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Abstract: Most urban areas of the Po basin in the North of Italy are persistently affected by poor air
quality and difficulty in disposing of airborne pollutants. In this context, the municipality of Milan
started a multi-year progressive policy based on an extended limited traffic zone (Area B). Starting on
25 February 2019, the first phase partially restricted the circulation of some classes of highly polluting
vehicles on the territory, in particular, Euro 0 petrol vehicles and Euro 0 to 3 diesel vehicles, excluding
public transport. This is the early-stage of a long term policy that will restrict access to an increasing
number of vehicles. The goal of this paper is to evaluate the early-stage impact of this policy on
two specific vehicle-generated pollutants: total nitrogen oxides (NOx) and nitrogen dioxide (NO2),
which are gathered by Lombardy Regional Agency for Environmental Protection (ARPA Lombardia).
We use a statistical model for time series intervention analysis based on unobservable components.
We use data from 2014 to 2018 for pre-policy model selection and the relatively short period up to
September 2019 for early-stage policy assessment. We include weather conditions, socio-economic
factors, and a counter-factual, given by the concentration of the same pollutant in other important
neighbouring cities. Although the average concentrations reduced after the policy introduction, this
paper argues that this could be due to other factors. Considering that the short time window may
be not long enough for social adaptation to the new rules, our model does not provide statistical
evidence of a positive policy effect for NOx and NO2. Instead, in one of the most central monitoring
stations, a significant negative impact is found.

Keywords: air pollution; oxides; traffic; state space; milan; area b; cross validation; policy intervention
analysis; counter-factual; unobservable components

1. Introduction

Air quality monitoring is one of the major challenges that European institutions jointly with
national and local administrations are facing in terms of environmental protection. In particular,
the 2008 European Air Quality Directive (AQD) 2008/50/EC [1] requires EU Member States to design
appropriate air quality plans for zones where the air quality does not comply with the AQD limit
values. In the last few decades, European countries implemented various modeling methods to assess
the effects of local and regional emission abatement policy options on air quality and human health [2].
On the one side, they include scenario approaches, in which running a chemical-physical simulation
model with and without a specific emission source allows for quantifying the impact on air quality
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levels [3,4]. On the other side, they also include more comprehensive and multidisciplinary approaches,
such as Integrated Assessment Models (IAM), which combine simultaneously many features of the
economy, society, and scientific findings. These models are based on the combination of multiple
mathematical tools and allow for assessing the impact of environmental policies or to improve the air
quality control system. Typical tools are the full cost-benefit analyses [5], in which abatement measures,
costs, and benefits are expressed in monetary units, optimization, and spatial analysis [6,7].

In areas such as Northern Italy, where the industrial transition in the 1990s reduced coal burning
and sulphur concentration, the large majority of environmental studies focus their attention on
toxic pollutants that are produced by thermic vehicle engines and house heating plants. These are
known to generate serious health effects [8]. Total nitrogen oxides (NOx), nitrogen dioxide (NO2),
and particulates matters (PM10 and PM2.5) belong to this class.

According to the above EU rules, governments adopted standards and quantitative limits
for pollutant emissions to make economic agents responsible and implement abatement policies.
In particular, the maximum concentration for NOx and NO2 is set to 40 µg/m3 annual average and 200
µg/m3 hourly not to be exceeded more than 18 times in a single year. Figure 1 represents the average
concentration levels of NO2 in Europe for the year 2018. The Po basin in Northern Italy stands out as a
heavily polluted area with difficulties in pollution management. The negative impact on society is not
limited to health only. There is increasing evidence showing that bad air quality in general, and high
NO2 concentrations in particular, impact the economy, including finance [9] and tourism [10].
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Figure 1. Annual average NO2 concentrations (µg/m3) in Europe during 2018. Levels are expressed in
µg/m3. Source: European Environmental Agency

The present paper analyses the introduction of the first phase of an air quality control policy in
the municipality of Milan, which started on 25 February 2019 and directly acts on traffic rules. The
administration defined an extended limited traffic zone, named Area B (https://www.comune.milano.
it/aree-tematiche/mobilita/area-b), where the access and circulation for the most polluting vehicles,
as well as those longer than 12 meters, have some partial restrictions, enforced by a monitoring system

https://www.comune.milano.it/aree-tematiche/mobilita/area-b
https://www.comune.milano.it/aree-tematiche/mobilita/area-b
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of entrance gates controlling each license plate and imposing a fine on unauthorized vehicles. The
access prohibition concerns Euro 0 petrol vehicles and a large part of Euro 0, 1, 2, and 3 diesel vehicles,
with specific exemptions for public transport, itinerant traders, and residents, and it is active from
Monday to Friday during business hours (from 7:30 a.m. to 7:30 p.m.), except holidays. According to
the municipality of Milan, the share of cars registered in the Milan metropolitan area and involved in
the restrictions in 2019 is close to 17%, while the share of freight transport vehicles is around 53% [11].
Area B is a progressive policy divided into various phases, which will concern an increasing number
of vehicle classes. In terms of NOx emissions, the administration expects a reduction of 4–5% per year
until 2022 and a reduction of 11% between 2023 and 2026. The policy will be fully operative within
October 2030.

Area B extends the previously existing limited traffic zone, Area C, which covers just the
historical city centre. The physical coverage of the two restriction zones is represented in Figure 2,
which highlights the arrangement of both within the city borders. Area B covers almost the entire area
of the city, excluding extreme peripheral districts.

Statistical literature on air quality grew up sharply in the last decades. Two main statistical
modeling directions have been developed. One has a focus on pollutants concentration and the other
on human exposure. Regarding the latter, recent advances are based on crowdsourced data, such as
smartphone data modeling [12]. Regarding pollutants concentrations, increasing attention is being
given to latent component models; see, as an example [13] and for the problem of misalignment.
In particular, the use of the INLA-SPDE approach for misalignment between pollutant concentration
and epidemiological data [14] and PCA based methods with missing data [15].

When the territory under study is large and spatial correlation is important, spatio-temporal
models are appropriate. See, for example, the multivariate state space approach of Calculli et
al. [16], which is capable of handling jointly PM10, NO2 and weather variables, the approach of
Menezes et al. [17] for modeling daily NO2 trends in Portugal. Moreover, the land-use regression
model (LUR) under a state space approach has been used for modeling air pollution in Tehran [18].
Despite this growing spatial literature, time series analysis methods have been recently developed to
understand the effect of meteorology on pollutant concentration [19], which will be the main focus of
this paper.

The previous Milan limited traffic zone, known as Area C, has already been treated in literature
by Fassò [20], who analyzed its introduction through spatio-temporal models, by Invernizzi et al. [21],
who considered its impact on black carbon, and by Percoco [22] who considered its effect on traffic.
Moreover, similar problems have been studied for London "sulphur-free zone" [23] and the "low
emission zone" in Munich [24]. In Fassò [20], the author considered both particulates and nitrogen
oxides and observed the presence of a more pronounced permanent reduction of the latter within the
restricted area, despite the data showing a strong spatial variability depending on the type of pollutant.
This is consistent with the known emissions pattern of particulate matters and nitrogen oxides. The
latter are mainly primary gaseous pollutants and can be directly attributed to anthropogenic sources,
such as car traffic and house heating. Moreover, from the so-called INEMAR emission inventory [25],
in Milan province, 68% of NOx and only 41% of PM10 are due to road traffic. Hence, in this first study
of Area B, we will take into account NOx and NO2 and postpone the analysis of PM10 and PM2.5 to
further research. To adjust for confounding factors, we will consider weather conditions in Milan, the
main calendar events, and the concentration levels of oxides observed in neighbouring towns, as in a
pseudo-treatment-control approach.

The study aims to identify and quantify variations in pollutant levels due to the above described
Area B. Hence, the present paper will try to investigate and test the following two scientific hypotheses:

• Hypothesis 1. The introduction of Area B achieved significant changes in pollution concentration
for the city of Milan;

• Hypothesis 2. The variation occurred homogeneously on the territory and the stations do not
show spatial variability of the effects.
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The first hypothesis aims to quantify the impact of the policy on pollution levels measured by several air
quality stations scattered around the city and to assess whether this evidence is significantly supported
by the data. The impact is evaluated both regarding the statistical significance of the estimates, the
absolute magnitudes of the coefficients, and their signs. From the policy maker perspective, the
expected coefficients should be negative, indicating a reduction effect on concentrations due to the
car traffic restrictions. However, given the complexity of the phenomenon, a change of opposite sign
cannot be ruled out either. The second research hypothesis is dedicated to the comparison of the
estimates for the considered stations: the effect can be considered homogeneous when the sign and the
magnitude of the coefficients for all the stations are similar.

The paper is structured as follows. Section 2 describes the dataset and the methodologies used
for the analyses. In particular, we briefly explain the composition of both weather and air quality
monitoring systems in Milan, available data sources, and metadata information. Then, we present the
methodologies implemented for the preliminary analysis and the state space approach to time series
analysis for air quality data. Section 3 reports and discusses the empirical results of the estimated
models and their implications. Section 4 concludes the paper discussing the two research hypotheses
in light of what emerged from the data analysis and gives some hints for future research developments.
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Figure 2. Monitoring system in Milan. Air quality stations (blue points): Marche (501), Verziere
(528), Senato (548), Liguria (539) and Città Studi (705). Weather stations (red points): Lambrate (100),
Zavattari (503), Brera (620), Feltre (869), Rosellini (1327), Juvara (502), and Marche (501).

2. Materials and Methods

In this section, we present the structure of the ARPA dataset and briefly introduce the
methodologies implemented for the analyses. Section 2.1 introduces the data source for the Milan case
study and the spatio-temporal structure of the data and provides a brief description of the variables
taken into consideration. Section 2.2 designs the preliminary analysis, which introduces a temporal
treatment-control experiment to highlighting the differences in concentration levels before and after
the policy intervention. Section 2.3 gives a detailed overview of the use of state space models in time
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series analysis for the study of air quality data, including also a specific subsection for model selection
and policy intervention.

2.1. Data

2.1.1. Air Quality and Weather Monitoring Network in Milan

Data on pollution and weather conditions of Lombardy are collected from the Lombardy Regional
Agency for Environmental Protection (ARPA Lombardia), which makes a large open data portal fully
available to users (https://www.dati.lombardia.it/). The agency manages a diffuse monitoring system
distributed among the regional territory and counting on hundreds of monitoring stations collecting
intra-daily information on climate and pollution through sensors.

Installed within the borders of Milan are seven weather monitoring stations and five air quality
monitoring stations. Air quality stations are classified according to a taxonomy system that identifies
the type and function in the network. The stations Liguria (ARPA code 539), Marche (ARPA code 501),
Senato (ARPA code 548), and Verziere (ARPA code 528) are urban traffic control units: sensors installed
near important roads and intersections in order to accurately quantify the pollution generated by
traffic. The station Città Studi (ARPA code 705) is instead of type urban background, that is, the station
is located in such a position that the level of pollution is not mainly influenced by specific sources but
by the integrated contribution of all the upwind sources at the station with respect to the predominant
directions of the winds on the site [8]. The seven weather stations are Marche (ARPA code 501),
Lambrate (ARPA code 100), Zavattari (ARPA code 503), Brera (ARPA code 620), Feltre (ARPA code
869), Rosellini (ARPA code 1327), and Juvara (ARPA code 502).

Figure 2 georeferences on the map the exact position of each station and allows for identifying
the position with respect to Area B and Area C. Air quality stations are represented as blue points,
while weather stations are the red points. Marche station (ARPA code 501), in the upper side of the
map, is the only one to collect both weather and pollution data and is represented with a double label,
the first one blue and the second red.

The spatial distribution of the stations is not uniform: air quality stations cover northern, eastern,
central, and southern parts of the city, leaving the western districts uncovered; climate stations cover
in detail the city centre and all the northern neighbours but are not installed in the south.

2.1.2. Temporal Coverage, Pollutants, and Weather Measures

The analysis presented in this paper takes into account daily measures from 1 January 2014 to 30
September 2019, generating an overall sample of 2099 daily observations.

The whole, the monitoring system provides information about many urban pollutants, such as
carbon dioxide, particulates, and oxides. All the pollutants are measured as µg/m3. As already stated
in the Introduction, we focus our attention on concentrations of total nitrogen oxides (NOx) and
nitrogen dioxide (NO2), which are mainly primary gaseous pollutants, hence considered as proxies of
pollution emissions due to human activities, first of all car traffic.

Weather stations provide measures of local temperature (◦C), rainfall (cumulated mm), humidity
(%), global radiation (W/m2), wind speed (m/s), and wind direction. The wind direction is expressed
in clockwise degrees from 0◦ to 360◦; for example, 90◦ identifies winds going from east to west.
To make results easier to interpret, we decide to aggregate the measurements on wind direction and
speed by constructing a set of new variables that describe the average speed in the four quadrants
of the compass rose. The Northeast quadrant (QNE) corresponds to degrees between 0 and 90, the
Southeast quadrant (QSE) to degrees from 90 to 180, the Southwest quadrant (QSW) to degrees from 180
to 270 and the Northwest quadrant (QNW) to the remaining values lying between 270 and 360 degrees.

These measures will be used in the modeling part to capture local weather conditions specific to
the city of Milan. Instead of using the data referring to the weather station closest to each air quality
station, we preferred to aggregate each of the climate variables through a daily city average valid for

https://www.dati.lombardia.it/
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each pollution station. In this way, the subsequent models will be fully comparable guaranteeing the
maximum possible spatial coverage.

2.1.3. Anthropogenic Activities

Human activities, and therefore the quality of the air we breathe, are often affected by calendar
events that are recorded based on national, local, and religious holidays and weekends. Calendar
effects are captured by a set of covariates, which identify the weekends and the main Italian holidays,
both religious and secular. Holidays are collected in a dummy variable named Holidays, while the
weekends are contained in a dummy variable named WeekEnd. Specific effects related to the behavior
of people can be observed when holidays coincide with the weekend; therefore, we considered two
terms of interaction between the two dummies. The interaction terms include those holidays that
fall on Saturday, denoted as Saturday:Holiday, and those on which they fall on Sunday, which is
Sunday:Holiday.

For a correct assessment of the effects of the traffic policy on pollutants concentrations in Milan,
it is necessary to purify the estimates from any external weather or socio-economic effects overlapping
with the policy and which may hence alter policy effects. This operation is accomplished by introducing
a counter-factual term into the models represented by the pollution levels observed in other cities
surrounding Milan. We considered seven important urban centres located in the Lombardy Po Valley
area, which show socio-demographic and economic characteristics and weather conditions similar
to Milan, but which cannot be directly affected by the limited traffic zone. These urban centres are
Bergamo (East), Brescia (far East), Cremona (far Southeast), Lodi (Southeast), Pavia (South), Saronno
(North) and Treviglio (East). As reported in Figure 3, the considered candidates cover a large territory
surrounding Milan in all the directions while maintaining a sufficient distance to be considered
independent in terms of traffic.
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Figure 3. Georeferentiation of counter-factual candidates. Geographical positioning of the counter-
factual candidates with respect to Milan.
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2.2. Methods: Average and Median Difference before and after the Policy

Figure 4 shows the temporal evolution of yearly average and median concentrations in the period
preceding and following the entry into force of the policy for each control units located in Milan.
According to the figure, starting from 2015, the city of Milan recorded a generalized reduction of
concentration levels especially in peripheral areas, such as Marche and Liguria. Observed mean values
for 2019 present a further reduction of concentrations rather apparently anomalous and significant.
The comparison between the levels of NOx and NO2 pairs for each station shows obvious common
trends between the two pollutants both considering the annual average and median values. Averages
and medians follow similar temporal patterns, but focusing on nitrogen oxides sensors, it is possible
to note that the medians are significantly smaller than the averages, highlighting the heavy-tailed
characteristic of the distribution (positive asymmetry) and the presence of extreme values. Following
these facts, an interesting question to investigate is if, and how much, the greater difference observed
in 2019 can be attributed to traffic restrictions, or if it is due to a general de-carbonization trend that
the city is experiencing, or to weather variations not considered yet.
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Figure 4. Pollutant levels in Milan (µg/m3). Observed concentrations levels of NOx and NO2 between
2014 and 2019 with yearly average and median values. Values are expressed as µg/m3.

Before investigating the factors and causes that may have generated these sharp reductions,
we perform a preliminary analysis of the concentration levels pre-and-post policy, in order to quantify
the changes observed in 2019 both in Milan and in the other centres. Since air quality data present
outliers and heavy-tail distributions given by extreme events, the only use of average values for
central tendency estimation can provide misleading results. Therefore, we compare the central values
obtained both considering the sample mean and the sample median, which is notoriously a more
robust indicator if outliers occur [26,27].

The comparison is performed through the computation of two statistics based on the difference
of central tendency indicators. The first statistic computes the difference between the average of the
observations gathered after the policy intervention and the average of observations referring to the
sub-period 2014–2018. The second statistics consists of computing the difference between median
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concentration levels observed in 2019 and before that year. The difference in average concentrations is
denoted by dAVG, whereas the difference in median concentrations is denoted as dMED. Since both
sub-periods are treated as independent of each other, from the statistical perspective, the statistics are
assimilable to unpaired samples statistics.

Both statistics use the observations collected between 25 February and 30 September of each
year, with a total length of 214 days. Approaches of this type can be framed in a context of
treatment-control analysis, in which the data referred to the year 2019 constitute the treatment
group, while the observations collected between 2014 and 2018 compose the control group. Control
data refer to a 5-year-period; therefore, the concentrations measured on the same calendar day
are aggregated into a single representative value calculated as the daily average concentration of
the period 2014 to 2018. Denoting as cij the observed pollutant concentration during the day j,
where j = 25 February, ..., 30 September, of the year i, where i = 2014, ..., 2018, the average for a generic

calendar day j is computed as cj =
∑2018

i=2014 cij
5 .

Let U = {uj, j = 1, 2, ..., 214} be the treatment observations and V = {vj, j = 1, 2, ..., 214} the
control observations, the difference of averages is defined as dAVG = AVG(U)− AVG(V) and the
difference of medians is calculated as dMED = MED(U)−MED(V), where AVG(.) is the temporal
sample mean and MED(.) is the temporal sample median.

2.3. Methods: Time Series Modeling Using a State Space Approach

In this section, we discuss the time series models used to identify the policy effect, the estimation
algorithms, and the related inference. Firstly, we introduce a brief description of the basic structural
model (BSM) using a state space approach for time series analysis and the estimation algorithm
based on the Kalman filter [28,29]. Then, we present a three-step procedure used to select the most
representative model in terms of predictive power and quality of fit. As a last step, we explain how the
policy intervention is included in the models and how it should be interpreted.

2.3.1. Basic Structural Model for Air Quality Data

According to their physical characteristics, air pollution concentrations time series are often
characterized by seasonality, high persistence [30,31], strong right skewness with uni-modal
distribution, and scale invariance [32]. Therefore, we analyze the concentrations using the basic
structural model [33,34] augmented by deterministic regressors for weather conditions and
socio-economic features.

BSM is defined as a simple unobservable components model composed by local linear trend
(LLT), stochastic seasonality, and irregular (white noise) component. LLT describes both the temporal
evolution of the series level and its slope, while the seasonal component aims to capture cyclical
behaviors given by natural and anthropogenic phenomena. We modeled the seasonal component
using a trigonometric form for daily data, hence with period s = 365, and considering only a few
harmonics given the very regular and almost deterministic behavior of the series. This fact avoids the
risk of a model over-parametrization.

Let {y1, y2, ..., yn} be the time series of the observed pollution concentrations in logarithmic scale,
the state space form of BSM without regressors is composed by the following equations:

yt = µt + γt + εt , (1)

where εt ∼ N(0, σ2
ε ) is the measurement error and

LLT (Level) : µt = µt−1 + βt−1 + ηt , ηt ∼WN(0, ση) , (2)

LLT (Slope) : βt = βt−1 + ζt , ζt ∼WN(0, σζ) , (3)
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Stochastic seasonality : γt =
k

∑
j=1

γj,t , (4)

where k ≤
⌊ s

2
⌋

is the number of included harmonics and γj,t is the non-stationary stochastic cycle[
γj,t
γ∗j,t

]
=

[
cos(2π j/s) sin(2π j/s)
−sin(2π j/s) cos(2π j/s)

] [
γj,t−1
γ∗j,t−1

]
+

[
ωj,t
ω∗j,t

]
, (5)

ωt ∼WN(0, σ2
ω) and ω∗t ∼WN(0, σ2

ω) are white-noise processes with mean zero and variance σ2
ω.

Equation (1) is called measurement equation and describes the evolution of the observed series
as the sum of the underlying components, while Equations (2), (3), and (4) are named transition
equations. Equations (2) and (3) compose the LLT and describe respectively the unobservable
processes of the level and the slope, whereas Equation (4) describes the trigonometric seasonality
evolution. Weather, socio-economic factors, and policy intervention will be included in the models
adding a set of deterministic components to the measurement Equation (1). Since the BSM with
Gaussian errors belongs to the class of Gaussian linear models, the estimation step has been
performed using the Kalman Filter algorithm, an iterative procedure, which allows estimating
simultaneously the unobservable components and the model’s parameters by maximizing the Gaussian
likelihood function.

When dealing with Gaussian linear state space models, the parameters estimated using a
maximum likelihood (ML) approach inherit the asymptotic properties of ML estimators [29]. The
distribution of the MLE is asymptotically approximated using a Gaussian distribution, which allows
deriving the usual asymptotic confidence intervals and t-tests for significance. Assuming a significance
level of 5%, the estimates are statistically significant if the standardized value lies outside of the interval
[−1.96,1.96], obtained using the quantiles of a Standard Normal distribution. Moreover, since the
dependent variable is expressed in logarithmic scale, the coefficients have to be interpreted as relative
increases or decreases in concentration levels due to a unitary increase in the explanatory variable.

2.3.2. Three-Step Model Selection

We now propose a three-step procedure for model selection, which considers multiple rules based
on cross-validation, information criteria, and stepwise regression. To avoid estimation bias due to the
policy introduction, all the steps are computed using only the observations before the introduction of
Area B that is, from 1 January 2014 to 24 February 2019.

Step 1 is designed for selecting the most predictive seasonal component, defined in Equation (4),
comparing different model specifications, which consider a varying number of harmonics k for the
trigonometric function. Specifically, we fit 10 alternative models for each station: in each of them, the
trigonometric seasonality is modeled by an increasing number of harmonics ranging from k = 1 to
k = 10. The use of an increasing number of sinusoids, in our case up to 10, allows the modeling of
complex seasonality with strong variations within short periods, but at the same time increases the
model complexity.

Once the seasonal component has been selected, step 2 introduces in Equation (1) a counter-factual
term xt able to capture weather and socio-economic factors common to the Po basin and affecting the
air quality of Milan. In our approach, the counter-factual candidates are the time series introduced
in Section 2.1.3 and which refer to the measurements of pollutant concentrations in seven important
cities around Milan. The new measurement Equation can be written as follows:

yt = µt + γt + θxt + εt , (6)

where xt is the logarithm of the counter-factual time series and θ is its coefficient, µt follows
Equations (2) and (3), and γt follows the specification obtained by step 1. The expected sign of
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θ is positive: higher levels of air pollution should correspond to high values in nearby cities due to
similar conditions.

In step 3, we identify the best subset of calendar events and weather covariates, capturing
residual variations not yet covered by the counter-factual or by the latent components. These residual
variations are estimated by the smoothed observation disturbances from Equation (6) that is ε̂t,
and describe residual patterns that have not been explained by the persistence of series, the seasonality
or characteristics common to nearby territories of the region.

Relevant weather and calendar covariates are selected through a backward-forward stepwise
regression algorithm, which uses as a starting model the auxiliary linear regression expressed in
Equation (7). The equation represents the full model which sets up the smoothed observation errors ε̂t

as dependent variable and the weather conditions and calendar events as covariates:

ε̂t = τ1Holidays + τ2WeekEnd + τ3Saturday : Holidays + τ4Sunday : Holidays

+ τ5Temperature + τ6Rain f all + τ7Radiation + τ8Humidity

+ τ9WindSpeedQNE + τ10WindSpeedQNW + τ11WindSpeedQSW + τ12WindSpeedQSE

+ et ,

(7)

The stepwise regression is set up twice for each station: in one case, it selects the model according
to the Akaike’s Information Criterion (AIC), while, in the other, it uses the Bayesian Information
Criterion (BIC). The algorithm starts estimating the full model and computes the AIC or the BIC.
Iteratively, it drops out the predictors one at a time; at each step, it computes the new information
criterion and considers whether the criterion is improved by adding back in a variable removed at a
previous step. The procedure ends when the reintroduction of each omitted variable does not improve
the information criteria.

In the first two steps, we select the seasonal component and the counter-factual term by fitting and
comparing alternative models based on Equations from (1) to (4) according to their predictive power
and their ability to adapt adequately to the observed data. The first principle, which tests the predictive
power of the models, relies on the minimization of the cross-validated mean square forecasting error
(MSFE) evaluated for up to 10-step-ahead forecast horizon, that is, ŷt+h ∀ h = 1, 2, ..., 10, while
the second compares the models in terms of estimation quality. The latter computes both corrected
Akaike’s Information Criteria (AICc) and BIC intending to select the model that minimizes both. To
identify a unique model for all the stations located in Milan, we proceed to a global comparison, both
graphical and analytical, of the two blocks of indicators, giving attention to the overall performances
and not focusing only on individual outputs.

According to the cross-validation principle for time series [35,36], we split the full time series
into two subsets: a training set for model estimation and a test set for evaluating the out-of-sample
forecast performances. The training set includes all the measurements until 24 February 2018, while
the test set contains observations relative to the sub-period 25 February 2018–24 February 2019, for a
total count of 365 out-of-sample observations. The exclusion of observations after the start of the traffic
restrictions makes it possible to obtain unbiased estimates of the policy effects avoiding overlapping
with other unidentified factors. Before starting the iterative loop, the model to evaluate is estimated
just on time using the observations included in the original training set. At the end of the estimation,
the cross-validation algorithm is iteratively implemented as follows. For each iteration, the algorithm
extracts the first ten observations available in the test set, generating a forecasting set, and computes
three quantities: the 1-to-10 step-ahead forecasts that is ŷt+h ∀ h = 1, ..., 10, the forecast errors
ŷt+h − yt+h and the quadratic forecast errors (ŷt+h − yt+h)

2. The first out-of-sample observation is
discarded and the set of forecasting observations is updated right-shifting the forecast horizon by 1
unit and adding the new observation. These operations are repeated for a number of times equal to
the length of the test set, in our cases 365 times. The algorithm returns the output of 365 different
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sequences of 1–10 step-ahead forecasts; for each step-ahead h = 1, 2, ..., 10, the MSFE is calculated as

MSFE(h) =
∑365

j=1 (ŷt+h−yt+h)
2

365 .

2.3.3. Policy Intervention Analysis

The introduction of new rules or limitations to individual behaviors can lead to the co-existence
of multiple effects with different structure, such as simultaneous immediate changes and adaptive
changes that take a long time before visible effects occur. Take into consideration that this fact leads
to implement intervention analysis, which includes both permanent and transitory effects. Further
details and examples of ARMA-like transfer function applied to intervention analysis are available in
Pelagatti ([29]).

The policy intervention is modeled through the combination of two individual effects: (1) a
permanent effect, estimated by δ1 that measures the level shift of pollutant concentrations given by
the treatment and modeled as a step dummy, which is D1t, which assumes a value equal to 1 starting
from 25 February 2019; (2) a transitory effect, estimated by δ0 and evolving according to a first-order
difference dynamics of the type

wt = λwt−1 + δ0D2,t, (8)

where D2,t is a impulse dummy, which assumes value equal 1 for 25 February 2019 and 0 otherwise
and λ measures the persistence of the transitory effect. The sum of the two effects returns the total
effect, which expresses the estimated overall reduction or increase in air pollutant levels generated
by the policy. The measurement equation after the three-step model selection and augmented by the
policy intervention is eventually expressed as follows:

yt = µt + γt + θxt + ZtΦ + δ1D1t + wt + εt , (9)

where yt is the logarithm of pollution concentrations in one of the stations in Milan, xt is the logarithm
of pollution concentrations in the optimal counter-factual station, µt is the LLT evolving according
to Equations (2) and (3), γt is the optimal seasonal component selected in step one, Zt is a matrix
containing the set of optimal subset of weather and calendar covariates selected in step 3, and Φ is the
associate vector of coefficients.

2.3.4. Software

All the statistical computations and figures have been carried out using the statistical software
R [37]. For state space models estimation, the KFAS package [38] was used. Cross-validation,
forecasting, and model selection codes have been developed by the authors. The graphic elaborations
were obtained by using the packages ggplot2 [39] and sf [40].

3. Results

In this section, we present and comment on the empirical results relating both to the differences
between pre-and-post policy averages and medians and to the policy intervention analysis for the
Milan Area B case study. Section 3.1 shows the variations in concentration levels of NOx and NO2

for all the stations installed in Milan and for the other seven cities around it. Section 3.2 presents
the model selection results, the values of the selection criteria, and the final model specifications.
Section 3.3 reports the empirical estimates of the policy effects obtained through the basic structural
model augmented by the policy intervention.

3.1. Average and Median Differences

Empirical differences of concentrations levels for all the considered stations are presented in
Table 1. For both nitrogen oxides and nitrogen dioxide, using the difference of mean and median
respectively, it reports the estimates of the difference between the average (the median) concentrations
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for the year 2019 and the average (the median) concentrations of the same period for the years
2014–2018.

Table 1. Differences between the average concentration level of the sub-period 2014–2018 and the
treatment period 2019. Differences are expressed in µg/m3.

Station Name Nitrogen Oxides Nitrogen Dioxide
dAVG dMED dAVG dMED

Milano city stations
Città Studi 0.94 −0.43 −2.63 −4.26

Liguria −25.59 −26.91 −19.49 −20.71
Marche −17.29 −22.00 −11.53 −13.37
Senato −14.99 −13.84 −10.46 −9.73

Verziere −2.66 −5.00 −4.35 −5.78

Other urban centres in Lombardy
Bergamo −11.56 −8.90 −5.11 −4.07
Brescia −4.61 −6.39 −3.46 −4.12

Cremona 3.47 1.10 1.53 0.85
Lodi −5.99 −7.62 -1.85 −2.57
Pavia −14.75 −17.77 −7.75 −9.28

Saronno −7.96 −7.84 −8.66 −8.87
Treviglio 0.06 −3.71 2.25 0.39

The estimates highlight large negative differences in oxides concentrations between 2019 and the
period 2014–2018, both in the metropolitan area of Milan and in almost all the surrounding towns.
Particularly heavy reductions, and similar to those in Milan, were recorded in the cities of Bergamo
(East) and Pavia (South). The simultaneous abatement inside and outside Milan confirms the presence
of a general decreasing trend in the aggregate levels of pollutants for the Lombardy Po basin as already
indicated by the previous figures.

The differences registered in Milan are relevant both in suburban districts, such as the stations
Liguria (West) and Marche (North), and in the historical centre at the Senato station. For those
monitoring stations, the reductions are larger than 16 µg/m3 for NOx and 10 µg/m3 for NO2. In general,
the differences between the averages and between the medians are quite similar, but in many stations,
the reductions for the medians are stronger than the average differences. This fact is related to the
skewed and non-symmetric characteristics of the distribution involved, as shown also in Figure 4.
The above considerations on average and median pollution abatement are valid for both pollutants,
in fact, the stations where the greatest differences are recorded for nitrogen oxides are the same for
nitrogen dioxide.

These preliminary results do not allow for identifying the causes of the reductions and to state if
they depend on common causes related to the environment and climatic factors or if they have been
generated by the introduction of the new policy in Milan. The next section will attempt to investigate
the variations through the modeling of possible environmental and anthropogenic factors able to
influence the air quality of the city.

3.2. Model Selection

3.2.1. Step 1: Detection of the Seasonal Components

Results relative to the first step of model selection are summarized in Figures 5 and 6, which show
the evaluation criteria for all the stations. For each station, the plots are organized in paired-panels; the
left panel represents the 10-steps-ahead MSFE as a function of the forecast horizon and the number
of harmonics modeling the seasonality (scale colour); the right panel shows the AICc–BIC pairs for
each model. The optimal number of harmonics to model the seasonality is identified as the one that
evaluates the minimum pair of AICc and BIC and returns the lowest MSFE curve. Both the estimates
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for NOx and NO2 for the city of Milan agree unanimously in the selection of the model in which the
seasonality is composed by a single harmonic (k = 1); therefore, it can be rewritten as

Optimal seasonal : γt = γ1,t , (10)

where γ1,t is [
γ1,t
γ∗1,t

]
=

[
cos(2π/365) sin(2π/365)
−sin(2π/365) cos(2π/365)

] [
γ1,t
γ∗1,t

]
+

[
ω1,t
ω∗1,t

]
, (11)

ωt ∼WN(0, σ2
ω) and ω∗t ∼WN(0, σ2

ω).
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Step 1: Cross−Validation seasonal harmonics for nitrogen oxides

Figure 5. Model selection-Step 1-NOx. Seasonal component selection for the five nitrogen oxides
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics.
Right panel: AICc and BIC pairs for each model.



Int. J. Environ. Res. Public Health 2019, 17, 1088 14 of 22

0.050

0.075

0.100

0.125

0.150

2.5 5.0 7.5 10.0
Horizon

M
S

F
E

Marche

●●

●

●

●

●

●

●

●

●

−520

−500

−480

−460

−440

−420

−540 −520 −500 −480 −460 −440
AICc

B
IC

Marche

0.10

0.15

0.20

0.25

0.30

2.5 5.0 7.5 10.0
Horizon

M
S

F
E

Città Studi

●
●

●

●

●

●

●

●

●

●

875

900

925

950

850 875 900 925
AICc

B
IC

Città Studi

0.10

0.15

0.20

0.25

0.30

2.5 5.0 7.5 10.0
Horizon

M
S

F
E

Liguria

●
●

●

●

●

●

●

●

●

●

325

350

375

400

300 330 360
AICc

B
IC

Liguria

0.25

0.50

0.75

2.5 5.0 7.5 10.0
Horizon

M
S

F
E

Verziere

●

●●

●

●

●

●

●

●

●

200

300

400

500

600

200 300 400 500
AICc

B
IC

Verziere

0.2

0.4

0.6

2.5 5.0 7.5 10.0
Horizon

M
S

F
E

Senato

●
●●

●

●

●

●

●

●

●

−300

−200

−100

0

100

−300 −200 −100 0
AICc

B
IC

Senato

Harmonics
harm_1

harm_2

harm_3

harm_4

harm_5

harm_6

harm_7

harm_8

harm_9

harm_10

Step 1: Cross−Validation seasonal harmonics for nitrogen dioxide

Figure 6. Model selection-Step 1-NO2. Seasonal component selection for the 5 nitrogen dioxide stations
in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the number of harmonics. Right
panel: AICc and BIC pairs for each model.

3.2.2. Step 2: Detection of the Counter-Factual Component

After selecting the seasonal component, we proceed to the selection of the counter-factual term.
Estimates are summarized in Figures 7 and 8, which show the results for NOx and NO2. The plots
are graphically organized like those related to step one, with the difference that the MSFEs and the
AICc-BIC pairs are functions of one of the seven counter-factual candidates instead of the number of
harmonics. The selection criteria follow the same rules used for the previous step.

The search for the optimal counter-factual term requires greater attention and detail than in the
previous step as the minimizers are not unique. According to the plots, there is a restricted set of
stations that are good candidates for the counter-factual role. The set includes the following cities:
Treviglio, Pavia, Saronno, and Cremona. In particular, Pavia’s station achieves one of the best forecast
and fitting performances for almost all the stations in Area B for both NO2 and NOx. Based on this
last consideration, we select as the counter-factual term for future models the air quality monitoring
station of Pavia, located South to Milan. Therefore, the final specification of the basic structural model
will include as counter-factual term the logarithm of the concentrations in Pavia, xt = log(Paviat).
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Figure 7. Model selection-Step 2-NOx. Counter-factual term selection for the five nitrogen oxides
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right
panel: AICc and BIC pairs for each model.
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Figure 8. Model selection-Step 2-NO2. Counter-factual term selection for the five nitrogen dioxide
stations in Milan. Left panel: 10-steps-ahead MSFE in log-scale as function of the candidate. Right
panel: AICc and BIC pairs for each model.
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3.2.3. Step 3: Detection of the Weather and Calendar Factors

The last step of model selection aims to select the optimal subset of local weather and calendar
regressors after having selected the optimal unobservable components, common weather, and
socio-economic factors, captured by the counter-factual. For each station and pollutant, the best
models are reported in Tables 2 and 3.

Table 2. Model selection-Step 3-NOx: Best subset of covariates using backward-forward
stepwise algorithms for NOx.

Marche Verziere Senato Liguria Citta Studi

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Holidays X X X X X X X X X X

Week-End X X X X X X X X X X

Saturday:Holidays X X X X X

Sunday:Holidays X X X X X X X X X X

Wind speed QNE

Wind speed QSE X

Wind speed QSW X X X X X X X X X X

Wind speed QNW X X X X X X

Temperature

Rainfall X X X X

Global radiation X X

Humidity

Note: symbol Xindicates that the regressor is selected within the best subset of covariates.

Table 3. Model selection-Step 3-NO2: Best subset of covariates using backward-forward
stepwise algorithms for NO2.

Marche Verziere Senato Liguria Citta Studi

AIC BIC AIC BIC AIC BIC AIC BIC AIC BIC

Holidays X X X X X X X X X X

Week-End X X X X X X X X X X

Saturday:Holidays X X X X X X
Sunday:Holidays X X X X X X X X X

Wind speed QNE

Wind speed QSE

Wind speed QSW X X X X X X X X X X

Wind speed QNW X X
Temperature

Rainfall X X

Global radiation X X X X

Humidity X X

Note: symbol Xindicates that the regressor is selected within the best subset of covariates.

As expected, BIC-based models, being more parsimonious, retain fewer covariates than AIC-based
models. Following this fact, we will use the BIC-selected models, but we now discuss some details
about the selection process. Concerning the calendar, both criteria include in almost all cases the
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holidays, week-end, and Sunday holidays effects. AIC suggests adding also the interaction term
between Sunday and holidays. Even if the interaction between Saturday and holidays is not always
included, the final model will take into account the full set of calendar events and their interactions.

Regarding weather covariates, except for the wind speed, none of the others is included within
the final models. Winds blowing from Southwest (QSW) are always selected and those coming from
Northwest (QNW) are often included, and hence kept in the final model. Moreover, temperature,
rainfall, solar radiation, and humidity are considered only by the AIC. This fact can be explained by
the presence of the counter-factual, which captures not only common characteristics in terms of human
behaviour and air quality conditions but also homogeneous climatic conditions common to all the
areas considered.

3.2.4. Final Model Specification

Based on the results of the three-step model selection procedure, the final specification of the BSM
augmented by the policy intervention can be expressed using the following model:

Measurement : yt = µt + γt + θxt + φ1Holidays + φ2WeekEnd

+ φ3Saturday : Holidays + φ4Sunday : Holidays

+ φ5WindSpeedQSW + φ6WindSpeedQNW

+ δ1D1t + wt + εt ,

(12)

where εt ∼ N(0, σ2
ε )

Seasonal component : γt = γ1,t , (13)

Level : µt = µt−1 + βt−1 + ηt ηt ∼WN(0, σ2
η) , (14)

Slope : βt = βt−1 + ζt ζt ∼WN(0, σ2
ζ ) , (15)

Transitory policy : wt = λwt−1 + δ0D2,t , (16)

where yt is the logarithm of pollution concentrations in one of the stations located in Milan and
xt = log(Paviat) is the logarithm of pollution concentrations in Pavia.

3.3. Basic Structural Model and Policy Intervention

In this section, we show the numerical results obtained using state space modeling to estimate
both permanent and transitory effects generated by the introduction of Area B controlling for local
weather conditions, anthropogenic effects, and common areal trends.

The maximum likelihood estimates of the coefficients and the components’ variances for the five
air quality monitoring stations installed in Milan are reported in Tables 4 and 5. The results appear
to be coherent both for nitrogen oxides and nitrogen dioxide. First, the models identify statistically
significant and positive coefficients for the counter-factual term, highlighting its capability to capture
socio-economic and climatic factors common to neighbouring areas and coherent with the expected
sign. Second, weekends and holidays exert a negative effect on concentration levels probably due to
the reduction in the movements and productive activities of the city in those days. Their interactions
are almost everywhere not statistically significant but with a positive sign and always less than the
sum of the individual effects of the weekend and holidays. This fact underlines how the holiday
weekends enjoy more contained effects of emission reductions compared to generic weekends of the
year. Third, as to be expected, winds blowing from the West (QSW and QNW) greatly reduce the amount
of pollutants all over the city with peaks over 40% to 50%.
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Table 4. ML estimates of BSM parameters and variances for NOx.

Parameter Marche Citta Studi Liguria Verziere Senato

log(Pavia) θ 0.51 ∗∗∗ 0.93 ∗∗∗ 0.73 ∗∗∗ 0.66 ∗∗∗ 0.57 ∗∗∗

(0.01) (0.02) (0.02) 0.02 (0.01)
Holidays φ1 −0.06 ∗∗∗ −0.02 −0.05 ∗ −0.10 ∗∗∗ −0.09 ∗∗∗

(0.03) (0.04) (0.03) (0.03) (0.03)
WeekEnd φ2 −0.11 ∗∗∗ −0.09 ∗∗∗ −0.09 ∗∗∗ −0.17 ∗∗∗ −0.15 ∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.01)
Saturday:Holidays φ3 0.10 0.17 0.04 0.10 0.14 ∗∗∗

(0.08) (0.13) (0.10) (0.14) (0.05)
Sunday:Holidays φ4 0.09 ∗∗ 0.09 0.12 ∗ 0.08 0.10 ∗∗∗

(0.05) (0.08) (0.06) (0.05) (0.03)
WindSpeed QSW φ5 −0.44 ∗∗∗ −0.20 ∗∗∗ −0.56 ∗∗∗ −0.30 ∗∗∗ −0.27 ∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.01)
WindSpeed QNW φ6 −0.31v∗∗∗ −0.27 ∗∗∗ −0.12 ∗∗∗ −0.20 ∗∗∗ −0.12 ∗∗∗

(0.01) (0.02) (0.01) (0.01) (0.01)

Level variance σ2
η 0.0047 0.0065 0.0037 0.0038 0.0027

Slope variance σ2
ζ 0.0000 0.0000 0.0000 0.0000 0.0000

Seasonality variance σ2
ω 0.0000 0.0000 0.0000 0.0000 0.0000

Error variance σ2
ε 0.0298 0.0745 0.0437 0.0370 0.0308

Note 1: values in parenthesis are standard errors. Note 2: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

Table 5. ML estimates of BSM parameters and variances for NO2.

Parameter Marche Citta Studi Liguria Verziere Senato

log(Pavia) θ 0.36 ∗∗∗ 0.85 ∗∗∗ 0.69 ∗∗∗ 0.65 ∗∗∗ 0.55 ∗∗∗

(0.01) (0.02) (0.02) (0.02) (0.01)
Holidays φ1 −0.06 ∗∗∗ −0.08 ∗∗∗ −0.08 ∗∗∗ −0.10 ∗∗∗ −0.08 ∗∗

(0.02) (0.03) (0.02) (0.02) (0.03)
Week-end φ2 −0.06 ∗∗∗ −0.10 ∗∗∗ −0.09 ∗∗∗ −0.14 ∗∗∗ −0.11 ∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
Saturday:Holidays φ3 0.06 0.18 ∗∗∗ 0.06 0.14 ∗∗ −0.09 ∗∗∗

(0.05) (0.08) 0.07 (0.06) (0.02)
Sunday:Holidays φ4 0.08 ∗∗∗ 0.11 ∗∗∗ 0.11 ∗∗∗ 0.06 0.10 ∗∗∗

(0.03) (0.05) (0.04) (0.03) (0.03)
WindSpeed QSW φ5 −0.35 ∗∗∗ −0.13 ∗∗∗ −0.42 ∗∗∗ −0.23 ∗∗∗ −0.18 ∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)
WindSpeed QNW φ6 −0.17 ∗∗∗ −0.16 ∗∗∗ −0.08 ∗∗∗ −0.13 ∗∗∗ −0.08 ∗∗∗

(0.01) (0.01) (0.01) (0.01) (0.01)

Level variance σ2
η 0.0051 0.0065 0.0046 0.0044 0.0024

Slope variance σ2
ζ 0.0000 0.0000 0.0000 0.0000 0.0000

Seasonality variance σ2
ω 0.0000 0.0000 0.0000 0.0000 0.0000

Errors variance σ2
ε 0.0093 0.0282 0.0182 0.0154 0.0114

Note 1: values in parenthesis are standard errors. Note 2: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.

The short-term impacts adjusted for common anthropic and weather factors are summarized in
Table 6, which shows the estimated permanent and transitory effects for each station in Milan expressed
in logarithmic scale, hence interpretable as relative variations in concentrations levels. None of these
two coefficients identifies an improvement of the considered pollutant concentrations. Moreover, the
permanent effect (δ1) is always positive and in some cases moderately statistically significant. This
means that, compared to the generally decreasing areal trend, Milan air quality went worst. It is worth
observing that the most significant results are obtained at the Senato station, which is located in the
already existing Area C, hence already subject to some car traffic restrictions.
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Such a result could be justified by the presence of multiple causes. As a first justification, we are
approaching the initial phase of a progressive policy and the time elapsed since its outset may be too
short to assess any significant impacts on pollutant levels. This fact is consistent with the forecasts
expected by the municipality of Milan about the reductions in nitrogen oxide levels; in fact, the first
significant reductions should be observed starting from 2022 [11]. Furthermore, since we are dealing
with limitations to human behavior and social perception of new norms, it is not always clear how
agents adapt to changes. The deterioration in the air quality of the centre could be linked to new traffic
congestions in that area or to a panic shock of drivers, who need time to understand the functioning
of the restrictions and adapt their behavior, exactly as in situations mismanagement of individual
and organizational changes [41,42]. Eventually, the recent climate changes and the extreme weather
conditions that affected the Po valley, such as temperatures higher than the seasonal average and
extreme atmospheric events, could increase the noise present in the data and thus mask the real
repercussions of the limitations.

Table 6. Estimated permanent and transitory effects in log scale on NOx and NO2 for each station.

Stations Effect
Nitrogen Oxides Nitrogen Dioxide

Estimate S.E. t-Statistic Estimate S.E. t-Statistic

Senato Perm. eff. δ1 0.38 0.19 2.03 ∗∗ 0.29 0.12 2.40 ∗∗

Trans. eff. δ0 −0.12 0.16 −0.76 −0.14 0.11 −1.25

Verziere Perm. eff. δ1 0.26 0.21 1.27 0.22 0.15 1.50
Trans. eff. δ0 −0.01 0.18 −0.05 −0.06 0.14 −0.40

Liguria Perm. eff. δ1 0.12 0.22 0.54 0.20 0.16 1.25
Trans. eff. δ0 −0.02 0.19 −0.10 −0.10 0.15 −0.67

Marche Perm. eff. δ1 0.15 0.19 0.80 0.23 0.13 1.82 ∗

Trans. eff. δ0 −0.11 0.17 −0.63 −0.19 0.13 1.56

Citta Studi Perm. eff. δ1 0.35 0.29 1.19 0.25 0.19 1.30
Trans. eff. δ0 0.08 0.25 0.30 0.02 0.18 0.10

Note 1: ∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4. Conclusions

This paper analyzed the early-stage effects on air quality of the new traffic policy in Milan, the
so-called Area B. The concentrations of nitrogen oxides (NOx) and nitrogen dioxide (NO2), which are
mainly primary pollutants, have been considered as proxies of pollution emissions.

The first hypothesis in the introduction inquires about the presence of a significant effect on the
air quality of the city. As a first point, the preliminary results show that concentrations during spring
and summer 2019 are lower than during the same seasons in the previous five years, hinting for a
reduction effect due to the policy. On the other side, a similar reducing trend has been observed in
various neighbouring cities around Milan, which belong to a homogeneous meteorological, social,
and economical cluster within the Po valley. Their similar behavior is used here as an areal common
trend capturing both weather and anthropogenic components. Our approach, which adjusts for local
weather conditions and the areal common trend, does not provide a further reduction effect for any
station comparing to this trend. Instead, in Senato station, which is inside the historical city centre and
was already covered by Area C, the estimates provide a strong, but moderately statistically significant,
increase for both considered pollutants. This is coherent with the fact that the restriction introduced is
very limited as it concerns just some classes of old vehicles, which are a small percentage of the entire
vehicle pool, both in terms of number of cars and emissions.

Since the first research hypothesis is confirmed just to a minor extent and with an opposite sign
with respect to what was expected, the second research hypothesis, concerning the homogeneity of the
possible effects, assumes now only a technical scope. It is confirmed just for what concerns the positive
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direction of the changes, but not for their significance. In fact, among all the estimated permanent
effects, only Senato station is significant at 5%. Moreover, the estimated transitory effects are always
not significant at any confidence level.

The above facts hint that, compared to the common trend of the considered area, Milan air quality
is improving slowly, and, in this sense, the first phase of Area B seems to have a negative effect on air
quality. Due to the limited scope of this first phase and its progressiveness, it is not unexpected to find
a limited or a zero effect. Nonetheless, the negative effect needs some more explanations.

Although finding the ultimate motivation for this is not the aim of this paper, a discussion follows.
Firstly, the statistically significant increase found is limited in space and is located inside the previously
introduced restricted Area C. It may be possible that this further restriction increased congestion of
public transport buses, which are often very old vehicles, or to the aforementioned adaptation shocks.
This could explain only a part of the results. In fact, this first point is also related to the other sources
of nitrogen oxides. According to INEMAR [25], road traffic is about 68% of the total emissions. Hence,
a transition to house heating green techniques slower in Milan comparing the other considered cities
could have an influence on this result. Moreover, also the other stations experienced a comparative
deterioration of air quality and the second-worst station is Città Studi, which is an urban background
station, hence with limited relation to local traffic congestion. Second, the increase due to road traffic
may have temporal dynamics. Since the traffic restriction is limited to business hours, there may be an
increase in congestion early in the morning and in the late evening, affecting the daily average.

In conclusion, although environmental protection policies are in general a fundamental step for
sustainability improvement, in some cases, they may not be sufficient or their implementation may be
misleading. In our case, we considered only the early-stage of a policy, which is progressive in time.
Hence, the results of this paper may be regarded as physiological, provided that they characterize only
the initial part of the policy implementation and are improved soon. It follows a recommendation to
the municipal government to develop the policy more strongly.

Additional research could be developed in the future. In particular, the effect on traffic congestion
inside Area C could be investigated further using historical data related to the vehicle movements
crossing the access points. Moreover, the use of a multivariate approach, which includes other
pollutants such as PM10 and PM2.5, and spatio-temporal modeling could highlight hidden effects,
which are not visible considering the single stations. Eventually, the extension to hourly data could
consider both the presence of intra-daily effects and explaining the spatial dynamics related to traffic.
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