer	Mean	267	21.87	3.69	26.07	0.66	0.04	0.00	1.31	15.02	3.31	22.79	42.80
	SD	137	10.60	3.81	12.47	0.74	1.25	0.18	1.30	8.97	3.89	8.40	12.08
	Minimum	3	0.00	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.01	0.02
	Maximum	899	74.01	64.27	83.17	18.42	34.52	8.09	3.55	72.70	46.09	50.41	85.08
$\begin{aligned} & \text { District (} n \\ & =96 \text {) } \end{aligned}$	Mean	14317	23.49	6.52	30.01	0.38	1.78	0.17	1.44	18.69	2.42	20.40	42.95
	SD	16231	11.62	5.82	17.44	0.33	4.35	0.65	0.70	10.17	2.45	6.18	13.58
	Minimum	1290	4.97	0.95	5.92	0.01	0.01	0.00	0.11	0.44	0.30	7.46	10.69
	Maximum	59475	56.83	27.52	84.35	1.47	22.75	5.90	4.06	42.35	17.57	35.72	67.91
Regional goverment$(n=32)$	Mean	39508	23.68	4.98	28.66	8.52	4.60	0.33	1.84	15.91	2.49	3.74	23.98
	SD	13609	16.52	2.85	19.37	1.79	2.81	0.70	0.68	5.64	0.77	1.40	6.12
	Minimum	3520	6.20	2.00	8.20	4.03	1.43	0.06	0.81	2.20	0.77	2.00	9.08
	Maximum	88721	69.60	13.18	82.79	11.98	14.61	3.01	3.55	25.74	4.13	6.25	34.03

43
44
45
46
47
48
49

55 To analyze park distance, we considered the 3 parks (Table S2) closest from the mean distance to the 3 rd closest park was 2389 m . the participant living closest from the park is 37.07 m away and the thither is 11695.85 m .

	Proximity from participant residence (m)			
	Park 1	Park 2	Park 3	
Mean	1294.86	1909.57	2389	
SD	717.22	905.07	944.53	
Minimum	37.07	137.09	141.86	
Maximum	6571.22	11400.4	11695.85	

		Crude	Model 1 adjusted	Model 2 adjusted
Street trees government boundaries	Individual income	OD (CI)	OD (CI)	OD (CI)
		0.86 (0.79-	0.87 (0.79-	0.90 (0.81-
	low income	0.95)**	0.97)*	1.01)
	0.980 (0.937 to	0.94 (0.87-	0.95 (0.87-	0.93 (0.85-
	$1.024)$	1.02)	1.03)	$1.02)$
		0.95 (0.86-	0.95 (0.85-	$0.94 \text { (0.84- }$
	high income	1.05)	1.06)	1.06)
$\begin{gathered} \text { Parks less } 1 \\ \text { Km } \end{gathered}$		0.84 (0.68-	0.790 .63 -	0.830 .65 -
	low income	1.04)	1.00	1.07
		1.01 (0.85-	1.020 .84	0.960 .78 -
	medium income	1.20)	1.22	1.18
		$0.86 \text { (0.71- }$	0.880 .72	0.86 (0.69-
	high income	$1.04)$	1.07	1.07)
Roofs		1.01 (1.00-	1.00 (0.99-	1.00 (0.99-
	low income	1.02)*	1.02)	1.02)
		1.000 .99 -	0.99 (0.98-	0.99 (0.98-
	medium income	1.01	1.00)	1.00)
		1.00 (0.99-	1.00 (0.99-	1.01 (0.99-
	high income	1.01)	1.02)	1.02)

Table S3. Sensibility analyses (regression models). Odds ratios (and 95\% confidence intervals) for the association between hypertension diagnosis, land cover and green space variables using individual income groups.

Model 1 is adjusted for age, sex, race and educational level. Model 2 is adjusted for age, sex, race, educational level, smoking habits, body mass index, excessive drinking, salt consumption, physical activity, dyslipidemia diagnoses and diabetes diagnoses. Signif. codes: '***' $0.001^{\prime * *} 0.01^{\prime *} 0.05$ ' ' ' 0.1 .

Table S4. Sensibility analyses (regression models). Odds ratios (and 95\% confidence intervals) for the association between hypertension diagnosis, land cover and green space variables using HDI government boundaries groups.

		Crude	Model 1 adjusted	Model 2 adjusted
	IDH	OD (CI)	OD (CI)	OD (CI)
Street trees government boundaries	> 0.800 (High)	0.98 (0.91-1.04)	0.97 (0.90-1.05)	0.96 (0.89-1.04)
	< 0.800			
	(Medium)	0.86 (0.69-1.07)	0.81 (0.64-1.03)	0.83 (0.65-1.07)
$\begin{gathered} \text { Parks less } 1 \\ \mathrm{Km} \end{gathered}$	> 0.800 (High)	0.91 (0.81-1.03)	0.90 (0.79-1.03)	0.89 (0.77-1.02)
	< 0.800			
	(Medium)	1.03 (0.79-1.34)	0.94 (0.70-1.26)	0.97 (0.71-1.32)
Roofs	> 0.800 (High)	0.99 (0.98-1.00)	0.99 (0.98-1.00)	0.99 (0.98-1.00)
	< 0.800			
	(Medium)	1.01 (1.00-1.02)*	1.00 (0.99-1.02)	1.01 (0.99-1.02)

Model 1 is adjusted for age, sex, race and educational level. Model 2 is adjusted for age, sex, race, educational level, smoking habits, body mass index, excessive drinking, salt consumption, physical activity, dyslipidemia diagnoses and diabetes diagnoses. Signif. codes: '***' 0.001 '**' 0.01 '*' 0.05^{\prime} ' ' ' 0.1 .

