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Abstract: Motor imagery has been suggested as an efficient alternative to improve the rehabilitation
process of affected limbs. In this study, a low-cost robotic guide is implemented so that linear position
can be controlled via the user’s motor imagination of movement intention. The patient can use this
device to move the arm attached to the guide according to their own intentions. The first objective of
this study was to check the feasibility and safety of the designed robotic guide controlled via a motor
imagery (MI)-based brain—computer interface (MI-BCI) in healthy individuals, with the ultimate
aim to apply it to rehabilitation patients. The second objective was to determine which are the most
convenient MI strategies to control the different assisted rehabilitation arm movements. The results
of this study show a better performance when the BCI task is controlled with an action—action MI
strategy versus an action-relaxation one. No statistically significant difference was found between
the two action—action MI strategies.

Keywords: robotic rehabilitation; robot-assisted therapy; brain computer interfaces in
neurorehabilitation; EEG sensors

1. Introduction

Motor deficiencies are a great handicap for many disabled people. Such disabilities are caused by
various medical problems (stroke, trauma, neurodegenerative diseases, etc.) and affect millions of
people worldwide. After suffering a motor disability, the rehabilitation of motor function becomes a
necessity. Rehabilitation of hands and arms is fundamental to improve the independence of affected
patients when performing everyday tasks [1,2]. Many of the rehabilitation strategies applied, such as
active motor training (AMT) [3], force the use of paralyzed limbs. AMT can produce an improvement
in motor performance and a cortical reorganization. However, AMT usefulness is limited since it
depends on a patient’s residual motor activity. This excludes many patients from the potential benefits
of AMT.

Motor imagery (MI) may be an alternative rehabilitation strategy. MI can rely on the imagination
of body movements and does not depend on parasitic or residual motor abilities [4—6]. Various studies
point to the positive effect that motor imagination training can produce on motor recovery [7,8].
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Brain—computer interfaces (BCls) are communication/control systems that can be employed to
transform the user’s intention into different actions by means of brain activity [9-12]. BClIs include
sensors that record brain activity and software that processes this information in order to interact
with the environment by means of actuators. Patients with limited communication and movement
capabilities can benefit from this technology, which includes communication protocols such as
spellers [13], control of robot arms [14] and neuro-prosthesis [15], control of motorized wheelchairs [16],
and home automation systems [17]. Although BCI technology has attracted extensive research interest
for several decades, it has not yet become a common technology in medical protocols [18]. Barriers
that must be removed before BCI technology is ready for commercial purposes include individual
customization of BCl applications (i.e., the need for individual and recurrent calibration, standardization
of protocols and procedures, as well as patient convenience and comfort in using BCI devices such as
electroencephalogram (EEG) electrodes and caps) [19]. Some research is currently intended to solve
problems that prevent the generalization of medical and recreational BCI use [11,19,20]. The success of
BCI technology will depend on improving its reliability and accuracy, i.e., to increase the number of
times in which the system actually performs the intended action.

BCI technology can also be used to assist in rehabilitation, since BCIs aim to translate the patient’s
MI into external commands to control a helping device. The thought or realization of a motor action
is generated in the sensory—-motor areas of the cerebral cortex, which causes a variation in the EEG
signal [21]. Specifically, imagining motor actions usually modifies the amplitude of the mu/beta
rhythms in the sensory—motor cortex [22]. These variations in the spectral content of EEG signals can
be used to control a BCI system [23,24].

Non-invasive EEG-based BCI systems have been used to control robotic systems that can improve
the daily life of affected individuals, as well as for the rehabilitation and recovery of motor skills [25].
A quadriplegic individual who only had some left bicep mobility was connected to a robotic hand
prosthesis by means of MI [26]. After five months of training, the subject acquired some control over the
prosthesis. Interestingly enough, shorter training periods have also been reported to be successful [27].
Moreover, several BCI paradigms have been combined simultaneously, for example to control a robot
arm that simulates an upper human joint with two degrees [28]. This application used MI to control
the gripping function and steady-state visual evoked potentials (SSVEP) for the joint control.

In [29,30], extensive reviews of state of the art exoskeletons developed for the rehabilitation of the
upper limb are presented. Some exoskeletons for upper limb rehabilitation are already commercially
available, i.e., Aupa, JACE 5600, JACE S603 and Armeo® Spring. The main disadvantages of these
devices are that the anthropometric measures, on which their design are based, may not correspond
to the population in which they are to be applied, and also that their high cost of acquisition and
maintenance make them inaccessible to most institutions. These limitations have motivated the
research carried out in this study in order to produce a customized, low-cost rehabilitation device.

Motor imagery based BCI (MI-BCI) has been used to carry out robotics-assisted rehabilitation
in several studies [31,32]. In one of them [32], a group of patients who underwent standard robotic
rehabilitation was compared with another group using MI-BCI, the latter of which achieved superior
performance. A combination of MI-BCI and conventional physical therapy [26] to rehabilitate patients
who had suffered a stroke has also shown that patients treated with MI-BCI improve more than those
treated with random BCL

MI-BCI has proven its potential to help in the rehabilitation process, but its learning curve is steep
and weeks of training are required to gain a satisfactory level of control [33]. Many people only achieve
a deficient level of BCI control, even when extended training is provided, a phenomenon that has been
labelled ‘BCl illiteracy” [34].

Several MI strategies have been studied, such as hand and foot movements, mental mathematical
operations, and mental rotation of objects [35-38]. MI strategies based on mental imagination of limb
movements seem to be more appropriate for limb rehabilitation [39]. Pfurtscheller et al. [26] used
brain oscillations to control an electrically driven hand orthosis for restoring hand grasp function.
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The subjects imagined left versus right hand movements, left and right hands versus no specific
imagination, and both feet versus right hand, and achieved an average classification accuracy of
approximately 65%, 75% and 95%, respectively. Which particular motor imaginations allow for a
better control, though, remains an open issue. In this paper, different motor imagination strategies
are compared.

This work implements a low-cost robotic rehabilitation assistance system. The subjects” will to
move their arms is interpreted by analyzing their motor imagery by means of processing the EEG signal
from the motor cortex. The rehearsed movements of the users are decoded from their MI and then
translated into the real movement of the rehabilitation device. BCI performance in the control of the
rehabilitation device with different motor imagery tasks is assessed. For this purpose, two experiments
were planned. In the first experiment, action instructions (imagined movement of hands or feet)
are compared with non-action instructions (imagined motionless hands or feet); while in the second
experiment, two different action strategies (right/left hand movements versus hand/feet movements)
are compared.

In the second section of this paper, the design and construction of the rehabilitation guide is
presented. The guide control system based on a motor imagery BCI is explained. The experiment
procedure is described as well as the different hypotheses tested. In Sections 3 and 4, results of the
experiments are shown and discussed. Finally, some conclusions are drawn.

2. Materials and Methods

2.1. Rehabilitation Guide

The first objective of this work was to design a low-cost robotic device useful for the rehabilitation of
arm movements in affected patients. The system was designed to enable various types of rehabilitation
depending on the placement of the guide. Thus, it should be possible to rehabilitate vertical, horizontal,
and longitudinal movements as shown in Figure 1. The position, speed and direction of a carriage
attached to the guide are controlled. The patient places his or her hand on the mobile carriage to
rehabilitate the arm’s motor function.

|
|

<= =
Al
@Y Y
. _\\\\)MZ J x& ‘//
EEG EEG
(a) (b) (c)

Figure 1. Rehabilitation guide operation modes. EEG = electroencephalogram. (a) Transversal

movement; (b) longitudinal movement; (c) vertical movement.

The structure of the guide is made up of a metallic aluminum assembly with a square section
of 4.5 cm and a longitude of 110 cm. On this, a carriage made by three-dimensional (3D) printing is
mounted, which can slide longitudinally along the assembly. On this car, wrist attachments are fixed
that adapt to the subject’s arm in order to perform the rehabilitation.

The transmission system of the mobile carriage consists of a drive gear (double helical driver with
21 teeth) that rotates with the motor shaft. A double helical drive gear with 10 teeth rotates around
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the driving pulley and drags the carriage on a belt. The drive pulley has a radius of 25.21 mm and
0.254 mm teeth and the pulley on the right end of the guide is the same as the drive.

The relationship of movement between the carriage and the motor revolutions is obtained from
Equation (1).

%-27‘[-25.464 = 336.46mm/rev 1)

The Direct Current (DC) motor that drives the gear system has a nominal supply voltage of 12 V
and in nominal operation can vertically raise 3 kg (as measured on the guide carriage). This motor
has a coupled reducer and an incremental encoder. The encoder’s output determines the carriage’s
direction of movement and number of movement steps. A limit switch was placed on the extreme left
end of the guide to enable the system to home at the beginning of the program execution and so to
have a carriage position reference.

To enable the carriage to move in both directions, the motor is controlled from a driver or H-bridge
controlled by digital signals from the PC. Specifically, the integrated BD6231F-E2 is a H-bridge that also
enables control of the output voltage through pulse width modulation (PWM) so that with the same
component, it is possible to control movement speed and direction. A LabVIEW program controls the
driver moving the carriage via the NI-6210 acquisition card. The carriage movement is limited at the
beginning of every trial according to the desired span for every user.

The rehabilitation guide is powered from batteries to ensure a stable voltage, to facilitate the
portability, and to reduce the risk of patient electrocution. One of the design requirements of this work
was the construction of a low-cost rehabilitation device, and for that reason, many of the components
of the guide have been 3D-printed (Figure 2).

Figure 2. Rehabilitation guide.

To begin with the rehabilitation, the user places his or her hand on a wristband, which has been
specifically molded for the patient, and is made of a thermoplastic insole. The user then must try to
move the carriage towards the right or left, backwards or forwards, or up or down, depending on the
rehabilitation exercise and, hence, on the position of the guide. These different configuration options
allow for the same guide to perform different rehabilitation exercises so that it can be adapted to the
requirements of each patient.

Once the user begins to try (although their mobility in this joint could be very limited or even
fully absent), by processing the EEG signals, it is possible to detect the direction of the user’s intended
movement and this information is used to start the guide motor and to move its articulation accordingly.
The user therefore obtains a movement feedback that reflects his or her intention. The guide’s motor
and transmission system prevent any actual movement of the carriage if no user intention is detected.
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2.2. EEG-Based Control

EEG signals from the motor areas of the patient are registered to control the guide movements.
These signals are processed and a control action (which can be movement in one direction, in the other,
or stop) is sent to the guide. The speed of movement is regulated through PWM. This speed control is
external to the patient and performed by the person responsible for the rehabilitation.

Motor imagery is used to control the rehabilitation guide movements. The subject being monitored
is asked to think of a type of movement to detect variations in the EEG related to this task with the
electrodes placed in the sensorimotor areas of the brain. The concept of building a BCI with motor
imagery lies in creating a computer algorithm that detects the changes in brain waves associated with
the patient’s movement intention and translates these changes into computer signals [40,41]. The guide
then moves according to the user’s intention, providing visual and somatosensory feedback (Figure 3).
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Figure 3. Motor imagery brain—-computer interface (MI-BCI) for the rehabilitation process.

Several factors have been taken into account when selecting hardware and software components
for the EEG-based BCI. Given the interest in a portable and compact solution for BCI control, the
Enobio digital amplifier [42] from Neuroelectrics was selected to acquire the EEG signals. The Enobio
amplifier was developed for BCI research. It was chosen because of its wireless technology and dry
electrodes that facilitate the experimental setup. The EEG signal was acquired through channels F3, F4,
C3,Cz, C4, T7, T8 and Pz around the sensorimotor areas according to the standard 10-20 electrode
location system (Figure 4). Ground and earth electrodes were placed in the subject’s earlobe. The EEG
signal was recorded using a sampling rate of 500 Hz and band-pass filtered between 2 and 100 Hz with
an activated notch filter at 50 Hz. The sampled and amplified EEG signal is then sent to the computer
via Bluetooth.

To implement rehabilitation guide control, the open-source BCI software BCI2000
(Wadsworth Center, New York State Department of Health in Albany, New York, USA) was used [43].
The carriage movement was controlled after the cursor movement on the computer screen in the cursor
task of BCI2000 [44]. The cursor task is based on the modulation of mu and beta rhythms and allows
the participants to control the position of a cursor on the computer screen. The participants’ intentions
affect the cursor position by means of imagining motor actions. In this study, the participants had to
follow the instructions received to direct the cursor towards a bar that could appear in different parts
of the screen. Being able to direct the cursor and to reach the bar in a pre-specified time interval was
considered as a successful attempt. The participants had to control the direction in which the cursor
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was moving in order to reach the bar. EEG signal processing, feature extraction and classification
followed the procedure described below [22,45-47].
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Figure 4. Registered EEG channels.

The EEG channels are spatially filtered to improve the signal-to-noise ratio. A large Laplacian
filter is chosen as shown in Equation (2) [48]:

n
Cout = Z Cka (2)
k=1

where C,, is the electrode to be analyzed, Cy is the electrode k signal, n is the total number of electrodes
and W is the weight of electrode k. In this study, the filtered channels C3, CZ and C4 are chosen as
output channels according to the weights shown in Table 1. These channels are located on the motor
somatosensory cortex areas corresponding to the right hand, feet and left hand respectively.

Table 1. Laplacian filter coefficients. Cy = electrode k signal.

Cx
Cout F3 F4 T7 C3 (@4 C4 T8 PZ
C3 -0.25 0 -0.25 1 -0.25 0 0 -0.25
CZ -0.2 -0.2 0 -0.2 1 -0.2 0 -0.2
C4 0 -0.25 0 0 -0.25 1 -0.25 -0.25

BCI2000 uses an AR model to estimate the sensorimotor rhythm amplitudes for control according
to Equation (3) [49]:
if

P

Y= Z a1 Y1+ et ®)

i=1
where Y} is the predicted signal at time ¢, a is a vector of p coefficients, and e is the prediction error. a is
a vector of estimated filter coefficients for an all-pole model of order p, for which the power spectrum

is found as shown in Equation (4).

o i\ _ 1
P(e ) ‘1_ o ap(k)e‘f"w|2 4)

In order to evaluate the model coefficients, BCI2000 employs the Maximum Entropy (or Burg)
method [50]. BCI2000 is configured to calculate the power in adjacent bins of 3 Hz width. Within
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each bin, the power is estimated at evenly-spaced intervals and averaged. In this case a 3 Hz bin from
9-12 Hz with 11 evaluations finds the power in 0.2 Hz intervals (Equation (5)).

12
Py_1p = Z [

wl=9, 0.2

r

1= ap(k)e ke

k=1

-2 ®)

Each of the three output channels then have a number of binned power spectrum amplitudes.
The linear classifier subsequently translates these features into output control signals. Its output is
normalized with respect to mean and variance and used to determine a virtual cursor movement in
the computer screen [43].

Since the cursor task is implemented in BCI2000 and the rehabilitation guide control program
was written in LabVIEW [51], a gateway between these software tools was developed. The connection
between LabVIEW and BCI2000 is based on the UDP protocol where BCI2000 acts as the server and
LabVIEW acts as the client.

2.3. Participants

Although the ultimate goal is the therapeutic use of the proposed rehabilitation device, healthy
non-disabled participants have been selected for this study in order to validate the security and
feasibility of the rehabilitation guide and to determine the most convenient MI strategies.

All procedures performed involving human participants were in accordance with the ethical
standards of the Universitat de Valéncia research committee and comparable ethical standards.
Informed consent was obtained from all individual participants included in the study.

The participants were students from the Universitat de Valencia. They each fulfilled several
questionnaires and tests and performed two different BCI tasks. None of them had previous experience
with BCIs. A medical history of epilepsy or the intake of psychoactive drugs were exclusion criteria for
this experiment and none of the participants were rejected for these causes.

Two different experiments concerning BCI task MI strategies have been carried out. Fifty
participants (10 males, 40 females) with a mean age of 20.18 years (standard deviation (SD) = 3.04) took
part in the first experiment. For the second experiment, 127 participants (11 males, 116 females) with a
mean age of 18.01 years (SD = 0.59) were selected. Data from participants who did not complete the
whole protocol have been excluded. The initial number of participants in the first experiment was 90
and in the second experiment 183.

In order to investigate correlations between BCI performance and user traits, the participants went
through a demographic survey and several psychological tests. An initial questionnaire designed by
us explored some participants’ traits, psychological variables and habitually performed daily activities
(physical exercise, video games, music training etc.). These activities have been hypothetically related
to the ability to manage a BCI device [35]. Results regarding these psychological traits and their
correlation with BCI performance were shown in [52].

2.4. Experimental Procedure

The session in each experiment lasted for approximately 60 min and was organized as shown in
Table 2.

Preparation: Participants were informed about the experiment procedure and signed the informed
consent. The Enobio helmet was properly placed on their heads [53]. The task instructions were
provided during the habituation period.

Relaxation: Immediately before starting the tests, participants performed a Jacobson’s progressive
facial relaxation procedure guided by recorded verbal instructions for 180 s. The role of this relaxation
procedure was to induce a relaxed state in the participants. It was conducted because tension has been
shown to correlate negatively with motor imagery BCI performance [40].
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BCI tasks: Each participant performed two control tasks that differed in the MI strategy. The task
order was randomized between subjects.

Table 2. Experimental procedure.

Step Time (Minutes) Activities
e  Filling out consent form
Preparation and e  General information (posture, stop the experiment)
information 15 e Initial questionnaire
e  Electrode placement
Relaxation 5 e  Jacobson’s progressive facial relaxation procedure
MI-BCI tasks 30 * BCltasks
Opinion questionnaire 5 e Experiment evaluation test
Experimental end 5

In the first experiment, a vertical arm rehabilitation was rehearsed (Figure 5). The guide moved
the subject’s arm up and down according to the MI performed. In the first strategy, the users followed
an action—relaxation instruction and in the second strategy, they followed an action-action instruction.
For the action-relaxation instruction (hand/relax task (HRT)), subjects had to purport moving their
hand to move the guide up and to relax if they wanted to move it downwards. In the action-action
task (hand/feet task (HFT)), they had to purport moving their hand to move the guide up. If they
wanted to move the guide down, they were instructed to imagine that they were stretching their feet.

Figure 5. Vertical movement rehabilitation.

To provide a task reference and feedback to the subjects, a cursor task was shown on the computer
screen [43]. Targets appear on the screen and participants were asked to imagine the instructed
movements to move the cursor towards the targets.
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Six 150 s tests were performed by each participant (three per type of task), divided into 20 s
trials. In each trial, the cursor was visible for a maximum of 20 s, during which they could succeed
(the cursor reached the target) or fail (the cursor did not reach the target). In both cases, a new trial was
subsequently initiated. If the 20 s period finished without the cursor reaching either side, a new trial
was started. Henceforth, the number of trials for each participant depended on the time they spent
in each trial. The carriage in the rehabilitation guide moved after the cursor position between two
prefixed limit positions. They were asked to imagine repetitive movements as long as they wanted the
cursor, and the guide, to keep on moving to reach the target.

In the second experiment, a horizontal arm rehabilitation was rehearsed. The guide moved the
subject’s arm to the right and to the left according to the MI performed. Two different action—action
tasks were compared. The previous HFT was compared with a right hand/left hand task (RLT) for
moving the guide in a horizontal position. In this RLT, targets appear on the right and left sides of the
screen and participants were asked to imagine right-hand movements to direct the cursor to the right,
and the opposite for the left side (Table 3).

Table 3. BCI tasks.

Experiment Paradigm Task Visual Cue/Description

HandsRelax Task: HRT

. i “1” imagine opening and
[ —0 Hand movement versus closing hand
i I relax (HRT) “1” no movement and
relax

Hands/Feet Task: HFT

“1” imagine opening and

Hand versus feet closing hand
movement (HFT) “1” imagine both feet
flexion
Right/Left Task: RLT
“«" imagine opening v v
Right hand versus left and closing left hand g iy
hand movement (RLT) “—" imagine opening
and closing right hand

Hands/Feet Task: HFT

“«" imagine both feet
Hand versus feet flexion
movement (HFT) “—" imagine opening
and closing hand

After performing the BCI tasks, the participants completed a test to evaluate their subjective
experience of the experimental procedure.

To analyze the results, IBM SPSS Statistics software v. 16.0 was used. f-tests were performed for
related samples and paired samples, and univariate variance analyses have been performed.



Int. ]. Environ. Res. Public Health 2020, 17, 699 10 of 16

3. Results

In the first experiment, an action—-action strategy (HFT) was compared with an action-relaxation
strategy (HRT) in the MI-BCI task. Figure 6 shows the individual task success comparing the HRT and
HFT control strategies. In Figure 6, results for all subjects are ordered according to their performance
at the HRT. This ordered structure facilitates the comparison between ‘good” and ‘bad” performers
for each condition and it shows the variability of the data. Figure 7 shows the group performance
averages in each strategy. These percentages are averaged over the three trials in each condition.

90
80
70
¢ 60
Q0
© 50
c
3 40
)
a 30
20
10
0
1 3 5 7 9 11131517 192123252729 31333537 394143454749
Subjects
—@— Hands/Relaxation Task (HRT) —@— Hands/Feet Task (HFT)
Figure 6. Individual task performance in HRT vs. HFT.
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S 60.0
c
©
£
9 400
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© 300 —
(@]
@ 200
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Bl HRT-50 [l HFT-50

Figure 7. Task performance average in HRT vs. HFT.

Figures 6 and 7 show that the HFT strategy produced a better performance: 76% of the
participants (38 out of 50) achieved better results than with HRT. A statistically significant difference
between both strategies was found: the control on HRT trials was significantly lower than on HFT:
t (49) = —4.667, p < 0.001.
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As expected, average task performance was low for subjects without previous training in MI-BCL
For the HRT, no learning was observed among the participants (operationalized as an increase in the
percentage of successful attempts between the first and the last trial); the difference between both
attempts was not significant. For the HFT, though, an improvement was observed between the first
and the third trial (t = —2.425; p = 0.010).

As shown in the results of this first experiment, for most subjects, it was easier to use an
action—action motor imagery strategy than an action-relaxation one.

To compare different action—-action motor imagery strategies, a second experiment was designed
with a different group of participants (n = 127). In this experiment, the HFT and RLT strategies to control
the horizontal movement of the rehabilitation guide were compared. Figure 8 shows the individual
task success comparing both strategies. Individual results for all subjects are ordered according to
their performance in the RLT. Figure 9 shows the group performance averages for each strategy.

100
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8
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(V]
2
[0
o
T O = O =" OV = OO " O OOV OO - W - O 1 O
S H N NN NN O O NMNOOOODOO OO —H 1 NN
R B I B B |
Subjects
—@— Right/Left hand Task (RLT) —@— Hands/Feet Task (HFT)
Figure 8. Individual task performance for RLT vs. HFT.
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Figure 9. Task performance average for RLT vs. HFT.

Figures 8 and 9 suggest that the general performances with both action-action strategies (RLT and
HFT) are similar. This was confirmed with a mean difference hypothesis test that showed no statistically
significant differences between both strategies.

A unifactorial inter-group ANOVA was performed using the group variable as the independent
variable (first group, n = 50 and second group, n = 127) and the HFT performance index as dependent
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variable. Levene’s test indicated compliance with homocedasticity (F(1 175 = 3.597; p = 0.060). Regarding

the results of the ANOVA, they showed the absence of statistically significant differences between

both groups in the HFT performance variable (F 175 = 2.074; p = 0.152; 17%, = 0.012; 1-§ = 0.299).

Consequently, the averages in both groups did not show the existence of greater efficacy in one group

(n = 50; mean = 57.91; SD = 11.30) with respect to the other (1 = 127; mean = 54.39; SD = 15.80).
Table 4 shows the results of the initial questionnaire completed by the participants.

Table 4. Initial questionnaire.

Questions Answers Percentage
. Right 92.6
1: Dexterit
QL: Dexterity Left 74
Q2: Do you play any musical Yes 171
instrument? No 82.9
Q3: Do you consider yourself a Yes 70.9
bilingual person? No 29.1
Q4: Did you sleep well last night? \liles gg;

Feedback was obtained from the participants about their experience in wearing the EEG cap in
the BCI tasks in relation to experienced pain and comfort (Tables 5 and 6).

Table 5. Pain perception.

Discomfort None Little Moderate A Lot Too Much
Participants (%) 88 (49.7%) 79 (44.6%) 10 (5.7%) 0 (0%) 0 (0%)

Table 6. Comfort perception.

Tolerance Time <1h 1-2h 2-4h Almost All Day All Day
Participants (%) 30 (17.0%) 79 (44.6%) 29 (16.4%) 29 (16.4%) 10 (5.6%)

4. Discussion

This study presents a low-cost rehabilitation device controlled via an MI-BCI system. The
construction of the guide with rapid prototyping techniques such as 3D printing makes it compact,
lightweight and economical. The device for holding the patient’s hand to the guide was printed on
a rigid material and a thermoforming process was applied that allows a customized fit. The use of
open-source BCI software, such as BCI2000, also contributes to an easy replicability of the prototype.

The proposed robotic guide permits different rehabilitation exercises (shoulder and elbow in
vertical, horizontal and longitudinal movements), depending on its positioning in relation to the subject.
The range and speed of the rehabilitation movements of the guide are adaptable to each patient.

This research has been subject to several limitations. Although a higher number of sessions would
have been convenient, our participants were students enrolled in a course taught by one of the authors
and their participation was a part of the course’s program. The end date of the course, as well as
the fact that the BClI-related practice was a part of the syllabus, precluded us from the possibility of
performing further experimental sessions. An additional limitation relates to the present prototype,
which only allows for unidimensional movements. We are currently working on a robotic device
with similar characteristics that will hopefully allow for the rehabilitation of two-dimensional and
three-dimensional movements.

Mean contrasts were performed for independent groups using Student’s t-test for all the
dichotomous variables of the initial questionnaire versus the performance of each subject in the
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BCI tasks. No statistically significant differences were detected in any of the variables except for
Q4 (t (127) = 2.8981; p = 0.005; SD = 7.62).

From the data of the opinion questionnaire about the experiment, it can be concluded that the
experience of the subjects has been good, considering that almost 95% of the respondents reported
that wearing the EEG helmet with dry electrodes produced little or no discomfort (Table 5). Similarly,
approximately two-thirds of the participants estimated that they could wear the EEG helmet for up to
two hours continuously (Table 6). It can be concluded that the use of dry electrodes and wireless EEG
signal transmission made the experimental setup tolerable and even comfortable.

In this work, several MI strategies to control the device in different rehabilitation exercises
have been compared. The fact that an action—action MI strategy provides better results than an
action-relaxation MI strategy can be related to the nature of the EEG signals and their distribution over
the scalp. Switching between two different MI tasks that are associated to opposite sides of the body
(i.e., left hand vs. right hand) triggers the activation of different areas of the motor cortex. This fact
makes it easier for the classification algorithms to detect the changes in the EEG data in an action vs.
action condition than when it is an action vs. rest task, in which there are just variations of EEG power
in a single area of the brain.

In this study, an active BCI paradigm was used where the user performed mental tasks voluntarily
(thinking about the movement of the right hand, left hand, feet, or relax). Motor imagery was well
accepted by the users because it provided a sense of agency compared to other reactive or passive
paradigms [54]. Reactive BCI paradigms such as SSVEP occur when the user’s brain reacts to external
stimuli (visual, auditory or tactile). In passive BCI paradigms, the user’s mental state is analyzed in
real time such as in workload estimations.

The MI rehabilitation paradigm applied in this study is not limited to a specific type of patient
condition. According to similar studies [8,55,56], it could be used for post-stroke treatment, spinal cord
injury (SCI) patients, trauma, etc. Moreover, as [57] have shown, by simultaneously combining motor
imagery and action observation when compared to simply observing the action, we see an enhanced
corticomotor excitability that might result from the activation of mirror neurons. This promising
conclusion highlights that the results obtained in this study might be applied to the rehabilitation of
medullary-injured patients.

5. Conclusions

An MI-BCI controlled low-cost robotic system for the rehabilitation of arms has been designed.
The feasibility and safety of the system has been tested with an extended healthy population. All
subjects could perform the intended arm movements. The rehabilitation guide has been controlled
by the users according to his or her intentions with MI-EEG. Validation of the BCI control of the
rehabilitation guide by a healthy population, as well as the selection of the most effective MI strategy,
were necessary steps before applying it to patients.

These results show a better performance with an action-action MI strategy than with an
action-relaxation Ml strategy. A statistically significant difference between the two action-action motor
imagery strategies was not found.

Once the feasibility and safety of the robotic guide for arm rehabilitation has been checked with
healthy subjects, the next stage would be to apply the system to patient populations. Since MI-BCI has
been used in previous studies with post-ictus patients and the rehabilitation guide does not require
active muscle exercise, the authors are confident that this system may become a useful tool in the
rehabilitation of arm movements.

Author Contributions: Conceptualization and methodology, E.Q.; experiments design and validation, E.Q., ES.
and G.C.; formal analysis, G.C. and N.C.; data curation G.C.; writing—original draft preparation, E.Q. and N.C.;

writing—review and editing, E.Q. and ES.; supervision, E.Q., ES., M.]. and L.A-K; funding acquisition E.Q., ES.,
M.J. and L.A.-K. All authors have read and agreed to the published version of the manuscript.



Int. J.

Environ. Res. Public Health 2020, 17, 699 14 of 16

Funding: This research has been partially funded by Instituto de Automatica e Informdtica Industrial AI2,
Universitat Politecnica de Valéncia. The APC was funded by Facultat de Educacién, Universidad Internacional de
La Rioja.

Acknowledgments: The authors want to acknowledge the contribution of Alvaro Uriel and Carlos Catalan in the
construction of the prototype. This work has been partially funded by the Instituto de Automatica e Informatica
Industrial AI2, Universitat Politecnica de Valencia.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this paper:

AMT Active motor training

BCI Brain—computer interface

EEG Electroencephalography

HFT Hand/feet task

HRT Hand/relax task

Ml Motor imagery

PWM Pulse width modulation

RLT Right hand/left hand task

SCI Spinal cord injury

SPSS Statistical Package for the Social Sciences
SSVEP Steady-state visual evoked potentials
UDP User datagram protocol
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