Supplementary Material: ## Positive association of cardiovascular disease (CVD) with chronic exposure to drinking water arsenic (As) at concentrations below the WHO provisional guideline value: A systematic review and meta-analysis ## Lingqian Xu¹, Debapriya Mondal^{2*}, and David A. Polya¹ - Department of Earth and Environmental Sciences and Williamson Research Centre for Molecular Environmental Science, University of Manchester, Manchester, M13 9PL, UK - ² School of Science, Engineering & Environment, University of Salford, M5 4WT, UK - * Correspondence: d.mondal@salford.ac.uk Phone: +44 161 295 4137 **Table S1.** Epidemiological studies of arsenic (As) exposure and cardiovascular disease (CVD) included in the systematic review. | N
O | Study
(Year) | design | population | N
(follow-
up) | exposure
assessme
nt | exposure ca | ntegories | outcome | outcome
ascertainm
ent | adjustment
factors | |--------|--------------------------------------|--------------------------|--|--|---|---|---|---|---|--| | 1 | Chen
et al.
[1]
(2011) | prospe
ctive
study | Bangladesh,
11746 men
and women
in 2000 | followe
d up for
an
average
of 6. 6
years | well
water
arsenic
(As) and
spot urine
As | well As (mean (range) 3.7 (0.1-12) 35.9 (12-62) 102.5 (62-148) 265.7 (148-864) baseline urinar adjusted As creatin mean (range) 68 (6-105) 150 (106-199) 264 (199-351) 641 (351-1100) | median 2 34 101 237 y creatinine (µg/g of | deaths
from
cardiova
scular
disease | defined as deaths from disease of circulatory system (ICD-10 (internatio nal classificati on of diseases, 10th revision) codes 100- | sex and
baseline age,
BMI, smoking
status,
educational
attainment,
and changes
in As
concentration | | 2 | Chen et al. [2] (2013) | prospe
ctive
study | Bangladesh, recruited 20033 residents 18-75 years of age (original cohort) in 2000 at baseline. HEALS was expanded to include an additional 8,287 participants (expansion cohort) in 2007-2008 | during
2005-
2010, 5.9
years on
average
since
baseline
and
followe
d with
personal
visits at
2-year
intervals | As in drinking water and urine at baseline recruitme nt, and in follow-up urine samples collected every 2 years | well-water A mean(ra 2.8 (0.1 30.0 (9.5 95.1 (58 254.5 (14) urinary As (µg/ mean(ra 66.1 (7- 140.8 (10) 249.7 (18) 606.3 (328) | nnge)
1-9)
5-57)
-144)
5-790)
g creatinine)
nnge)
101)
2-187)
8-327) | QTc
prolonga
tion | I99) QT interval was measured from the beginning of the QRS complex to the end of the T wave, and was corrected for heart rate using the Bazzet formula. | sex and age,
BMI, smoking
status, and
educational
attainment,
changes in
urinary As
between
visits. | | 3 | Chen et al. [3] (2007) | cross-
section
al | 10,910 particip
Health Effe
Longitudinal
Bangladesh
2000-May | cts of As
I Study in
(October | time-
weighted
well As
concentra
tion
(TWA)
(µg/L) | range
0.1-8
8-40
40-91
91-176
176-864 | mean
2.8
23.2
63.9
128.1
283.1 | general
hyperten
sion | general hypertensi on (SBP≥140 mmHg, and/or DBP≥90 mmHg), systolic hypertensi on (SBP≥140 mmHg), diastolic hypertensi on (DBP≥90 mmHg), and high pulse | age, gender,
body mass
index,
cigarette
smoking
status,
education
length, and
daily water
consumption | | 4 | Tsinov
oi et al.
[4]
(2018) | case–
cohort
study | This sub-
cohort (n =
2666) was
selected
from the
entire
cohort of | The
average
follow-
up was
6.7 years | urinary
As (µg/g
creatinine
) | median
3.29
5.26
8.07
13.88
34.06 | range
2.72-3.72
4.75-5.88
8.26-9.18
11.99-16.72
26.11-54.81 | incident
ischemic
stroke | pressure (SBP- DBP≥55 mmHg) Cases of incident stroke were obtained every 6 months via telephone | age at
baseline, sex,
race,
age×race, and
stroke region,
body mass
index,
education, | | | | | REGARDS
participants | | | | | | | and
verified
using
medical
record
review. | smoking
status,
alcohol
consumption,
and physical
activity,
quintiles of
urine
cadmium and
serum | |---|--|---------------------------------|---|--|--|--|---|---|---|---|---| | 5 | Sohel
et al.
[5]
(2009) | perspe
ctive
analysi
s | Matlab,
Bangladesh;
A total of
115,903
persons
aged 15 or
more years
on 1 January
1991 were
available for
analysis. | followe
d them
until 31
Decemb
er 2000;
9,015
deaths;
22,488
lost to
follow-
up - | Study used average househol d exposure of As from drinking water (µg/L) as a proxy for individua | range
< 10
10-49
50-149
150-299
> 300 | mea
n
1.4
31.0
97.0
208.6
402.5 | media
n
0.7
31.8
95
201
371 | cardiova
scular
disease | Cases were defined as persons within the cohort who had died of non-accidental causes during the period. | mercury age, sex, asset score | | 6 | D'Ippo
liti et
al. [6]
(2015) | perspe
ctive
study | 165,609
residents of
17
municipaliti
es | resident s on January 1st 1990 and those who were subsequ ently born or immigra ted to the municip ality up to Decemb er 31th 2010 | average individua 1 As exposure at the first residence and time-dependen t cumulative As dose indicator | range
< 10
10-20
> 20 | As (μg/L) mea n 6.5 13.7 34.5 CAI (μg) ≤ 204.9 > 804.0 | media
n
7.4
12.9
29.7 | circulato
ry
system
diseases
(390–
459) | ischemic
heart
disease
(410-414),
myocardia
l infarction
(410),
coronary
atheroscler
osis (414),
cerebrovas
cular
diseases
(430-438),
stroke
(430, 431,
434, 436),
peripheral
Arterial
(440-448) | sex, age,
calendar
period,
socioeconomi
c level,
occupation in
the ceramic
industry,
smoking sales
and radon
exposure | | 7 | Medra
no et
al. [7]
(2010) | ecologi
cal
study | 1721
municipaliti
es located in
49 out of 52
Spanish
provinces,
covering
24.8 million
people | NA | Tap drinking water As concentra tions at the municipal level during 1998-2002 (µg/L) were obtained from the National Informati on System of Consume Water Control. | range
<1
1-10
>10 | · | mean
0.7
3.9
23.3 | cardiova
scular
mortality
(CVD
(ICD: I00
I99),
CHD
(ICD: I20
I25), and
cerebrov
ascular
diseases
(ICD: I60
I69)) | Cardiovasc ular mortality was analysed for the period 1999-2003. The observed number of deaths at the municipal level was obtained from the National Institute for Statistics. | capita municipal income, and hospital beds per population, smoking, hypertension, high serum cholesterol, diabetes, overweight/o besity, and low physical activity, fish, wine, olive oil, bottled water, and total energy and water characteristic s at municipal level. | | 8 | Moon
et al.
[8]
(2013) | prospe
ctive
study | 3575 American Indian men and women aged 45 to 74 years living in Arizona, Oklahoma, and North and South Dakota. | baseline visit between 1989 and 1991. Particip ants were invited to subsequ ent clinical visits in 1993- 1995 and 1998- 1999 and were actively followe d through 2008,357 | sum of inorganic and methylate d As species in urine at baseline (µg/g creatinine) | range
(median)
< 5.8
(4.2)
5.8-9.7 (7.5)
9.8-15.7
(12.4)
15.7 (21.8) | mean
4.1
7.6
12.5
26.3 | cardiova
scular
disease
(incidenc
e and
mortality
) | identified
by annual
contact, by
review of
hospitaliza
tion and
death
records,
and during
2 clinic
visits
conducted
between
1993 and
1995 and
between
1998 and
1999 | systolic blood
pressure and
hypertension
medication
use, AIC
level, sex,
age,
education,
smoking
status, body
mass index,
cholesterol
level,
hypertension,
diabetes, and
estimated
glomerular
filtration rate
and
albuminuria | |-----|-----------------------------------|----------------------------------|---|---|---|--|------------------------------------|---|--|--| | 9 | Islam
et al.
[9]
(2012) | cross-
section
al
study | rural
Bangladesh,
The study
was
conducted
between
January and
July 2009 | 5, 15
years | As
concentra
tion in
drinking
water
(µg/L) | rang
10-22
23-32
33-26
≥ 262 | !
!
1 | hyperten
sion
prevalen
ce and
pulse
pressure | Hypertensi on was defined as systolic blood pressure ≥ 140 mmHg (systolic hypertensi on) and diastolic blood pressure ≥ 90 mmHg (diastolic hypertensi on) and those with known hypertensi on and on antihypert ensive medication . Pulse pressure was considered to be | age, sex,
education,
marital
status,
religion,
monthly
income and
BMI | | 1 0 | James
et al.
[10]
(2015) | case-
cohort
study | This study included 555 participants with no known coronary heart disease (CHD) | 555 particip ants with 96 CHD events diagnos ed between 1984 | time-
weighted
average
inorganic
As
exposure
(µg/L) | range m 1-20 r 20-30 25 30-45 36 45-88 50 | an an 31 5.71 .1 25.3 .6 35.1 | identifie
d CHD
events | to be increased when the difference was ≥ 55 mmHg. A CHD event was defined [ICD-9 codes 410-414]. Potential CHD events were | age, sex, BMI,
physical
activity,
smoking
status,
alcohol
consumption,
serum lipid
levels, and | | | | | events or
diagnosis of
DM before
the baseline | and
1998 | | | | | identified
through
self-report
and death | micronutrient
intake | |-----|--------------------------------------|--|--|-------------|---|--|---|------------------------|---|--| | | | | visit in
Alamosa
and Conejos
counties of
south
central | | | | | | certificate
searches.
The
medical
records
were | | | | | | Colorado. | | | | | | reviewed
by a three-
member
committee
of medical
physician.
Hypertensi
on was | | | 1 1 | Li et al.
[11]
(2013) | cross-
section
al
study | 604 of eligible subjects were confirmed, and interviewed door to door. | NA | cumulativ
e arsenic
exposure
(CAE) in
mg/L-
year in
the tube
wells and
urinary
As and its
species | urinary As
species
iAs (µg/g
Cr)
<7.31
7.31 to 33.68
> 33.68
MMA (µg/g
Cr)
<11.28
11.28 to
37.89
> 37.89 | DMA (µg/g
Cr)
< 66.70
66.70 to
181.85
> 181.85
tAs (µg/g
Cr)
< 93.77
93.77 to
250.61
> 250.61
CAE (mg/L-
year)
< 0.10
0.10 to 0.35
> 0.35 | hyperten
sion | defined in this study as a systolic blood pressure ≥ 140 mm Hg, a diastolic blood pressure ≥ 90 mm Hg, or a history of hypertensi on under regular treatment with antihypert ensive | gender, age,
cigarette
smoking,
alcohol
consumption
and BMI. | | 1 2 | Wade
et al.
[12]
(2015) | hospita
I based
case
control
study | A total of 298 cases and 275 controls were enrolled in the Bayingnorm en (Ba Men) region of Inner Mongolia, China from a large hospital. | NA | toenail
and
drinking
water As | range
< 10
10-39
40 and
over
nail A | As (µg/L) mea media n n 3.02 1.91 20.87 16.03 78.75 58.57 s (µg/g) mea media n n 0.23 0.24 0.65 0.6 3.25 2.17 | CHD
incidenc
e | acute
myocardia
l infarction
(mi),
cardiomyo
pathy and
chest pain
chest pain
suggestive
of angina | age, sex, diet,
body mass
index (BMI);
occupation;
education;
smoking; and
family history
of
hypertension,
diabetes or
heart disease | | 1 3 | Mumfo
rd et
al. [13]
(2007) | cross-
section
al
study | 313
residents of
the Ba Men
region | NA | water As
concentra
tion
(μg/L) | 100 | 21
0-350
0-690 | QT
prolonga
tion | QT
interval
defines the
period of
ventricular
repolarizat | age, sex, BMI,
and age/BMI
interaction | | 1 4 | Mende
z et al.
[14]
(2016) | cross-
section
al
study | A total of
1,160 adults
were
recruited in
household
visits
between
2008 and
2012. | NA | househol
d
drinking
water As
concentra
tions, and
total
urinary
speciated
As | As concent: $< \ge 25.5$ ≥ 47.9 $\ge $ total urinary $(\mu $ $< $ ≥ 27.1 | trinking water rations (µg/L) 25.5 to < 47.9 to < 79.0 79.0 7 speciated As g/L) 27.5 to < 55.8 to <105.0 | CM risk
markers | ion Elevated fasting levels of each lipid were defined as plasma TG ≥ 150 mg/dL, TC ≥ 200 mg/dL, | age, sex, education, smoking status, alcohol consumption, recent seafood intake, weight status, elevated | | | | | | | | | NE 0 | | 1177 | ., | |---|-------------------|------------------|-------------------------|-------|--------------------|------------------------|---------------|------------------|------------------------|-------------------------------| | | | | | | | ≥ 10 | 05.0 | | and LDL ≥ | waist | | | | | | | | | | | 130 mg/dL.
Fasting | circumferenc
e, and main | | | | | | | | | | | HDL < 40 | water source | | | | | | | | | | | mg/dL in | water source | | | | | | | | | | | men and < | | | | | | | | | | | | 50 mg/dL | | | | | | | | | | | | in women | | | | | | | | | | | | were | | | | | | | | | | | | designated | | | | | | | | | | | | as low. | | | | | | | | | | | | Hypertensi | | | | | | | | | | | | on was | | | | | | | | | | | | defined by
systolic | | | | | | | | | | | | blood | | | | | | | | | | | | pressure | | | | | | | | | | | | (SBP) > 140 | | | | | | | | | | | | mmHg, | | | | | | | | | | | | diastolic | | | | | | | | | | | | blood | | | | | | | | | | | | pressure | | | | | | | | | | | | (DBP) > 90 | | | | | | | | | | | | mmHg, or
self- | | | | | | | | | | | | reported | | | | | | | | | | | | use of anti- | | | | | | | | | | | | hypertensi | | | | | | | | | | | | ve | | | | | | | | | | | | medication | | | | | | | | | | | | Indications | | | | | | | | | | | | of carotid | | | | | | 163 patients | | | | | | atheroscler | | | | | | with carotid | | As | | | | osis were | age and | | | | | atherosclero | | concentra | As concentra | ntion in well | | evaluated | gender, | | | | | sis and 163
controls | | tion in
well | wa | ter | | mainly
based on 2 | addition of | | | | | were | | water | ≤ 50 | 0.00 | risk of | indices: the | current | | 1 | Wu et | case- | studied | | (µg/L) | 50.01-1 | | carotid | maximal | smoking, | | 5 | al. [15] | control | from the | NA | and | ≥ 100 | | atheroscl | ECCA | total | | | (2006) | study | Lanyang | | cumulativ | cumulative A
≤1. | - | erosis | intimal– | cholesterol,
hypertension, | | | | | Basin of Ilan | | e As | 1.71-4 | | | medial | and plasma | | | | | County in | | exposure | ≥ 4. | | | thickness | homocysteine | | | | | north- | | (μg/L- | | | | (IMT) and | level | | | | | eastern
Taiwan | | year) | | | | the
presence of | | | | | | Taiwaii | | | | | | ECCA | | | | | | | | | | | | plaque. | | | | | | | | | lifetime cu | ımulative | | 1 1 | | | | | | | | | exposure ([μ | ıg/L]-years) | | Those self- | | | | | | | | | < 21 | | | reporting | | | | | | | | | 2188- | | | either a | | | | |
| | | | >70 | | | physician | | | | | | northern | | cumulativ | peak exposure | | | diagnosis | | | | | popula | Chile; | | e As | (μg
< 6 | | | of | | | | | tion | hypertensio | | exposure; | 60-8 | | prevalen | hypertensi | | | 1 | Hall et | based | n cases | N.T.4 | peak | > 8 | | ce of | on or use | age, BMI, sex, | | 6 | al. [16] | cancer | (n=612), and | NA | exposure; | highest 5-year | | hyperten | of an anti- | and smoking | | | (2017) | case-
control | hypertensio
n-free | | highest 5-
vear | to 1971 | (µg/L) | sion | hypertensi
ve | - | | | | study | controls | | year
average | < 6 | | | ve
medication | | | | | au | (n=654) | | exposure | 60-5 | | | were | | | | | | 7 | | 1 | > 5. | | | classified | | | | | | | | | lifetime hig | | | as | | | | | | | | | average
< 6 | | | hypertensi | | | | | | | | | 60-6 | | | on cases. | | | | | | | | | > 6 | | | | | | | | cross- | Bangladesh. | | time | | As | , | Hypertensi | | | 1 | Dahar - | section | A total of | NT A | weighted | time | concentratio | cases of | on was | age, sex, and | | 7 | Rahma
n et al. | al | 1595 adults | NA | average | weighted
average As | n-year, mg- | hyperten
sion | defined as | BMI | | 1 | ii et al. | study | (903 men | | As; As | average AS | y/L 0 | 51011 | a systolic | | | | [17]
(1999) | | and 578
women) had | | concentra
tion-year | exposure
(mg/L) | - | < 1.0
1.0-5.0 | | blood
pressure > | | |-----|----------------------------------|---|--|---|--|---|---|---|---|---|--| | | | | a history of
As
exposure,
whereas 114
(50 men and
64 women)
were
unexposed. | Subjects | | 0
< 0.5
0.5 to 1.0
> 1.0 | | 5.0-10.0
> 10.0 | | 140 mm
Hg
combined
with a
diastolic
blood
pressure >
90 mm Hg. | | | 1 8 | Wang
et al.
[18]
(2011) | perspe
ctive
study | 3 villages — Homei, Fuhsin, and Hsinming in Putai Township located on the south western coast of Taiwan. The original cohort consisted of 490 non-hypertensiv e residents in 1993. | were invited for health check-ups in 1993, 1996, and 2002/03. By 2002/03, 382 (78%) of these subjects were successfully followed and 138 had been lost to follow-up | As level
and its
species of
drinking
water and
urine as
well as
cumulativ
e As level | As cond | ve As leve
year)
< 5.6
5.6-15.6
> 15.6
c. in well
(μg/L)
< 538
538-700
> 12/9 created (1.17
1.17-2.67
> 2.67 | water | incidenc
e of
hyperten
sion | Hypertensi on (systolic BP > 140mmHg, diastolic BP > 90, or on antihypertensi ve therapy) was used to define cases, utilizing hypertensi on and related data collected at 1989-90 (baseline) and 2002-03 (follow-up). | age, gender,
BMI, and
glucose (2
6.11 mmol/l)
adjusted | | 1 9 | Wade
et al.
[19]
(2009) | retrosp
ective
study | Each family in Ba Men provided names and demographi c characteristics of all family members residing in the household between January 1, 1997 and December 1, 2004. | NA | water As
level
(μg/L) | range
0-5
5.1-20
20.1-100
100.1-300
Over 300 | mea
n
1.6
11.9
38.8
168.2
421.1 | media
n
1
11
26
156
387 | heart
disease
mortality
and
stroke
mortality | A team of medical experts evaluated the evidence available and coded each underlying cause of death according to the ICD-10 system. | age, sex
education,
smoking,
alcohol use,
farm work | | 2 0 | Wang
et al.
[20]
(2005) | a
follow-
up
study
in
Taiwan | This study
enrolled
10,133 and
16,718
residents
aged 40 and
older from
arsenic-
exposed and
unexposed
areas
respectively. | NA | water As
(μg/L) | range
<10
10-49
50-499
≥500 | mean
5
29.5
274.5
724.5 | media
n
5
29.5
274.5
724.5 | CVD
mortality | Deaths from ischemic heart disease and stroke were ascertaine d up to December 31, 2004 through linkage with national death certificatio n | age, gender | | | | | | | | | | | | profiles. | | |-----|-------------------------------------|--|---|---|---|--|--|----------------------------------|---|--|--| | 2 1 | Rahma
n et al.
[21]
(2014) | prospe
ctive
study | Matlab,
Bangladesh;
recruited
61,074
adults | Particip
ants
were
followe
d from
January
01, 2003
until
Decemb
er 31,
2010 (~ 7
years). | TWA
individua
l drinking
water
(µg/L) | range
< 10
10-49
>50 | 2 | edian
1.7
21.1
.01.2 | mortality
risks of
stroke | Stroke
deaths:
Verbal
autopsy
(ICD-10:
I61–69) | age, sex,
education
attainment
and SES | | 2 2 | Chen et al. [22] (2013) | case–
cohort
study | 369 incident fatal and nonfatal cases of CVD, including 211 cases of heart disease and 148 cases of stroke, and a sub-cohort of 1,109 subjects randomly selected from the original cohort study | The cohort continue s to be actively followe d every 2 years. | baseline
well-
water As
(μg/L) | range
0.1-25
25.1-
107
108-
864 | mean
7.2
59.9
222.8 | media
n
5.1
57
198.5 | CVD,
heart
disease
and
stroke
cases
risk
(incidenc
e) | incident fatal and nonfatal cases of CVD (ICD-10 codes I00-199), including fatal and nonfatal stroke (codes I60-I69) and fatal and nonfatal cases of heart disease, which occurred after baseline and before 18 March 2009 | sex, baseline
age, BMI,
smoking
status,
educational
attainment,
hypertension,
diabetes
status, and
change in
urinary As
between visit | | 2 3 | Hsieh
et al.
[23]
(2008) | case-
control
study | A random
sample of
479 subjects
inclusive of
235 cases
and 244
controls
were
selected. | NA | As concentra tion in well water and cumulativ e As exposure | cumulat | entration in
≤ 10
≤ 10
10.1-50.0
≥ 50.1
ive As exp
\log/L -year)
≤ 0.2
0.3-1
≥ 1.1 | oosure | carotid
atheroscl
erosis | Indications of carotid atheroscler osis were evaluated mainly based on three indices: the intima media thickness (IMT), the plaque score and the maximal level of | age, gender,
cigarette
smoking,
diabetes
mellitus,
cholesterol
and
triglyceride | | 2 4 | Hsieh
et al.
[24]
(2011) | commu
nity-
based
case-
control
study | A random sample of 863 subjects who had been genotyped for PNP, As3MT, GSTO1, and GSTO2 were selected with 384 subjects being defined as | NA | As concentra tion in well water of the househol d (µg/L) | | <10
10.1-50.0
>50.0 | | carotid
atheroscl
erosis | stenosis of ECCA. Three indices including intima media thickness (IMT), the plaque score, and the maximal level of stenosis of the ECCA were | age, gender,
cigarette
smoking,
alcohol
consumption,
hypertension,
cholesterol,
fasting
glucose, and
body-mass
index | | | | | cases and
the
remaining
479 subjects
categorized
as reference | | | | | | | determine
d as
indications
of carotid
atheroscler
osis. | | |-----|-------------------------------------|---|---|--|---|---
--|---------------------------------------|---|--|--| | 2 5 | Jones
et al.
[25]
(2011) | cohort
study | 4167 participants for this study. | A total of 15,955 adults 20 years of age or older particip ated in NHAN ES between 2003 and 2008, leaving 4167 particip ants for this study. | Total
urinary
As (µg/L)
and its
species
(µg/L) | 4.2
> 8.3
> total 2
arsen
< 3.1
> 5.8
dimeth | tal As 4.2 to 8.3 to 17.1 17.1 As minus obetaine 3.1 to 5.8 to 10.8 10.8 sylarsina 2.0 to 3.6 6 to 6.0 > 6.0 | <u>.</u> | hyperten
sion and
blood
pressure | Hypertensi on was defined as a mean systolic blood pressure ≥ 140 mmHg, a mean diastolic blood pressure ≥ 90 mmHg, a self-reported physician diagnosis, or use of antihypert ensive medication | sex, age, race
and ethnicity,
and urine
creatinine
level,
education,
body mass
index, serum
cotinine level,
and
antihypertens
ive
medication
use and
arsenobetaine | | 2 6 | Chen
et al.
[26]
(1996) | prospe
ctive | SW Taiwan
40–70 y 52%
men | 2556 (~5
y) | average
concentra
tion of As
in
drinking
water
(µg/L) | range
< 10
10-500
≥ 510 | mea
n
5
255
755 | medi
an
5
255
755 | developi
ng lethal
ISHD | national
death
registry
(ICD-9:
410-414) | age, sex,
blackfoot
disease,
status,
cigarette
smoking,
body mass
index, serum
levels of
cholesterol
and
triglycerides,
and disease
status for
hypertension | | 2 7 | Farzan
et al.
[27]
(2015) | prospe
ctive
analysi
s of
popula
tion-
based
non-
melano
ma
skin
cancer
case-
control
study | New
Hampshire,
USA
Median 61 y
56% men | 3939 (14
y) | toenail
(μg/g) | range
0.01-0.07
0.07-0.11
0.11-3.26 | mea
n
0.05
0.09
0.23 | medi
an
0.05
0.09
0.23 | CVD,
CHD
and
stroke
mortality | national
death
index
(ICD-10:
I00-99, I20-
25, I60-69) | age, sex,
education,
smoking,
cancer status | | 2 8 | Ersboll
et al.
[28]
(2018) | prospe
ctive
study | Copenhagen
and
Aarhus, a
study
population
of 53,941
individuals | 53,941
(12.8 yea
rs) | 20-year
time
weighted
average
(TWA) As
concentra
tion in
drinking
water
(µg/L) | range
0.049-0.573
0.573-0.760
0.760-1.933
1.933-25.34 | 0.
0.
1. | edian
.435
.584
.174
.109 | incidence
rate of all
strokes | Stroke was defined based on Internatio nal Classifica tion of Disease (ICD) ICD-8 codes: | age, sex, body mass index, waist circumference, smoking status, smoking duration, smoking intensity, alcohol status, intake of | | 430, 431, | alcohol, | |------------|-----------------| | 433, 434, | physical | | 436.01, or | activity, fruit | | 436.90 | intake, | | until 1994 | vegetable | | and ICD- | intake, length | | 10 codes: | of school | | I60, I61, | attendance, | | I63 or I64 | and calendar | | from | year | | 1994. | | **Table S2.** Egger's regression test of funnel plot asymmetry. | | | Mortality risk | | | | Combined fatal | and non-fatal risk | | CVD markers | | | |---------|---------|----------------|--------|-------|-----|----------------|---------------------------------|--------------|----------------------|-----------------|--| | | CHD | CVD | Stroke | CHD | CVD | Stroke | Carotid atherosclerosis disease | Hypertension | Pulse blood pressure | QT prolongation | | | z | 5.088 | 2.161 | 1.569 | 1.589 | NA | 1.030 | 1.551 | 0.722 | NA | NA | | | p-value | < 0.001 | 0.030 | 0.117 | 0.112 | NA | 0.303 | 0.121 | 0.470 | NA | NA | | CVD: cardiovascular disease; CHD: coronary heart disease. Notes: Calculated using the 'metafor' package in R. NA: Egger's test only conducted for models with at least three studies. **Table S3.** Pooled relative risks (95% confidence intervals) for different CVD types and clinical markers in relation to drinking water arsenic concentrations with the exclusion of studies which do not provide drinking water As concentrations directly. | Drinking water arsenic concentration | | Mortality risk | | | Combined fatal and non-fa | ntal risk | |--------------------------------------|--------------------------|-------------------------------|---------------------------------|--------------------------|---------------------------|-----------------------------------| | Drinking water arsenic concentration | CHD (5(18)) ^a | CVD (7(24)) ^a | Stroke (5(18)) ^a | CHD (3(10)) ^a | Stroke (3(12)) a | Hypertension (7(26)) ^a | | | | Log-linear dose-re | esponse association model | | | | | 1 μg/L ^b | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | 3 μg/L | 1.175 | 1.060 | 1.016 | 1.209 | 1.042 | 1.103 | | 3 μg/L | (1.026, 1.345) | (1.015, 1.107) | (0.860, 1.199) | (1.060, 1.378) | (0.982, 1.105) | (1.009, 1.207) | | E~/I | 1.267 | 1.090 | 1.023 | 1.321 | 1.062 | 1.155 | | 5 μg/L | (1.039, 1.544) | (1.023, 1.161) | (0.801, 1.305) | (1.090, 1.600) | (0.973, 1.158) | (1.013, 1.317) | | 10~// | 1.403 | 1.131 | 1.033 | 1.489 | 1.090 | 1.229 | | 10 μg/L | (1.056, 1.863) | (1.033, 1.239) | (0.729, 1.464) | (1.131, 1.960) | (0.962, 1.234) | (1.019, 1.483) | | 20~/[| 1.553 | 1.174 | 1.044 | 1.679 | 1.118 | 1.308 | | 20 μg/L | (1.074, 2.247) | (1.043, 1.321) | (0.663, 1.643) | (1.175, 2.400) | (0.951, 1.315) | (1.025, 1.669) | | FO// | 1.777 | 1.233 | 1.058 | 1.968 | 1.157 | 1.420 | | 50 μg/L | (1.097, 2.878) | (1.057, 1.439) | (0.584, 1.912) | (1.234, 3.138) | (0.937, 1.429) | (1.033, 1.952) | | p-value for trend ^c | 0.019 | 0.008 | 0.850 | 0.004 | 0.180 | 0.031 | | $I^{2 ext{ d}}$ | 79.8% | 78.0% | 91.9% | 35.2% | 0.0% | 66.4% | | Cochran's Q-statistic | 19.83 | 22.74 | 49.51 | 3.08 | 0.969 | 17.84 | | P-heterogeneity ^e | < 0.001 | < 0.001 | < 0.001 | 0.213 | 0.615 | 0.007 | | AIC | 1.61 | -7.91 | 3.02 | 2.40 | -1.84 | -1.94 | | | | Non-linear dose-response asso | ociation model (restricted cubi | c splines) | | | | 1 μg/L ^ь | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | . • | 1.152 | 0.999 | 1.032 | 1.041 | 0.982 | 1.004 | | 3 μg/L | (1.033, 1.285) | (0.983, 1.014) | (0.826, 1.291) | (0.820, 1.322) | (0.770, 1.254) | (0.946, 1.066) | | 5 A | 1.231 | 1.002 | 1.047 | 1.061 | 0.984 | 1.006 | | 5 μg/L | (1.049, 1.446) | (0.980, 1.023) | (0.758, 1.446) | (0.747, 1.505) | (0.714, 1.357) | (0.922, 1.098) | | 10 // | 1.349 | 1.015 | 1.066 | 1.112 | 1.002 | 1.008 | | 10 μg/L | (1.071, 1.699) | (0.987, 1.044) | (0.682, 1.664) | (0.687, 1.800) | (0.688, 1.458) | (0.890, 1.142) | | 20 / | 1.481 | 1.044 | 1.081 | 1.297 | 1.032 | 1.011 | | 20 μg/L | (1.089, 2.012) | (1.011, 1.079) | (0.624, 1.872) | (0.753, 2.233) | (0.697, 1.529) | (0.860, 1.189) | | 50 <i>I</i> I | 1.680 | 1.118 | 1.095 | 2.147 | 1.087 | 1.027 | | 50 μg/L | (1.090, 2.587) | (1.070, 1.168) | (0.569, 2.106) | (1.009, 4.565) | (0.725, 1.630) | (0.839, 1.257) | | p-value for trend ^c | 0.039 | < 0.001 | 0.960 | 0.120 | 0.650 | 0.240 | | I ^{2 d} | 71.6% | 24.8% | 85.3% | 46.6% | 0.0% | 42.6% | | Cochran's Q-statistic | 28.19 | 13.30 | 54.4 | 7.49 | 3.60 | 20.91 | | P-heterogeneity ^e | < 0.001 | 0.207 | < 0.001 | 0.112 | 0.461 | 0.052 | | AIC | 18.49 | -5.24 | 8.52 | 12.57 | 15.16 | 17.24 | In this meta-analysis, toenail As concentration in Farzan et al. [27] and urine As concentration in Moon et al. [8] have been transferred to drinking water As concentration using formulae mentioned in the main test. CVD: cardiovascular disease; CHD: coronary heart disease. a: Sum of studies included; the total number of relative risks in each model. b: treat 1 µg/L water arsenic concentration as the referent. - c: P-value for linear trend from a Wald test of the coefficient for water arsenic concentrations. - d: Proportion of total variance due to between-study heterogeneity. - e: P-value for heterogeneity is chi-square p-value of the Q-statistic. - f: Non-linear trend p-value for the non-linear spline coefficient in a model with water arsenic concentrations entered as a restricted cubic spline with knots at 10th, 50th and 90th percentiles. **Table S4.** Pooled relative risks (95% confidence intervals) for different CVD types and CVD markers in relation to drinking water arsenic concentrations lower than 100 ppb. | Drinking water | | Mortality risk | | Combined fatal and non-fatal risk | | | | | | | |--------------------------------|--------------------------|--------------------------|-----------------------------|-----------------------------------|-----------------------------|---|----------------------------------|--|--|--| | arsenic
concentration | CHD (4(13)) ^a | CVD (4(13)) ^a | Stroke (4(13)) ^a | CHD (3(11)) ^a | Stroke (3(13)) ^a | Carotid atherosclerosis disease (2(6)) ^a | Hypertension (2(8)) ^a | | | | | | | | Log-linear do | se-response association | model | | | | | | | 1 μg/L ^b | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | | | | 1.248 | 1.151 | 1.224 | 1.214 | 1.044 | 1.313 | 1.153 | | | | | 3 μg/L | (1.010, 1.544) | (0.971, 1.366) | (0.933, 1.605) | (1.078, 1.367) | (0.981, 1.112) | (1.115, 1.546) | (1.001, 1.327) | | | | | - n | 1.384 | 1.230 | 1.345 | 1.329 | 1.066 | 1.490 | 1.232 | | | | | 5 μg/L | (1.014, 1.889) | (0.958, 1.579) | (0.904, 2.000) | (1.117, 1.582) | (0.972, 1.169) | (1.174, 1.892) | (1.002,
1.514) | | | | | 40 (7 | 1.593 | 1.345 | 1.528 | 1.502 | 1.095 | 1.770 | 1.347 | | | | | 10 μg/L | (1.021, 2.485) | (0.940, 1.922) | (0.866, 2.696) | (1.171, 1.927) | (0.960, 1.250) | (1.257, 2.491) | (1.003, 1.810) | | | | | | 1.832 | 1.470 | 1.736 | 1.699 | 1.126 | 2.101 | 1.474 | | | | | 20 μg/L | (1.027, 3.269) | (0.923, 2.341) | (0.829, 3.634) | (1.228, 2.348) | (0.948, 1.336) | (1.347, 3.278) | (1.004, 2.164) | | | | | | 2.206 | 1.654 | 2.055 | 1.997 | 1.167 | 2.637 | 1.659 | | | | | 50 μg/L | (1.036, 4.697) | (0.901, 3.036) | (0.783, 5.394) | (1.308, 3.0496) | (0.933, 1.460) | (1.475, 4.713) | (1.005, 2.740) | | | | | p-value for trend ^c | 0.040 | 0.100 | 0.140 | 0.001 | 0.180 | 0.001 | 0.048 | | | | | [2 d | 89.3% | 80.2% | 79.6% | 25.1% | 23.2% | 0.0% | 0.0% | | | | | Cochran's Q-
statistic | 18.69 | 15.11 | 14.74 | 2.67 | 2.60 | 0.07 | 0.14 | | | | | P-heterogeneity ^e | < 0.001 | 0.001 | 0.002 | 0.263 | 0.272 | 0.791 | 0.709 | | | | | AIC | 3.69 | 2.81 | 6.54 | 2.19 | 0.84 | 2.16 | 1.95 | | | | | | | | Ion-linear dose-response | | ricted cubic splines) | | | | | | | 1 μg/L ^b | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | | | | | . 0 | 1.343 | 1.029 | 1.880 | 0.958 | 1.041 | 1.464 | 1.137 | | | | | 3 μg/L | (1.029, 1.751) | (0.996, 1.064) | (0.805, 4.389) | (0.762, 1.204) | (0.897, 1.208) | (0.903, 2.376) | (0.930, 1.390) | | | | | | 1.528 | 1.055 | 2.433 | 0.939 | 1.071 | 1.749 | 1.207 | | | | | 5 μg/L | (1.039, 2.247) | (0.996, 1.118) | (0.738, 8.011) | (0.672, 1.313) | (0.875, 1.312) | (0.861, 3.552) | (0.899, 1.620) | | | | | | 1.774 | 1.130 | 3.063 | 0.937 | 1.131 | 2.214 | 1.311 | | | | | 10 μg/L | (1.037, 3.034) | (0.989, 1.290) | (0.688, 13.624) | (0.588, 1.493) | (0.852, 1.500) | (0.819, 5.987) | (0.870, 1.974) | | | | | | 1.999 | 1.260 | 3.363 | 1.133 | 1.207 | 2.723 | 1.434 | | | | | 20 μg/L | (1.016, 3.932) | (0.966, 1.643) | (0.677, 16.699) | (0.682, 1.884) | (0.809, 1.801) | (0.846, 8.757) | (0.891, 2.309) | | | | | | 2.310 | 1.483 | 3.575 | 2.109 | 1.322 | 3.277 | 1.638 | | | | | 50 μg/L | (0.978, 5.454) | (0.928, 2.368) | (0.677, 18.860) | (1.176, 3.780) | (0.729, 2.397) | (1.117, 9.620) | (0.975, 2.752) | | | | | p-value for trend ^f | 0.047 | 0.180 | 0.290 | 0.005 | 0.650 | 0.004 | 0.140 | | | | | I ^{2 d} | 81.0% | 67.0% | 65.2% | 0.1% | 0.0% | 0.0% | 0.0% | | | | | Cochran's Q-
statistic | 31.57 | 18.81 | 17.21 | 4.00 | 3.12 | 0.41 | 0.37 | | | | | P-heterogeneity ^e | < 0.001 | 0.005 | 0.008 | 0.405 | 0.537 | 0.81 | 0.827 | | | | | AIC | 25.97 | 17.01 | 24.59 | 11.86 | 13.85 | 8.77 | 12.10 | | | | CVD: cardiovascular disease; CHD: coronary heart disease. a: Sum of studies included; the total number of relative risks in each model. b: treat 1 μ g/L water arsenic concentration as the referent. - c: P-value for linear trend from a Wald test of the coefficient for water arsenic concentrations. - d: Proportion of total variance due to between-study heterogeneity. - e: P-value for heterogeneity is chi-square p-value of the Q-statistic. - f: Non-linear trend p-value for the non-linear spline coefficient in a model with water arsenic concentrations entered as a restricted cubic spline with knots at 10th, 50th and 90th percentiles. Figure S1. Flow diagram of study selection procedure. **Figure S2.** Association of CVD endpoints with drinking water arsenic concentrations. Dose-response relationships for individual studies were overprinted by the pooled dose-response relationship for each CVD endpoint to visually test the model goodness-of-fit. Shaded area represents the 95 % confidence intervals of log-linear model (red) and non-linear model (blue) (CVD: cardiovascular disease; CHD: coronary heart disease). **Figure S3.** Funnel Plots for the analysis of publication bias. Funnel plots of the pooled linear dose-response models for each CVD endpoint. In this study, funnel plots were created using the metafor package in R. Each funnel plot was cantered at the overall model estimate, with the effect estimated from each study (log- relative risk) plotted against the accordingly standard error. Shaded area represents the region in which 95% of the study points might be expected to lie without the presence of both heterogeneity and publication bias (CVD: cardiovascular disease; CHD: coronary heart disease). ## References - 1. Chen, Y.; Graziano, J.H.; Parvez, F.; Liu, M.; Slavkovich, V.; Kalra, T.; Argos, M.; Islam, T.; Ahmed, A.; Rakibuzzaman, M. Arsenic exposure from drinking water and mortality from cardiovascular disease in Bangladesh: prospective cohort study. *BMJ: British Medical Journal (Overseas & Retired Doctors Edition)* **2011**, 342, d2431, doi:10.1136/bmj.d2431. - 2. Chen, Y.; Wu, F.; Parvez, F.; Ahmed, A.; Eunus, M.; McClintock, T.R.; Patwary, T.I.; Islam, T.; Ghosal, A.K.; Islam, S. Arsenic exposure from drinking water and QT-interval prolongation: results from the Health Effects of Arsenic Longitudinal Study. *Environmental health perspectives* **2013**, 121, 427-432. - 3. Chen, Y.; Factor-Litvak, P.; Howe, G.R.; Graziano, J.H.; Brandt-Rauf, P.; Parvez, F.; van Geen, A.; Ahsan, H. Arsenic exposure from drinking water, dietary intakes of B vitamins and folate, and risk of high blood pressure in Bangladesh: A population-based, cross-sectional study. *American Journal of Epidemiology* **2007**, 165, 541-552, doi:10.1093/aje/kwk037. - 4. Tsinovoi, C.L.; Xun, P.C.; McClure, L.A.; Carioni, V.M.O.; Brockman, J.D.; Cai, J.W.; Guallar, E.; Cushman, M.; Unverzagt, F.W.; Howard, V.J., et al. Arsenic Exposure in Relation to Ischemic Stroke The Reasons for Geographic and Racial Differences in Stroke Study. *Stroke* **2018**, 49, 19-26, doi:10.1161/strokeaha.117.018891. - 5. Sohel, N.; Persson, L.A.; Rahman, M.; Streatfield, P.K.; Yunus, M.; Ekstrom, E.C.; Vahter, M. Arsenic in Drinking Water and Adult Mortality A Population-based Cohort Study in Rural Bangladesh. *Epidemiology* **2009**, *20*, 824-830, doi:10.1097/EDE.0b013e3181bb56ec. - 6. D'Ippoliti, D.; Santelli, E.; De Sario, M.; Scortichini, M.; Davoli, M.; Michelozzi, P. Arsenic in Drinking Water and Mortality for Cancer and Chronic Diseases in Central Italy, 1990-2010. *Plos One* **2015**, *10*, e0138182, doi:10.1371/journal.pone.0138182. - 7. Medrano, M.J.; Boix, R.; Pastor-Barriuso, R.; Palau, M.; Damian, J.; Ramis, R.; del Barrio, J.L.; Navas-Acien, A. Arsenic in public water supplies and cardiovascular mortality in Spain. *Environmental Research* **2010**, 110, 448-454, doi:10.1016/j.envres.2009.10.002. - 8. Moon, K.A.; Guallar, E.; Umans, J.G.; Devereux, R.B.; Best, L.G.; Francesconi, K.A.; Goessler, W.; Pollak, J.; Silbergeld, E.K.; Howard, B.V., et al. Association Between Exposure to Low to Moderate Arsenic Levels and Incident Cardiovascular Disease. *Annals of Internal Medicine* **2013**, *159*, 649-659, doi:10.7326/0003-4819-159-10-201311190-00719. - 9. Islam, M.R.; Khan, I.; Attia, J.; Hassan, S.M.N.; McEvoy, M.; D'Este, C.; Azim, S.; Akhter, A.; Akter, S.; Shahidullah, S.M., et al. Association between Hypertension and Chronic Arsenic Exposure in Drinking Water: A Cross-Sectional Study in Bangladesh. *International Journal of Environmental Research and Public Health* 2012, 9, 4522-4536, doi:10.3390/ijerph9124522. - 10. James, K.A.; Byers, T.; Hokanson, J.E.; Meliker, J.R.; Zerbe, G.O.; Marshall, J.A. Association between Lifetime Exposure to Inorganic Arsenic in Drinking Water and Coronary Heart Disease in Colorado Residents. *Environmental Health Perspectives* **2015**, *123*, 128-134, doi:10.1289/ehp.1307839. - 11. Li, X.; Li, B.; Xi, S.H.; Zheng, Q.M.; Wang, D.; Sun, G.F. Association of urinary monomethylated arsenic concentration and risk of hypertension: a cross-sectional study from arsenic contaminated areas in northwestern China. *Environmental Health* 2013, 12, 37-46, doi:10.1186/1476-069x-12-37. - 12. Wade, T.J.; Xia, Y.J.; Mumford, J.; Wu, K.G.; Le, X.C.; Sams, E.; Sanders, W.E. Cardiovascular disease and arsenic exposure in Inner Mongolia, China: a case control study. *Environmental Health* **2015**, *14*, 35-44, doi:10.1186/s12940-015-0022-y. - 13. Mumford, J.L.; Wu, K.G.; Xia, Y.J.; Kwok, R.; Wang, Z.H.; Foster, J.; Sanders, W.E. Chronic arsenic exposure and cardiac repolarization abnormalities with QT interval prolongation in a population-based study. *Environmental Health Perspectives* **2007**, *115*, 690-694, doi:10.1289/ehp.9686. - 14. Mendez, M.A.; Gonzálezhorta, C.; Sánchezramírez, B.; Ballinascasarrubias, L.; Cerón, R.H.; Morales, D.V.; Terrazas, F.A.B.; Ishida, M.C.; Gutiérreztorres, D.S.; Saunders, R.J. Chronic Exposure to Arsenic and Markers of Cardiometabolic Risk: A Cross-Sectional Study in Chihuahua, Mexico. *Environmental Health Perspectives* **2016**, 124, 104-111, doi:10.1289/ehp.1408742. - 15. Wu, M.M.; Chiou, H.Y.; Hsueh, Y.M.; Hong, C.T.; Su, C.L.; Chang, S.F.; Huang, W.L.; Wang, H.T.; Wang, Y.H.; Hsieh, Y.C., et al. Effect of plasma homocysteine level and urinary monomethylarsonic acid on the - risk of arsenic-associated carotid atherosclerosis. *Toxicology and Applied Pharmacology* **2006**, 216, 168-175, doi:10.1016/j.taap.2006.05.005. - 16. Hall, E.M.; Acevedo, J.; Lopez, F.G.; Cortes, S.; Ferreccio, C.; Smith, A.H.; Steinmaus, C.M. Hypertension among adults exposed to drinking water arsenic in Northern Chile. *Environmental Research* **2017**, *153*, 99-105, doi:10.1016/j.envres.2016.11.016. - 17. Rahman, M.; Tondel, M.; Ahmad, S.A.; Chowdhury, I.A.; Faruquee, M.H.; Axelson, O. Hypertension and arsenic exposure in Bangladesh. *Hypertension* **1999**, 33, 74-78, doi:10.1161/01.hyp.33.1.74. - 18. Wang, S.L.; Li, W.F.; Chen, C.J.; Huang, Y.L.; Chen, J.W.; Chang, K.H.; Tsai, L.Y.; Chou, K.M. Hypertension incidence after tap-water implementation: A 13-year follow-up study in the arseniasis-endemic area of southwestern Taiwan. *Science of the Total Environment* **2011**, 409, 4528-4535, doi:10.1016/j.scitotenv.2011.07.058. - 19. Wade, T.J.; Xia, Y.; Wu, K.; Li, Y.; Ning,
Z.; Le, X.C.; Lu, X.; Feng, Y.; He, X.; Mumford, J.L. Increased mortality associated with well-water arsenic exposure in Inner Mongolia, China. *Int J Environ Res Public Health* **2009**, *6*, 1107-1123, doi:10.3390/ijerph6031107. - 20. Wang, C.H.; Chen, C.L.; Hsu, L.I.; Chiou, H.Y.; Hsueh, Y.M.; Chen, S.Y.; Wu, M.M.; Hsiao, C.K. Chronic Arsenic Exposure Increases Mortality from Ischemic Heart Disease and Stroke: A Follow-up Study on 26,851 Residents in Taiwan; National Taiwan University: Taipei, Taiwan, 2005. - 21. Rahman, M.; Sohel, N.; Yunus, M.; Chowdhury, M.E.; Hore, S.K.; Zaman, K.; Bhuiya, A.; Streatfield, P.K. A prospective cohort study of stroke mortality and arsenic in drinking water in Bangladeshi adults. *BMC Public Health* **2014**, *14*, 1-8, doi:10.1186/1471-2458-14-174. - 22. Chen, Y.; Wu, F.; Liu, M.L.; Parvez, F.; Slavkovich, V.; Eunus, M.; Ahmed, A.; Argos, M.; Islam, T.; Rakibuz-Zaman, M., et al. A Prospective Study of Arsenic Exposure, Arsenic Methylation Capacity, and Risk of Cardiovascular Disease in Bangladesh. *Environmental Health Perspectives* **2013**, 121, 832-838, doi:10.1289/ehp.1205797. - 23. Hsieh, Y.C.; Hsieh, F.I.; Lien, L.M.; Chou, Y.L.; Chiou, H.Y.; Chen, C.J. Risk of carotid atherosclerosis associated with genetic polymorphisms of apoliploprotein E and inflammatory genes among arsenic exposed residents in Taiwan. *Toxicology and Applied Pharmacology* **2008**, 227, 1-7, doi:10.1016/j.taap.2007.10.013. - 24. Hsieh, Y.C.; Lien, L.M.; Chung, W.T.; Hsieh, F.I.; Hsieh, P.F.; Wu, M.M.; Tseng, H.P.; Chiou, H.Y.; Chen, C.J. Significantly increased risk of carotid atherosclerosis with arsenic exposure and polymorphisms in arsenic metabolism genes. *Environmental Research* **2011**, *111*, 804-810, doi:10.1016/j.envres.2011.05.003. - 25. Jones, M.R.; Tellezplaza, M.; Sharrett, A.R.; Guallar, E.; Navasacien, A. Urine Arsenic and Hypertension in U.S. Adults: the 2003–2008 NHANES. *Epidemiology* 2011, 22, 153-161, doi:10.1097/EDE.0b013e318207fdf2. - 26. Chen, C.J.; Chiou, H.Y.; Chiang, M.H.; Lin, L.J.; Tai, T.Y. Dose-response relationship between ischemic heart disease mortality and long-term arsenic exposure. *Arteriosclerosis Thrombosis and Vascular Biology* **1996**, *16*, 504-510, doi:10.1161/01.atv.16.4.504. - 27. Farzan, S.F.; Chen, Y.; Rees, J.R.; Zens, M.S.; Karagas, M.R. Risk of death from cardiovascular disease associated with low-level arsenic exposure among long-term smokers in a US population-based study. *Toxicology and Applied Pharmacology* **2015**, *287*, 93-97, doi:10.1016/j.taap.2015.05.013. - 28. Ersboll, A.K.; Monrad, M.; Sorensen, M.; Baastrup, R.; Hansen, B.; Bach, F.W.; Tjonneland, A.; Overvad, K.; Raaschou-Nielsen, O. Low-level exposure to arsenic in drinking water and incidence rate of stroke: A cohort study in Denmark. *Environment International* **2018**, *120*, 72-80, doi:10.1016/j.envint.2018.07.040.