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Abstract: As immediate loading protocols are becoming more frequent, the primary stability of
implants has become an essential criterion for the osseointegration of dental implants. Based on this,
the objective of this study was to understand the influence of different undersized surgical preparation
sites on the insertion torque (IT) and implant stability quotient (ISQ). Four different site-preparation
protocols were performed on fresh humid type III bovine bone: one control, the standard protocol
recommended by the manufacturer (P1), and three variations of undersized techniques (P2, P3 and
P4). The implant used was VEGA by Klockner Implant System. The sample size was n = 40 for
each of the four groups. A torquemeter was used to measure the IT, and the ISQ was measured
with a Penguin RFA. Both variables showed a tendency to increase as the preparation technique was
reduced, although not all the values were statistically significant (p < 0.05) when comparing with the
standard preparation. The preparations without a cortical drill, P2 and P4, showed better results
than those with a cortical drill. Given the limitations of this study, it can be concluded that reducing
the implant preparation can increase both the IT and ISQ. Removing the cortical drill is an effective
method for increasing implant stability, although it should be used carefully.

Keywords: dental implant; underpreparation; implant preparation; implant stability; insertion
torque; ISQ; RFA

1. Introduction

The primary stability of dental implants is a key element in obtaining successful osseointegration [1].
It is described as the frictional force of contact between the implant surface and the drill bone preparation
after its insertion [2]; it is a mechanical concept. Clinically, it is defined as the non-existence of mobility,
where the implant stays in the desired final position. The absence of mobility is an important mechanical
prerequisite, because implant micromovements greater than 150 µm [3] may generate fibrointegration
and induce implant failure [4]. Recent research showed that primary stability could be affected by
several factors: the macro-implant design, bone quality, implant size, osseous morphology of the
surgical site, drilling protocol technique [5] or surgeon’s skills.

Primary stability was initially evaluated using invasive methods, such as assessing the insertion
and disinsertion torque of the implant with a torque gauge or torque wrench during implant insertion [6].
Another noninvasive method, resonance frequency analysis (RFA), was also employed because of
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its reliably, repeatability and relation with micromovements [7–10]. However, both techniques were
confirmed to analyze different mechanical aspects of the implant stability concept [11]. The first
method, assessing the insertion torque (IT), evaluates the resistance to a rotational force against the
implant when it is inserted into the drill bone preparation [12]. Each implant manufacturer has their
own recommendations about the maximum insertion torque values that are supported by implants.

The RFA system was developed by Meredith in 1996 [13]. This methodology is based on a
frequency signal transmitted to a screwed transducer, which produces the vibration of the implant.
The RFA is expressed on the centesimal Implant Stability Quotient scale (ISQ), a frequency scale in kHz
units ranging from 1 to 100. The greater the stability, the greater the ISQ value [14]. The RFA system is
used to measure implant stability as a function of the stiffness of the bone-implant relationship [15].
There is no stability evaluation system that has been demonstrated as the gold standard, with both
insertion-torque assessment and RFA being widely used in clinical practice and in many studies [16].
Therefore, the primary stability allows the osseointegration of the implant and bone formation around
its surface, strengthening the bone-to-implant contact to provide the secondary stability or biological
stability of the implant [17].

Primary stability is considered a prerequisite for the long-term success of immediate or early
loading implants [18], and certain clinical factors can limit it [19]. The mechanical force resistance of
bone, directly related to its quality, is a determining prognostic factor for the success of implant survival,
and one of the essential factors for achieving osseointegration [20]. Poor bone quality, such as type III
or IV (of Lekholm and Zarb in 1985) [3], describes a bone volume mainly made up of cancellous bone,
with a thin cortical layer. This low-density bone could reduce the success of implant osseointegration
in immediate implants or immediate loading protocols [21].

Some authors refer to the clinician’s ability to adjust the surgical technique according to their
experience, during the surgical procedure of implant placement, as an important factor for implant
stability [22,23].

Several modifications of surgical techniques have been proposed to improve the success of
implants located in areas of low bone density [24], aiming to increase the stability after insertion.
The proposed techniques are under-drilling or preparation with drills with a diameter smaller than the
diameter of the implant, bone condensation or bi-cortical fixation [25].

There are some factors that determine the ideal surgical technique: osteotomy drill preparation,
adequate initial implant stability, and avoiding excessive heating or compressive trauma [6].
Primary stability is achieved through mechanical interlocking between the implant and the bone wall
of the osteotomy [4].

The proper final osteotomy dimension should be determined based on the bone characteristics
via so-called adapted drilling; that is, when selecting the final osteotomy dimension, a different degree
of bone compression and primary stability at implant placement can be obtained [26].

To achieve higher values of primary stability, some studies recommend under-drilling or lower
dimensions. Depending on the bone characteristics at the planned implant position, an adaptive
drilling procedure can be chosen to optimize implant stability [24].

Some studies recommend undersized drilling techniques with the use of a final drill with a smaller
diameter (than that recommended in the drilling sequence by the implant manufacturer) than the one
corresponding to the implant diameter, to locally optimize bone density, which subsequently improves
primary stability at sites with poor bone quality [27].

Others authors propose bone condensation by the use of “condensers” after the pilot drill,
to displace the bone into the periphery [5], while others have studied the effect of implant bed
preparation without profiling and tapping, with controversial results regarding the resulting bone
implant contact [23,28].

The aim of this study was to compare different site preparation techniques and evaluate the
influence on implant stability according to the insertion torque and ISQ values from resonance
frequency analysis.
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2. Materials and Methods

In this study, fresh bovine kneecaps wide in diameter were used, which are classified as type III
in terms of bone density according to the classification of Lekholm and Zarb, owing to their minor
portion of cortical bone and greater medullar proportion [29].

The implant used was the VEGA implant from the Klockner Implant System (SOADCO S.L.,
Andorra). It is a bone-level-type implant, for use with the switching platform concept, and therefore
a two-piece implant with a transepithelial abutment that is connected to the implant by a morse
cone-type connection.

The implants used were 3.5 and 4.0 mm in diameter and both 10 mm in length. The surface used
was shot blasted with alumina particles and acid passivate, with a roughness (Ra) of 1.30 ± 0.23 µm.

N Query Advisor v4.0 was used to calculate the number of samples based on the study of
Herrero-Climent (2012 and 2013). The calculated sample size was n = 18 for p < 0.05, but the authors
decided to increase it to n = 40, looking for statistical significance. An ethics committee was not
necessary, as it was an in vitro study with fresh bovine bone [7,30].

All the procedures were performed in a room at 22 ◦C. The bone fragments to be used were kept
for one hour at room temperature before the procedure once removed from the refrigerator where they
were stored.

The implant sites were placed by a single investigator, a surgeon with more than five years’
experience and a broad knowledge of the Klockner Implant System. With the goal of simulating
the usual clinical situation, the preparation was performed with an electronic surgical unit (W&H)
Dentalwerk, Austria) with physiological serum stored at a temperature of 6 ◦C.

2.1. Implant Stability Measurements

Two variables were measured in order to evaluate implant stability: the resonance frequency
and insertion torque (IT). Once the bone sites were prepared for the implants, the latter were
inserted mechanically, using the surgical unit, up to half their length. A torquemeter, Tohnichi—
ATG6C (Tohnichi Mfg. Co Ltd., Tokyo, Japan), was used to insert the rest of the body at the implant
site, and then, the final insertion torque was measured.

The measurements of resonance frequency were performed with the Penguin RFA
(Integration Diagnostics, Gothenburg, Sweden). For the RFA values, recorded as ISQ (implant stability
quotient) values, two perpendicular measurements were registered. For RFA registration with the
Penguin RFA system, a transducer element (MultiPeg) had to be connected to the implant, this being
specific for each of the implants to be registered. The two RFA measurements to be performed on each
implant were perpendicular to each other. They were performed according to the manufacturer’s
suggested technique, bringing the probe perpendicular to the MultiPeg until the warning sound for
the registration was perceived. Subsequently, the average value obtained for the two measurements of
each implant was considered as the ISQ value. For the VEGA 3.5 mm diameter implant, the MultiPeg
used was number 57, ref. 55065, and for the VEGA 4.0 mm, the number was 26, ref. 55034.

2.2. Implant Site Preparation

Four different types of implant site preparations were performed (Figure 1): one was the control
group (P1), and the others were different variations of implant site underpreparation (P2, P3 and P4).
Therefore, the implant surface in contact with the bone differed depending on the type of preparation.
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Figure 1. P1, P2, P3 and P4 site preparation sequence for 3.5 mm diameter.

2.3. Study Groups

- P1—Recommend by the company—control group.
- P2—The same as P1 excluding the cortical drill (ref nº 10 02 04).
- P3—Horizontal undersized preparation technique that did not include the last full-length drill

(ref nº 10 02 05 T/10 02 05 LT) but included the cortical one.
- P4—Horizontal undersized preparation technique like P3 but excluding the cortical drill (ref nº

18 02 04).

The implant sites were prepared in such a way that they should have been 1.0 mm subcrestal
once inserted.

The preparation sequence proposed by the manufacturer is (Figure 1, first sequence):

- Lanceolate drill for the first 6 mm of preparation or decortication (ref nº 10 02 01).
- Initiation drill with 2.35 mm diameter (ref nº 10 02 02).
- Initiation drill with 2.80 mm diameter (ref nº 10 02 03).
- Cortical drill with 3.5 mm diameter (ref nº 18 02 04).
- Pilot drill with 3.5 mm diameter (ref nº 10 02 05).

The drilling sequences to be evaluated in the present study are shown in Figures 1 and 2 for the
3.5 mm diameter implants. Preparation for 4.0 mm diameter implants requires the use of a 3.6 mm



Int. J. Environ. Res. Public Health 2020, 17, 8965 5 of 12

diameter pilot drill and a 3.95 mm cortical drill after the use of the 3.3 mm diameter pilot drill; the rest
of the sequences are the same as those for implants 3.5 mm in diameter (Figure 3).

Each type of implant bed, depending on each type of preparation, results in a different implant
surface in contact with the bone tissue. As observable in Table 1, when there is an undersizing of
the implant preparation, the total bone surface of the implant site is decreased, and at the same time,
there is an increase in the implant surface in contact with the bone.Int. J. Environ. Res. Public Health 2020, 17, x FOR PEER REVIEW 5 of 13 

 

 

Figure 2. Surface morphology of area of the implant in contact with the bone, and the diameter in 
each site preparation for 3.5 mm diameter implants. 

 
Figure 3. Surface morphology of area of the implant in contact with the bone, and the diameter in 
each site preparation for 4.0 mm diameter implants. 

Figure 2. Surface morphology of area of the implant in contact with the bone, and the diameter in each
site preparation for 3.5 mm diameter implants.

Table 1. Bone surface, implant surface and % of reduction for implant surface values for 3.5 and 4.0
mm diameter implants in each preparation.

3.5 mm Implant P4 P3 P2 P1
Bone surface, mm2 90.5 95.8 101.9 103.2

Implant surface, mm2 103.4 90.1 51.7 41.0

Increase in implant surface compared to P1 252% 220% 126% 100%
4.0 mm Implant P4 P3 P2 P1
Bone surface, mm2 101.9 103.2 111.2 114.6

Implant surface, mm2 119.4 116.9 91.6 50.6

Increase in implant surface compared to P1 252% 236% 181% 100%
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Figure 3. Surface morphology of area of the implant in contact with the bone, and the diameter in each
site preparation for 4.0 mm diameter implants.

2.4. Statistical Analysis

The Minitab 16 statistical software was used to determine if there were statistically significant
differences for the different variables studied.

When the values exhibited a normal distribution (Shapiro–Wilk test), the statistical analysis was
performed using Student’s parametric t-test.

When the values did not show a normal distribution, it was performed using the non-parametric
Mann–Whitney test.

3. Results

During the implant insertion procedure, all the implants reached their final positions without any
particular problems.

Table 2 shows the mean values of the IT and ISQ, standard deviations and p values, for both the
3.5 and 4.0 mm implants recorded with the four different site-preparation techniques.

As can be seen in Table 2, for the 3.5 mm diameter implants, the IT values in all cases in which any
sequence with underpreparation was performed (P2, P3 and P4) were higher than those for cases in
which the standard sequence proposed by the manufacturer was performed (P1).

For implants with a diameter of 4 mm, the IT values were higher in those sequences in which
underpreparation was performed without the use of the cortical drill (P2 and P4).

When evaluating the mean RFA (ISQ) values, for both the 3.5 and 4.0 mm diameter VEGA implants,
the stability values were higher when underpreparation was performed than when the manufacturer’s
proposed sequence was used.

When the RFA measurements were analyzed independently, for the first (RFA ISQ A) and second
RFA measurements (RFA ISQ B), higher ISQ values are observed for the implants with diameters
of 3.5 mm in the underpreparation sequences that did not use the cortical drill. We found a similar
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situation when analyzing the 4 mm diameter implants, although the differences between the different
preparation sequences were smaller.

Table 2. Values of the IT and ISQ for the 4 different types of implant preparation technique for 3.5 and
4.0 mm diameter implants. Implant Prep.—implant preparation; IT—insertion torque; RFA—resonance
frequency analysis; ISQ A—ISQ first measurement; ISQ B—ISQ second measurement; ISQ X—mean of
ISQ A and B; SD—standard deviation.

Implant Prep. IT—N/cm RFA—ISQ A RFA—ISQ B RFA—ISQ X

Mean SD Mean SD Mean SD Mean SD

VEGA 3.5 mm
P1 28.7 14.9 71.4 10.0 72.4 7.9 71.9 8.9
P2 27.7 16.7 77.2 6.1 77.6 6.7 77.4 6.3
P3 34.7 15.4 75.0 5.7 75.5 5.2 75.2 5.3
P4 53.8 25.5 80.8 3.7 80.8 3.4 80.8 3.4

VEGA 4.0 mm
P1 37.8 20.4 73.7 7.2 73.9 6.7 73.8 6.8
P2 43.7 16.5 78.3 3.7 78.7 4.4 78.5 3.8
P3 34.6 16.3 73.9 5.0 73.6 6.3 73.8 5.4
P4 51.7 27.3 75.0 8.1 74.9 9.6 75.0 8.7

4. Discussion

The increasing demands, from both patients and clinicians, for more predictable and immediate
treatments has led to an evolution in treatments making it possible to achieve better primary stability.
One of the easiest and most efficient ways of improving primary stability is the underpreparation of
the implant site [31,32]. Although it seems to be a predictable method, it should be taken into account
that there is an increased potential for the overcompression of the crestal bone, resulting in necrosis.
To prevent this from happening, there should be a correct evaluation by the clinician of the bone
density [33,34].

In most of the existing literature, the undersizing has been measured by the percentage of reduction
of the pilot drill, so most studies do not include underpreparation by the use of the cortical drill
like the present study. In the present research, the percentage of the implant surface in contact with
the bone tissue once the implant site was ready was calculated, so when comparing the preparation
technique recommend by the manufacturer, P1, to the other three undersized ones, P2, P3 and P4,
the implant surface had a 23–145% increase in bone contact. The results show that when the implant
site was undersized, there was an increase in the RFA values, so micromovements of the implant were
decreased and higher primary implant stability was obtained.

Those RFA values were statistically significantly higher in almost every comparison between
two implant site preparations (p value < 0.05) (Table 3). The ISQ and IT values showed a tendency to
increase as there was a reduction of the preparation technique, although there were two values that
did not correspond with this tendency, which could be because of the variety of densities in the same
piece of bovine bone. These values were found in the 3.5 mm diameter P2, with an IT value of 27.7 ±
16.7, and in the 4.0 mm diameter P3, with an IT value of 34.6 ± 16.3. Those data are consistent with a
previous in vitro study by Degidi et al., 2015, which evaluated two different levels of underpreparation
(10% and 25%) on fresh humid bovine bone, but instead of varying the set of burs, the authors varied
the implant diameter; the results showed that there was an increase in ISQ with both underpreparations
when comparing to the standard one (ISQ standard: 69.35 ± 7.35; ISQ with 10% reduction: 73.4 ± 2.33;
ISQ with 25% reduction: 72.3 ± 6.3), although only the 10% reduction underpreparation produced a
statistically significantly higher ISQ when compared to the standard one [24].



Int. J. Environ. Res. Public Health 2020, 17, 8965 8 of 12

Table 3. Relationship between the different types of preparation (P1, P2, P3 and P4) for 3.5 and 4.0 mm diameter implants. T-Student and Mann–Whitney tests
were applied if the variables showed a normal (N) or did not show normal distribution (Nn) respectively. IT—insertion torque; ISQ A—ISQ first measurement;
ISQ B—ISQ second measurement; ISQ X—mean of ISQ A and B; NW—Normal preparation with cortical drill; NWO—normal preparation without cortical drill;
UW—Underpreparation with cortical drill; UWO—Underpreparation without cortical drill; N—normal distribution; Nn—not normal distribution.

3.5 mm Diameter
Implant

Normal Preparation with Cortical
Drill (NW) P1

Normal Preparation without Cortical Drill
(NWO) P2 Underpreparation with Cortical Drill (UW) P3 Underpreparation without Cortical Drill

(UWO) P4

IT ISQ A ISQ B ISQX IT ISQ A ISQ B ISQX IT ISQ A ISQ B ISQX IT ISQ A ISQ B ISQX
Normal

preparation with
cortical drill

(NW) P1

NW(N) =
NWO(Nn)
p = 0.623

NW(Nn) <
NWO(Nn)
p = 0.002

NW(Nn) <
NWO(Nn)
p = 0.001

NW <
NWO

NW(N) =
UW(N)

p = 0.088

NW(Nn) =
UW(Nn)
p = 0.159

NW(Nn) =
UW(Nn)
p = 0.096

NW =
UW

NW(N) <
UWO(N)
p = 0.000

NW(Nn) <
UWO(Nn)
p = 0.016

NW(Nn) <
UWO(Nn)
p = 0.011

NW <
UWO

Normal
preparation

without cortical
drill (NWO) P2

NWO(Nn)
< UW(N)
p = 0.044

NWO(Nn)
> UW(Nn)
p = 0.020

NWO(Nn)
> UW(Nn)
p = 0.020

NWO
> UW

NWO(Nn)
< UWO(N)

p = 0.000

NWO(Nn)
=

UWO(Nn)
p = 0.0693

NWO(Nn)
=

UWO(Nn)
p = 0.396

NWO
=

UWO

Underpreparation
with cortical drill

(UW) P3

UW(N) <
UWO(N)
p = 0.000

UW(Nn) =
UWO(Nn)
p = 0.117

UW(Nn) =
UWO(Nn)
p = 0.138

UW =
UWO

Underpreparation
without cortical
drill (UWO) P4

4.0 mm diameter
implant

Normal Preparation with Cortical
Drill (NW) P1

Normal Preparation without Cortical Drill
(NWO) P2 Underpreparation with Cortical Drill (UW) P3 Underpreparation without Cortical Drill

(UWO) P4

IT ISQ A ISQ B ISQ X IT ISQ A ISQ B ISQ X IT ISQ A ISQ B ISQ X IT ISQ A ISQ B ISQ X
Normal

preparation with
cortical drill

(NW) P1

NW(Nn) <
NWO(N)
p = 0.020

NW(Nn) <
NWO(N)
p = 0.001

NW(Nn) <
NWO(Nn)
p = 0.000

NW <
NWO

NW(Nn) =
UW(N)

p = 0.603

NW(Nn) =
UW(N)

p = 0.689

NW(Nn) =
UW(Nn)
p = 0.965

NW =
UW

NW(Nn) <
UWO(N)
p = 0.017

NW(Nn) =
UWO(Nn)
p = 0.174

NW(Nn) =
UWO(Nn)
p = 0.097

NW =
UWO

Normal
preparation

without cortical
drill (NWO) P2

NWO(N) >
UW(N)

p = 0.032

NWO(N) >
UW(N)

p = 0.000

NWO(Nn)
> UW(Nn)
p = 0.000

NWO
> UW

NWO(N)
= UW(N)
p = 0.108

NWO(N) >
UWO(Nn)
p = 0.000

NWO(Nn)>
UWO(Nn)
p = 0.047

NWO
>

UWO

Underpreparation
with cortical drill

(UW) P3

UW(N) <
UWO(N)
p = 0.002

UW(N) =
UWO(Nn)
p = 0.077

UW(Nn) =
UWO(Nn)
p = 0.114

UW =
UWO

Underpreparation
without cortical
drill (UWO) P4
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Alghamdi et al., 2011, in a clinical study, compared implant stability by measuring the IT and ISQ
for two types of drilling techniques. They placed 52 implants on 29 patients, always controlling the
bone density according to radiographic assessments and clinical evaluations, and they ensured that
the implants were always placed on low-density bone (types III and IV, according to the Lekholm and
Zarb classification). The conventional drilling technique was finished with a 3.5 mm pilot drill for a
4.1 mm diameter implant, and the undersizing drilling technique was finished with a 2.8 mm pilot drill
for the same implant diameter. The undersizing drilling technique produced higher values of both
IT (35.19 ± 4.79) and ISQ (68.58 ± 4.81) when compared with the conventional drilling technique’s IT
(34.62 ± 5.82) and ISQ (66.69 ± 5.41). Although these values were not statistically significant, a tendency
of increasing implant stability on low-density bone with this undersizing drilling technique was
observed [27]. Results similar to those were found in the present work.

Tabassum et al., 2010, showed higher IT values in situations where underpreparations were
performed to prepare the implant site. The study was carried out in epoxy resin models that simulated
bone densities of 0.48 g/cm3, with different thicknesses of cortical bone. The data were in line with those
obtained in the present study, although with differences in the model used for the assessment [35].

Ahn et al., 2012, in an in vitro study, in which solid rigid polyurethane blocks were used as an
alternative to bovine low-density bone, they placed 30 implants using three different preparation
techniques implants and measured the IT, RFA (ISQ values) and removal torque (RT). The techniques
were a standard drilling technique, undersizing preparation and osteotome preparation. They found
that the undersized protocol yielded a statistically significantly higher mean IT of 104.57 ± 18.6 Ncm,
when compared to the standard protocol, which yielded a mean IT of 89.45 ± 10.03 Ncm. Although no
increase in ISQ values was found with undersizing, these IT results matched the tendency found in
this research: as the undersizing of the implant site increased, there was a tendency towards increased
IT values [5].

Bilhan et al., 2010, showed results similar to those found in this study, showing statistically
significantly higher IT values with underpreparation, while the FRA values were not statistically
significantly different but tended to be higher. The authors concluded that the underpreparation
drilling technique enhances the primary implant stability, especially when the implants are inserted in
low-density bone types (III and IV) [36].

García-Vives et al., 2009, in bovine ribs, in which they performed underpreparations with the
osteotome technique in type IV bone, found RFA stability values in line with the results found in this
work. They also showed the importance of the management of cortical bone in order to achieve greater
implant stability after insertion [37].

Rodrigo et al., 2009, reported, in his study on bone ribs in bone density II and IV, higher RFA
stability values in implants that were placed in sites where the cortical bone had been partially
maintained. The protocol suggested for the standard preparation of the bed for the implant was the
removal of the cortical burr. They found higher RFA values in all situations in which the most coronal
portion of the implant site was underprepared—results in line with those found in our research [38].

In the present study, a propensity for higher ISQ values with both preparations without the cortical
drill compared to the ones with it was found, although it must be taken into account that not using the
cortical drill might lead to the compression of crestal bone and, consequently, bone loss around the
implant. Thus, one option for improving implant stability while avoiding crestal bone loss is using the
P3 technique: the underpreparation of the pilot drill while still using the cortical drill.

Despite the differences found in the methods of the clinical and in vitro studies, a strong correlation
between the surgical technique and primary stability becomes evident, although there are modifying
factors that should be taken in to account when choosing a surgical technique, such as the bone density.
Regarding the results of this study, the following may be recommended for obtaining better primary
implant stability: using the countersink procedure, avoiding the use of a cortical drill that removes
the cortical layer in cases of low-density bone, and using an underpreparation technique in the most
coronal aspect of the implant site.
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5. Conclusions

Within the limitations of an in vitro study, the results showed that undersizing the implant site
could be a viable method for improving implant primary stability in low-density bone sites.

Of the three types of undersizing techniques studied, the most effectives are those without a
cortical drill (P2 and P4), showing that the cortical bone is good for achieving primary stability.

In view of the clinical applications of this research, it can be suggested that during the preparation
of the implant site, the IT can be evaluated based on the bone density determined in a simple manner.
Depending on the bone density found at the planned location for the implant, a surgical protocol
should be chosen to aim for a higher stability of the implant. In the case of low bone density,
the underpreparation of the implant site can be considered, especially in the most coronal portion
(avoiding a cortical drill). The final stability of the implant can be verified with the RFA system.
Additional in vivo studies are warranted.
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