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Abstract: Concerns regarding environmental exposures and the impacts of pharmaceuticals on
non-target aquatic organisms continue to increase. The antiepileptic drug carbamazepine (CBZ) is often
detected as an aquatic contaminant and can disrupt various behaviors of fishes. However, there are
few reports which investigate the mechanism of CBZ action in fish. The aim of the current study was to
evaluate the effects of CBZ on embryonic development (i.e., hatching rate, heart rate, and body length)
and early spontaneous movement. Moreover, we sought to investigate potential mechanisms by
focusing on the gamma-aminobutyric acid (GABA) neurotransmitter system in zebrafish 6 days after of
exposure. The results show that CBZ exposure did not cause significant effects on embryo development
(hatching rate, heart rate, nor body length) at the test concentrations. However, the early spontaneous
movement of embryos was inhibited following 10 µg/L CBZ exposure at 28–29 h post-fertilization
(hpf). In addition, acetylcholinesterase (AChE) activity and GABA concentrations were increased
with exposure, whereas glutamate (Glu) concentrations were decreased in larval zebrafish. Gene
expression analysis revealed that GABA and glutamate metabolic pathways in zebrafish larvae were
altered following exposure to CBZ. GABA transaminase (abat) and glutamic acid decarboxylase
(gad1b) decreased to 100 µg/L, and glutamate receptor, ionotropic, N-methyl D-aspartate 1b (grin1b) as
well as the glutamate receptor, ionotropic, α-amino-3hydroxy-5methylisoxazole-4propionic 2b (gria2b)
were down-regulated with exposure to 1 µg/L CBZ. Our study suggests that CBZ, which can act as
an agonist of the GABAA receptor in humans, can also induce alterations in the GABAergic system
in fish. Overall, this study improves understanding of the neurotoxicity and behavioral toxicity of
zebrafish exposed to CBZ and generates data to be used to understand mechanisms of action that
may underlie antiepileptic drug exposures.
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1. Introduction

Pharmaceuticals are bioactive chemicals used by humans for personal health and agricultural
enterprises to improve animal growth [1,2]. Due to their widespread use, a significant number of
pharmaceuticals have been discharged into aquatic environments [3–5]. Carbamazepine (CBZ) is
one of the most frequently used antiepileptic drugs worldwide [6,7]. Due to its prevalence in water
bodies and its resistance to removal during the sewage treatment process, CBZ is also one of the
most frequently detected pharmaceuticals in aquatic environments [8]. CBZ has been detected in the
range of 0.03 to 11.6 µg/L in various water bodies all over the world [9–12]. For example, CBZ was
detected in 95% of the water samples collected from different locations around the United States of
America (U.S.A.), and the mean concentration of CBZ in samples was ~350 ng/L [10]. Moreover, CBZ
was detected and posed ecological risk at 20 different sites from the Baiyangding Lake and Taihu
Lake areas in China, and the authors emphasized that more attention should be given to CBZ as an
environmental contaminant [5]. Based on these and other studies, concerns regarding the impacts of
CBZ on non-target aquatic organisms remain and warrant additional investigation.

Studies have demonstrated that CBZ can adversely affect non-target species in aquatic
environments [6,7,13,14]. As vertebrates, fish are perhaps more susceptible to pharmaceutical exposure
than invertebrates because pharmaceuticals are designed for human (vertebrate) use. Data on the toxic
effects of CBZ on fish have been reported for different species, such as the zebrafish (Danio rerio), Chinese
rare minnows (Gobiocypris rarus), and Japanese medaka (Oryzia latipeus) [15–20]. For example, 0.5 µg/L
CBZ exposure increased embryo mortality, lowered plasma steroid hormone levels, and decreased egg
production in zebrafish [21]. Moreover, 10 µg/L CBZ exposure can affect feeding behavior and can
interfere with neurotransmission and the antioxidant system in zebrafish [16]. In addition, Yan et al.
(2019) showed that CBZ may act as an endocrine disruptor in rare minnows [20]. Based on these
studies, exposure to CBZ can adversely impact development, behavior and endocrine processes in fish.
However, the underlying mechanisms of CBZ toxicity in fish are not well characterized.

Pharmaceuticals developed for human use often have well-established mechanisms of action
(MoA), and as such, assessment of the effects of pharmaceutical drugs in aquatic animals should be
based on their MoAs [22]. One of the MoAs of the antiepileptic drug CBZ in humans is related to
the gamma-aminobutyric acid (GABA) neurotransmitter system [23]. GABA is the most abundant
inhibitory neurotransmitter in the nervous system [24–26]. The GABA neurotransmitter system consists
of several GABA receptor subtypes, each comprised of different subunits, as well as enzymes that
synthesize and metabolize GABA [27]. Among the GABA receptors, GABAA receptorα1 (Gabra1) plays
a pivotal role in mediating rapid inhibitory synaptic transmission in the central nervous system [28].
The glutamate receptors, such as the “glutamate receptor, ionotropic, N-methyl D-aspartate 1b (Grin1b)”
and the “glutamate receptor, ionotropic, α-amino-3hydroxy-5methylisoxazole-4propionic 2b (gria2b),”
are also related to neurobehavior in fish and are associated with GABA signaling [29] as glutamate
acts as the metabolic precursor for GABA synthesis. Glutamate decarboxylase (Gad1b) and GABA
transaminase (ABAT) are the two main enzymes involved in regulating glutamate-GABA metabolic
pathways [30]. Many antiepileptic drugs bind to GABAA receptors to enhance GABAergic signaling to
exert inhibitory actions in the brain [25]. CBZ is known to modulate the release, uptake, and receptor
binding of neurotransmitters, and it acts as an agonist to the GABAA receptor in humans [18]. However,
most studies to date have not examined the MoA of CBZ in fish, and as a result, the potential ecological
risks associated with CBZ may be underestimated.

As such, the effect of CBZ on the GABA neurotransmitter system in zebrafish was investigated
in this study. Three nominal concentrations (1, 10, 100 µg/L) were used to study the toxicity of CBZ
on zebrafish embryos. The lowest concentration targeted environmentally relevant levels of CBZ.
The developmental toxicity of CBZ to zebrafish was first assessed, and several endpoints that included
early spontaneous movement rate, hatching rate, heart rate, and body length were measured. Secondly,
GABA and glutamate (Glu) concentrations, as well as transcript levels associated with GABA and
glutamate receptor mRNA levels (gabra1, grin1b, and gria2b), and glutamate metabolic pathways (gad1b
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and abat) were determined in larval fish. Moreover, since acetylcholinesterase (AChE) is a widely used
enzymatic biomarker of neurotoxicity and is often measured in studies to detect neurotoxic effects of
various contaminants in the aquatic environment [31,32], AChE activity was also determined.

2. Materials and Methods

2.1. Fish and Culture Conditions

Adult zebrafish (wild-type AB strain) were cultured in a laboratory aquaculture system using
aerated tap water. Fish were raised with a photoperiod of 14:10 h light: dark cycle and were fed with
either live brine shrimp (Artemia nauplii) or a commercial fish diet on alternating days. For spawning,
adult females and males (1:3) were placed into mating tanks. At 1–2 h post-fertilization (hpf), fertilized
eggs from the same batch were examined by a stereomicroscope. The embryos that were developing
normally were selected for subsequent experiments based upon staging outlined in Kimmel [33].
The fertilized eggs at shield stage (~6 hpf) were used for exposure experiments. All experimental
procedures involving fish were approved by the Institutional Animal Care and Use Committee of
the Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences. At the end of the
experiment, all zebrafish larvae were euthanized in liquid nitrogen, and those larvae that did not
survive were collected and properly treated as hazardous wastes.

2.2. Exposure Proposal

CBZ (purity > 97%, J&K Chemical Ltd., Shanghai, China) was first prepared in amber vials as
a stock solution (10 mg/mL) in dimethylsulfoxide (DMSO). The CBZ stock solution was prepared
fresh each week. Selected embryos that were developing normally were exposed to CBZ. There
were four treatments with the final concentrations of 0 (control, treated with 0.001% (w/v) DMSO), 1,
10 and 100 µg/L CBZ. The exposure solutions were prepared using the CBZ stock solution. The final
DMSO concentration was 0.001% (v/v) in each group. There were two exposure experiments; one
was conducted for development and gene expression, and a second exposure was conducted for
enzyme-linked immunosorbent assay (ELISA) measurements. CBZ concentrations were quantified
after the exposure solutions were dosed in the beaker or in the microplate each week according to our
previously described method [6,14]. Briefly, for water samples, CBZ concentrations were quantified
before and after water was refreshed. Water samples were filtered through 0.45 µm glass fiber filters
and extracted using Oasis HLB cartridges (6 mL, 200 mg; Waters Corporation, Milford, MA, USA). CBZ
was quantified using ultra-performance liquid chromatography tandem mass spectrometry X-TQD
(UPLC–MS/MS; Waters Corporation, Milford, MA, USA).

2.2.1. Exposure Experiment 1

Selected embryos from a single batch were randomly distributed among glass beakers (50 mL)
containing 10 mL exposure solution, and there were 20 embryos in each beaker. There were five
replicate beakers for each treatment. The final exposure solutions were refreshed daily (90% change)
during the 6 d exposure experiment. During the exposure period, zebrafish embryos were placed in a
constant temperature incubator, the temperature was maintained at 27 ± 1 ◦C, and the light dark cycle
was 14 h:10 h (day:night). During the exposure period, 16 zebrafish embryos were randomly selected
from each treatment group to measure their autonomous movement at 28–29 hpf. The hatching rate
of all zebrafish embryos in each treatment group was counted at 48–62 hpf. The heart rate and body
length of 12 and 10 zebrafish larvae in each treatment group were measured at 72 hpf and 96 hpf,
respectively. After exposure, 5 larvae from each treatment group were collected and placed in a 1.5 mL
centrifuge tube, frozen in liquid nitrogen, and stored at −80 ◦C for subsequent quantitative real-time
PCR (RT-qPCR) analysis.
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2.2.2. Exposure Experiment 2

Exposure experiment 2 was carried out in a 12-well plate. Embryos (2400 embryos) were randomly
transferred to 12-well Corning ultra-Low attachment microplates (Corning, NY, USA) (20 embryos per
well) containing 4 mL of each exposure solution for 6 d, and 90% exposure solutions were renewed
every 24 h. After 6 d exposure, 200 larvae in each treatment were collected and preserved as one
biological replicate. Three biological replicates were constructed for each treatment (n = 3). After 6 d
exposure, all the larvae were flash-frozen using liquid nitrogen and stored at −80 ◦C for GABA and
Glu concentrations and AChE activity analysis.

2.3. Gene Expression Analysis

After 6 d exposure, the transcript levels of genes associated with the GABA neurotransmitter
system and glutamate metabolic pathways, including gabra1, grin1b, gria2b, abat, and gad1b, were
measured in the zebrafish larvae. RNA extraction, cDNA synthesis, and qPCR analysis were performed
according to our previous methods [6]. Total RNA was isolated from larvae using TRIzol reagent
(Invitrogen, Carlsbad, CA, USA). RNA quality and concentration were determined using BioTek
Synergy HTX multi-function microplate (BioTek, VT, USA). RNA samples had a 260/280 nm absorption
ratio ≥1.8 and these samples were deemed high quality for further analysis. cDNA was synthesized
using the FastKing cDNA First Strand Synthesis Kit (Tiangen, Beijing, China) from 500 ng total RNA.
Primers used in the study were obtained from previous literature [28,34]. The qPCR analysis was
performed on the QuantStudio™ 3 Real-Time PCR System platform (Thermo Fisher Scientific, Carlsbad,
CA, USA). The reaction system was as follows: a total volume of 20 µL, including cDNA samples, ROX
Reference Dye (50X), TB Green® Premix Ex Taq™ II (Takara, Japan) reagent, 200 nM upstream primer,
and 200 nM downstream primer. The reaction conditions were as follows: after pre-denaturation,
40 cycles were performed at 95 ◦C × 5 s, 60 ◦C × 30 s. β-actin was used as the internal reference gene to
normalize the expression of all target genes, and relative expression was calculated according to the
delta-delta Ct method [35]. The primers and related information are shown in Table 1.

Table 1. Primers used for gene expression analysis.

Symbol Gene Name Primer (5′-3′)
NCBI (National Center for

Biotechnology Information)
Accession Number

β-actin Beta-actin F: CGAGCAGGAGATGGGAACC
R: CAACGGAAACGCTCATTGC AF057040.1

gabra1 GABAA receptor, α1 F: TCAGGCAGAGCTGGAAGGAT
R: TGCCGTTGTGGAAGAACGT NM_001077326

grin1b
Glutamate receptor,

ionotropic, N-methyl
D-aspartate 1b

F: CATGAGAACGGCTTCATGG
R: GCCAGCTGCATTTGCTTCC NM_001144131

gria2b Glutamate receptor,
ionotropic, AMPA 2b

F: ATGACAGTGACCGAGGAC
R: CTTGAAAGAGTGAGCGATA NM_131895

abat GABA transaminase F: GCGTTCAGGCAAAGCTCT
R: GCAGGACGGAAACGGAT NM_201498

gad1b Glutamate decarboxylase 1b F: AACTCAGGCGATTGTTGCAT
R: TGAGGACATTTCCAGCCTTC NM_194419

2.4. Measurement of AChE Activity, GABA, and Glu Concentrations

The AChE activity, GABA and Glu concentrations were measured using commercial ELISA kits
following the manufacturer’s manual (No. MM-9110401, MM-9159901 and MM-9160601, respectively,
Meimian, Jiangsu, China). Three biological replicates were conducted per treatment per assay.

2.5. Statistical Analysis

All data were analyzed using GraphPad Prism 6(GraphPad Software, San Diego, CA, USA).
For developmental parameters and ELISA, a one-way analysis of variance (ANOVA) followed by
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Holm–Sidak’s multiple comparison test was employed to test for differences between mean values
of treatments. One-way ANOVA followed by a Tukey’s multiple comparison test was used for gene
expression data. All statistical data are expressed as mean ± standard error (standard error of mean,
SEM), and p value < 0.05 was considered to indicate a significant difference among groups.

3. Results

3.1. Carbamazepine Quantification

CBZ concentrations in each treatment are shown in Table 2. No significant differences were
observed between the nominal and tested values.

Table 2. Carbamazepine (CBZ) concentration (mean ± SD) measured in the exposure solutions.

Conditions Control 1 µg/L 10 µg/L 100 µg/L

Nominal concentration (µg/L) 0 1.00 10.00 100.00
Measured concentration (µg/L) No detected 0.90 ± 0.02 9.50 ± 0.22 92.80 ± 3.50

3.2. Early Spontaneous Movement and Development

No significant changes were observed in hatching rate, heart rate, or body length following
exposure to CBZ (Figure 1B–D). However, the early spontaneous movement of embryos was significantly
inhibited following exposure to 10 µg/L CBZ at 28–29 hpf (Figure 1A).
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Figure 1. Carbamazepine (CBZ) effects on the development of zebrafish larvae after 6 d exposure (mean
± SEM). (A) Early spontaneous movement rate at 28–29 hpf (n = 16); (B) Hatching rate at 48–62 hpf
(n = 50); (C) Heart rate at 72 hpf (n = 12); (D) Body length at 96 hpf (n = 10). Bars with different letters
indicate significant differences between each other (p < 0.05).
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3.3. Gene Expression

The transcript level of gabra1, grin1b, gria2b, gabra1, abat, and gad1b were measured in zebrafish
larvae following exposure to CBZ (1, 10, and 100 µg/L). Most of the genes were inhibited after CBZ
exposure (Figure 2). The transcript level of gad1b was significantly downregulated in fish from both
the 10 and 100 µg/L CBZ exposure groups; however, the gabara1 transcript level was only reduced
in fish from the 100 µg/L CBZ exposure group (Figure 2A,E). For grin1b, a significant reduction in
transcript level was observed only in the 1 µg/L CBZ group (Figure 2B). The transcript level of gria2b
was inhibited in fish from the 1 and 100 µg/L CBZ exposure groups, and a significant increase was
observed in the 10 µg/L CBZ group (Figure 2C). The transcript level of abat was reduced in fish from
the 1 and 100 µg/L CBZ exposure groups, and no significant differences were observed in fish from the
10 µg/L CBZ group (Figure 2D).
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Figure 2. The steady state mRNA levels of (A) gabra1, (B) grin1b, (C) gria2b, (D) abat, (E) gad1b in
zebrafish larvae following exposure to CBZ for 6 d (mean ± SEM). Bars with different letters indicate
significant differences between each other (n = 5; p < 0.05).

3.4. AChE Activity, GABA and Glu Concentrations Measurement

After 6 d exposure, the AChE activity, as well as GABA and glutamate (Glu) concentrations in the
zebrafish larval were measured (Figure 3). AChE was significantly increased in zebrafish larvae from
both the 10 µg/L and 100 µg/L CBZ exposure groups (Figure 3A). Although no significant changes
were observed with the highest concentration of CBZ, GABA concentration in the zebrafish larvae was
significantly increased in larvae exposed to 1 µg/L CBZ exposure (Figure 3B). For Glu concentration,
a significant decrease was observed in larvae from both the 1 and 100 µg/L CBZ treatment groups
(Figure 3C).
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Figure 3. The acetylcholine (AchE) activity, gamma-aminobutyric acid (GABA) and glutamate (Glu)
concentrations in the zebrafish larvae after 6 d of exposure to CBZ (mean ± SEM). (A) Acetylcholine
activity; (B) Gamma-aminobutyric acid concentration; (C) Glutamate concentration. Bars with different
letters indicate significant differences among groups (n = 3; p < 0.05).

4. Discussion

The current study aimed to investigate the effects of CBZ on the development, early spontaneous
movement, and GABA neurotransmitter system in zebrafish larvae after 6 d exposure. Results showed
that exposure to CBZ did not cause significant effects on the development of the zebrafish embryos at
the concentrations tested. However, acute CBZ exposure induced alterations in AChE activity and the
GABA neurotransmitter system in the zebrafish larvae, suggesting the potential for detrimental effects
in the central nervous system during development.

Environmentally relevant concentrations of CBZ have been shown to affect fish more often during
chronic exposures compared to acute exposures [14,36,37]. Acute toxicity tests have revealed that
CBZ is unlikely to be lethal at environmental levels, with reported LC50 (median lethal concentration)
and EC50 (median effective concentration) values approaching mg/L levels, and do not exert effects
on major physiological processes, such as growth and activity [37]. For example, the 96 h LC50
values for CBZ in O. latipes is 35.4 mg/L [36], which is much higher than reported levels in the
environment. The 72 h LC50 for CBZ in zebrafish embryo is ≥245 mg/L, and the NOEC (no observed
effect concentration) for CBZ in zebrafish embryo on growth retardation has been reported to be
above 30.6 mg/L [17]. In the current study, after a 6 d exposure to relatively low concentrations of
CBZ (1, 10 and 100 µg/L), no significant changes in hatching rate, heart rate, or body length were
observed. The present study agreed with previous studies, which determined that low exposure
concentrations did not affect zebrafish growth [16]. However, the early spontaneous movements of
zebrafish larvae were significantly inhibited following 10 µg/L CBZ exposure at 28–29 hpf. Our result
agreed with a previous study [18] that CBZ can affect the early spontaneous movement of zebrafish.
Moreover, similar to our study here, movement percentage and rest percentage of zebrafish larvae
were significantly affected at lower levels of CBZ testing, while no effects were detected with the
highest CBZ concentration [18]. Taken together, studies suggest that the effects of CBZ on the behavior
of zebrafish larvae is non-linear nor dose-dependent. This may be related to a threshold between
compensatory responses at lower levels of exposure and higher, potentially more toxic, concentrations.
Nevertheless, studies should investigate further jobs and temporal specific responses to CBZ [38].

AChE hydrolyzes the neurotransmitter acetylcholine, acting to reduce synaptic transmission [39].
Unlike other neurotoxic compounds which can inhibit AChE activity, our study, in conjunction with
previous investigations, demonstrates that CBZ can induce AChE activity in fish [16]. This discrepancy
between CBZ and other neurotoxic agents may be related to specific mechanisms associated with CBZ.
In response to an increase in AChE activity, a subsequent downregulation of acetylcholine receptors
can occur [40]; this may explain, in part, the decrease of early spontaneous movement. It is worth
noting that 10 µg/L CBZ had a significant impact on spontaneous movement and AChE activity,
but no effect was observed at a higher dose (100 µg/L). The altered AChE activity in fish following
exposure to pharmaceuticals may be related to the complex relationships between the cholinergic
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system and the exposure concentration [41]. For example, after exposure to another psychotropic drug,
fluoxetine (50 and 200 µg/L), for 42 d, only one dose of those tested (50 µg/L) caused an increase of
AChE activity following chronic exposure in Pseudorasbora parva [41]. Thus, the relationship between
pharmaceutical exposure and AChE activity in larval fish is still unclear and may relate to the balance
between therapeutic and toxic doses.

Excitatory (Glu) and inhibitory (GABA) neurotransmitters regulate activity and are involved in
integrating signals from the periphery [28,42]. In the current study, the concentrations of GABA and
Glu in zebrafish larvae were altered by CBZ exposure. One limitation of the current study is that it
is not possible to isolate these effects specifically to the brain as whole larval fish were measured for
neurotransmitter levels. Nevertheless, our data suggest that CBZ exposure may result in an imbalance
between excitatory and inhibitory neurotransmission based upon altered receptor expression as well
as biosynthetic enzymes. Taken together, changes in brain GABA are expected to contribute to the
persistence of deficiencies in locomotor activity reported in studies using zebrafish [43–45].

As an agonist of the GABA receptor in humans [18], it is noteworthy to point out that CBZ
significantly inhibited gabra1 and grin1b transcript levels in the zebrafish larvae. This response may
reflect alternative mechanisms of CBZ in fish compared to mammals, or it may be a compensatory
response to over-activation of GABAA receptors. GABAA receptor activation is also involved in
long-term potentiation and mediates connections that foster learning and memory [46]. The Gabra1
receptor subunit is localized at synapses in mature neurons and is structurally critical for the formation
of ionic channels [47]. Recent studies have shown that GABAA receptor expression is altered by
environmental contaminants, such as phenazepam, which can also lead to abnormal regulation of
feeding behavior [44]. Moreover, abat and gad1b, two enzymes involved in regulating glutamate-GABA
metabolic pathways, were also inhibited by CBZ exposure. Glutamic acid decarboxylase 1 or Gad1b,
is a major determinant of GABA levels. Gad1 is responsible for catalyzing the production of GABA
from glutamate [48]. As reported, inhibition of Gad by (D,L)-allylglycine may lead to GABA depletion,
seizures and neuronal damage in zebrafish [49]. As such, CBZ induced downregulation of GABA
receptors and metabolic enzymes involved in the synthesis and degradation of GABA may lead to
neurotoxicity and abnormal alteration in behavior in zebrafish.

To summarize, many endpoints measured here did not show a linear and dose-dependent effect.
This may be due to the different pathways associated with pharmaceutical MoA or general toxicity
of a contaminant. Pharmaceuticals have appropriate dosage and courses of treatment, and there is a
balance between therapeutic effect and toxicity. It is reported that humans can respond to low doses
of CBZ rapidly [50]. Here, we assessed toxicity of CBZ to zebrafish embryos/larvae, and a limitation
is that a short exposure time was examined. Moreover, variability in biological response makes it
challenging to link broad molecular, biochemical, and morphological endpoints together in a linear
fashion. As such, the links that are made amongst endpoints should be interpreted with caution, and
our goal here is to propose a working hypothesis for adverse responses in zebrafish to CBZ. However,
each biological response may be independent from one another and may not involve interrelated
mechanisms. Additional studies are needed to better define the relationship between GABA signaling
and behaviors induced by pharmaceutical exposures.

5. Conclusions

In conclusion, our results suggest that exposure to low concentrations of CBZ can lead to decreased
early spontaneous movement in zebrafish embryos. The increase in AChE activity is proposed to be
related to these effects in zebrafish embryos but there are likely other mechanisms as well. Moreover,
the modulation of the GABAergic neurotransmitter system at the transcript and metabolite level
suggests that, as a human use antiepileptic drug that acts as an agonist of the GABAA receptor in
humans, CBZ can also induce alterations in the GABA neurotransmitter system in fish. Overall,
this study improves understanding of the neurotoxicity and behavioral toxicity of fish exposed to
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CBZ, and generates data to be used to understand mechanisms of action that underlie antiepileptic
drug exposures.
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