
 

Int. J. Environ. Res. Public Health 2020, 17, 8835; doi:10.3390/ijerph17238835 www.mdpi.com/journal/ijerph 

Study Protocol 

Protocol of the STRess at Work (STRAW) Project: 

How to Disentangle Day-to-Day Occupational Stress 

among Academics Based on EMA, Physiological 

Data, and Smartphone Sensor and Usage Data 

Larissa Bolliger 1,*,†, Junoš Lukan 2,†, Mitja Luštrek 2, Dirk De Bacquer 1 and Els Clays 1 

1 Department of Public Health and Primary Care at Ghent University, C. Heymanslaan 10,  

9000 Ghent, Belgium; dirk.debacquer@ugent.be (D.D.B.); els.clays@ugent.be (E.C.) 
2 Department of Intelligent Systems at Jožef Stefan Institute, and Jožef Stefan International Postgraduate 

School, Jamova cesta 39, 1000 Ljubljana, Slovenia; junos.lukan@ijs.si (J.L.); mitja.lustrek@ijs.si (M.L.) 

* Correspondence:  larissa.bolliger@ugent.be; Tel.: +32-(0)9-332-8330 

† Shared first authorship. 

Received: 30 September 2020; Accepted: 25 November 2020; Published: 27 November 2020 

Abstract: Several studies have reported on increasing psychosocial stress in academia due to work 

environment risk factors like job insecurity, work-family conflict, research grant applications, and 

high workload. The STRAW project adds novel aspects to occupational stress research among 

academic staff by measuring day-to-day stress in their real-world work environments over 15 

working days. Work environment risk factors, stress outcomes, health-related behaviors, and work 

activities were measured repeatedly via an ecological momentary assessment (EMA), specially 

developed for this project. These results were combined with continuously tracked physiological 

stress responses using wearable devices and smartphone sensor and usage data. These data provide 

information on workplace context using our self-developed Android smartphone app. The data 

were analyzed using two approaches: 1) multilevel statistical modelling for repeated data to analyze 

relations between work environment risk factors and stress outcomes on a within- and between-

person level, based on EMA results and a baseline screening, and 2) machine-learning focusing on 

building prediction models to develop and evaluate acute stress detection models, based on 

physiological data and smartphone sensor and usage data. Linking these data collection and analysis 

approaches enabled us to disentangle and model sources, outcomes, and contexts of occupational 

stress in academia. 

Keywords: ecological momentary assessment (EMA); physiological data; smartphone sensor and 

usage data; day-to-day occupational stress; academic settings 

 

1. Introduction 

While work in academia used to be seen as relatively stress free, the number of studies reporting 

increasing psychosocial stress in the field of university research is growing. Job insecurity, lack of 

personal or professional development at work, incongruence between the researcher and the institute 

concerning freedom and independence at work, and lack of recognition of peers, are factors 

associated with an increased level of stress among researchers [1]. A study on burnout among 

academics reported work-family conflict, being involved in earning research grants, administrative 

paperwork, and overall high quantitative workload as further work environment risk factors 

experienced by researchers, making it an interesting target group for occupational stress research [2]. 
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Over the past decades, one focus of researchers in the field of psychosocial occupational 

epidemiology has been set on various chronic exposures to psychosocial stress and its adverse impact 

on chronic disease outcomes [3,4]. The influence on mental and cardiovascular health in particular 

has received considerable attention [5,6]. The job-demand-control-support model [7] and the effort-

reward-imbalance model [8] are two leading frameworks in the field of stress research, recognized to 

model psychosocial work environments. Traditional research focusing on chronic stress experiences 

represents a generalization of working life reality. However, dynamic patterns of stress perception 

like short-term episodes of stress at work inducing acute physiological stress responses, are not 

accounted for. 

The STRess At Work (STRAW) project is based on a collaboration between a research team of 

the Department of Public Health and Primary Care at Ghent University, Belgium and a research team 

of the Department of Intelligent Systems at the Jožef Stefan Institute, Slovenia. The experience and 

expertise of these two fields present the opportunity to collaborate on an innovative combination of 

several aspects: 1) we focus on day-to-day stress and not on chronic stress, 2) we detect stress in real-

world settings, meaning at work and not in lab studies in which participants get exposed to artificially 

created stress situations, and 3) we measure work environment risk factors and stress outcomes 

repeatedly, meaning more than twice, over a short period of time as compared to traditional 

longitudinal and follow-up studies. Additionally, physiological responses to stress and smartphone 

sensor and usage data are measured continuously. 

The work environment risk factors and stress outcomes are measured via an ecological 

momentary assessment (EMA). This is a research method which allows participants to report on their 

experiences in real-time and in real-world settings. Data are collected repeatedly over a certain period 

(often several days) and, more recently, through digital platforms like smartphone applications [9]. 

Several recent studies have shown the feasibility of using an EMA approach to investigate work stress 

experiences [10–12]. There are three main benefits to it compared to traditional epidemiological 

methods. Firstly, on top of having data on between-person variations, within-person variations in 

day-to-day experiences are taken into account. Secondly, in the STRAW project, the EMA results, as 

repeated data, were analyzed in combination with the baseline data collected in an initial online 

survey. This offers the opportunity to explore relations between chronic and day-to-day stress 

experiences, while the latter captures fluctuations in work experiences, which increases the 

understanding of psychosocial stress experiences [13]. Thirdly, retrospective recall bias can be 

limited, since the data are collected in real-time, possibly during or shortly after an event or situation 

of interest occurred [14,15]. 

Physiological responses to stress are measured with a wristband. While psychosocial work stress 

and its operating pathophysiological mechanisms are a complex phenomenon [16], the physiological 

nature of acute stress in humans has been well documented [17]. Exposure to a stress stimulus 

induces physiological activation of the sympathetic nervous system, followed by a restoration phase 

through the activation of the parasympathetic nervous system. This process has been monitored via 

physiological signals such as heart rate and blood pressure within controlled lab experiments, where 

the participant gets exposed to an artificially created stress situation such as solving a mathematical 

equation [17,18]. Compared to these studies, the STRAW project collected data on stress experiences 

in real-world work environments. Through machine-learning, a computer science method which 

focuses on building prediction models from previously collected data, acute stress detection models 

can be developed and evaluated. Several studies reported success when it came to differentiating 

between acute stress conditions and periods without any stress experiences, by combining different 

physiological signals, mainly heart rate variability and electrodermal activity, which were measured 

in the STRAW project [19–21]. Furthermore, physical activity and stress can cause similar 

physiological responses. To be able to distinguish these two, accelerometer data were collected. 

Physical activity is also relevant because it represents a context which might affect stress experiences. 

An activity-recognition method has previously been developed, which recognizes participants’ 

activities from accelerometer data [22]. 
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This paper describes the protocol of a study in which we used a novel combination of 

methodological approaches to explore day-to-day stress in real-world settings among academic 

personnel. The study aims to answer the following main research question: How to best model 

relations between 1) work environment risk factors, 2) stress outcomes experienced in occupational 

settings, 3) physiological stress parameters, and 4) context as inferred from smartphone sensor and 

usage data in office-based workers employed in academic settings? 

2. Materials and Methods 

2.1. Study Design and Study Population 

The STRAW project combines an electronic daily diary study in form of an ecological 

momentary assessment (EMA) with physiological data, and smartphone sensor and usage data 

monitoring. 

The population of interest was healthy adults with a sedentary office-based job, employed in an 

academic setting while their educational level was of no importance. Further inclusion criteria were 

that participants needed to use an Android smartphone, work at least 80 % of the full-time workweek 

(increased exposure to work environment risk factors was required), agree to install the app on their 

personal smartphone or the smartphone they use most during office hours and for work-related 

purposes, agree to wear the Empatica wristband continuously during waking hours of working days, 

and have permission from their superiors to participate in data collection during working hours. 

The stress detection model previously developed, using the Empatica wristband, was 

constructed from lab recordings of 21 participants and real-world recordings of 5 participants [21]. 

In the STRAW project, a higher sample was required to analyze the relation to work environment 

risk factors and stress outcomes, and due to the broader and more complex study protocol. We aimed 

to include at minimum 50 participants (approximately 25 in each country) after drop-out. Having 

participated on 10 out of 15 days was considered full participation. Participants who dropped out 

prematurely (i.e., after 9 days or less) were be replaced by new participants. 

Since this was a prospective observational study, no health-related risks or benefits for 

participants were expected. The STRAW project received ethical clearance from the Commission of 

Medical Ethics of the Ghent University Hospital, Belgium (No. EC/2019/1091) and the Ethics 

Committee of the Faculty of Arts at the University of Ljubljana, Slovenia (No. 168-2019). 

2.2. Procedure and Data Collection Methods 

Potential participants were recruited via convenience sampling, contacted via face-to-face 

interaction or email, and informed about the STRAW project with a structured information letter. 

Further recruitment strategies included reaching out to the personal network of the researchers, 

printed flyers, and posts on internal communication pages. Two academic institutions in Belgium 

and two academic institutions in Slovenia were contacted. Before recruitment in an institution 

started, the head of the department or research group was contacted to receive approval to contact 

their employees directly. Interested persons were screened for eligibility with our inclusion criteria; 

they were then included, and more detailed information about the data collection process was shared 

with the participants via email and our STRAW website (https://strawproject.eu/). 

During a briefing at the participant’s office, participants signed a printed informed consent form, 

were guided through the installation and usage of the STRAW app on their smartphone and the 

usage of the Empatica wristband, had their blood pressure and heart rate measured, and were asked 

to wear the Empatica wristband during the first night to collect physiological baseline data during 

their sleep. The blood pressure and heart rate are measured twice per session with the clinically 

certified Omron M6 in Belgium and the Omron M10-IT in Slovenia. Furthermore, they received access 

to an information document which summarized all relevant information given during the briefing, 

including contact details to reach the researchers in case of questions or problems. 

During a debriefing, participants had their blood pressure and heart rate measured again. 

Participants in Belgium received a 30 EUR voucher as a monetary reimbursement for their efforts. For 
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the partner institute in Slovenia, as a public institution, providing incentives to study participants is 

legally very difficult, so no such monetary incentives were given to participants in Slovenia. This may 

limit the comparability of both samples, but since it was a modest monetary reimbursement, the 

impact is expected to be limited. Moreover, all participants received a personalized feedback report 

based on their own study results at the end of their participation as an incentive. An illustrated 

description of the data collection procedure can be found in Figure 1. 

 

Figure 1. Data collection procedure. 

Once participants were included, they were asked to complete an online survey on LimeSurvey, 

accessible via our STRAW website. The survey consisted of an electronic informed consent form, 

items concerning demographics, work- and health-related information, and questionnaires which 

were greatly overlapping with the questionnaires included in the EMA (see Table A1 for an 

overview). These results served as baseline data. 

Participants were then asked to answer the EMAs and to wear the Empatica wristband for 15 

consecutive working days (the briefing marks the first and the debriefing the last day of data 

collection). The smartphone sensor and usage data were collected during the same period. While the 

EMAs asked for active participation, physiological data and smartphone sensor and usage data were 

collected automatically (given that the participants were wearing the Empatica wristband as 

planned). Data were only collected during weekdays to decrease participant burden. EMAs and 

smartphone sensor and usage data automatically stopped at Friday around midnight and picked up 

on Monday after midnight again. Participants did not need to wear the Empatica wristband during 

weekends. 

The data collection period consisted of three parts: 1) the EMA via the STRAW app, 2) the 

physiological data measured with Empatica wristbands, and 3) smartphone sensor and usage data 

via the STRAW app. An overview of the data collection parts can be found in Figure 2. 
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Figure 2. Three parts of data collection methods. 

2.2.1. Ecological Momentary Assessment (EMA) 

EMA Content Development and Description 

The content of the EMA was specifically designed for the STRAW project, based on a several 

step process. Firstly, two pre-studies were conducted for initial content ideas and potentially suitable 

questionnaires: 1) a systematic literature review focusing on work environment risk factors causing 

day-to-day occupational stress using repeated measurements (registered on PROSPERO 

(https://www.crd.york.ac.uk/prospero/), ID: CRD42018105355), and 2) a focus group study 

investigating causes for occupational stress among academic and non-academic office-based 

workers. Publications on both pre-studies are in preparation. Secondly, the final set of questionnaires 

was then chosen due to their relevance in the field of psychosocial occupational epidemiology, 

reliability and validity, and based on two frameworks: 1) the 6th European working conditions 

survey [23] for the work environment risk factors and 2) the stress process model [24] for the stress 

outcomes. Thirdly, the complete EMA protocol, especially the questionnaires, were extensively tested 

within the research team, among volunteering colleagues, and five participants of a pilot study which 

took place at Ghent University from February until March 2020. 

The items included in the STRAW project were chosen based on their factor loadings, reliability, 

content, applicability to be asked repeatedly, and their previous use in comparable studies. The 

content and structure per EMA type can be found in Figure 3. See Table A1 for an overview of the 

included questionnaires. 



Int. J. Environ. Res. Public Health 2020, 17, 8835 6 of 15 

 

 

 

Figure 3. A simplified overview of one day of ecological momentary assessments (EMAs). Column 

description from left to right: work environment risk factors/stress outcomes, questionnaire subscales, 

and questionnaires used in EMA. Numbers in brackets: number of items per EMA/total number of 

items in the questionnaire subscale. 

Response options were based on the original questionnaires and adapted to make them suitable 

to be answered several times per day. These response options are mostly Likert scales (e.g., “Since 

the last questionnaire: my job allowed me to make a lot of decisions on my own”, answered on a 4-

point Likert scale ranging from “I strongly disagree” (0) to “I strongly agree” (3)) and binary answer 

scales (yes/no). The work activities were selected from a pre-defined list, and only a few questions 

were answered by using numbers in open-response format (example shown in Figure 4). 

Current activity, caffeine consumption, smoking behavior, breaks

Morning EMA Daytime EMA

Risk factor

• Sleep Quality (1/1)
Quantity (1/1)

Pittsburgh Sleep 
Quality Index [29]

Work environment risk factors

• Work intensity Demand (2/5) Job Content Questionnaire [7]

• Skills + discretion Control (2/9) Job Content Questionnaire [7]

Stress outcomes

• Affective response Positive affect (2/10)
Negative affect (2/10)

Positive + Negative Affect Schedule [38]

• Appraisal Stressfulness (*/2)
Threat (2/4)
Challenge (2/4)

Stress Appraisal Measure [39]

Evening EMA

No. of working hours

Work environment risk factors

• Working time quality Work - private life (2/7)
Private life – work (2/4)

Work-Life Balance Inventory [30]

• Social environment Supervisor treatment (2/14)
Co-worker treatment (2/4)

Perceptions of Fair Interpersonal Treatment 
Scale [31]

• Social environment Supervisor support (2/4)
Co-worker support (2/4)

Job Content Questionnaire [7]

Stress outcomes

• Motivational response Vigor (2/5)
Dedication (2/5)
Absorption (2/6)

Utrecht Work Engagement Scale [32]

• Cognitive outcome Psychological detachment (2/4) Recovery Experience Questionnaire [33]

• Behavioral response Relaxation (2/4) Recovery Experience Questionnaire [33]

• Behavioral response Active coping + planning (2/8)
Seeking social support for instrumental reasons
+ emotional reasons (2/8)
Focus on + venting of emotions (2/4)

COPE Inventory [34]

• Health outcome Ache + gastrointestinal symptoms (2/4) Larsen + Kasimatis' Symptoms Checklist [40]
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Figure 4. Example of an EMA item. An EMA is divided into three parts: 1) instruction, emphasizing 

the time frame about which the item is asking, 2) item (question or statement), and 3) participants’ 

answer. 

When no official questionnaire translations in Dutch and Slovenian were publically available, 

the content was translated from English to Dutch and Slovenian by native speakers and official 

translators, using the back-translation technique. 

Our STRAW app was developed using the AWARE framework [25] as a starting point, but the 

EMA capabilities were significantly upgraded. This app implemented the EMAs and presented them 

as a well-structured and user-friendly electronic diary on the participant’s own smartphone to 

maximize participant adherence. 

The EMA protocol included three different types: 1) morning EMA, 2) daytime EMA, and 3) 

evening EMA. Since the EMAs were answered with a relatively high frequency, a few items per 

questionnaire subscale focusing on work environment risk factors and stress outcomes as our main 

interest were automatically and randomly selected per EMA. For example: to measure the work 

environment risk factor “social environment”, two out of four items of the questionnaire subscale 

“supervisor support” of the job content questionnaire were answered by the participant. One special 

case is the questionnaire subscale “stressfulness”. The participants were asked if they experienced a 

particular event that created tension in them. In case of yes, they received further sub-questions from 

the questionnaire subscales “threat” and “challenge”. In case of no, they were asked if the overall 

period since the last questionnaire created tension in them and they were asked about the 

“stressfulness” of such period. 

In addition to the work environment risk factors and stress outcomes, health-related behaviors, 

which are well known to have an impact on physiological stress responses, such as caffeine 

consumption, smoking, and breaks from work (especially when breaks include physical activity), 

were included in the EMA. Questions about health-related behaviors were personalized during the 

briefing, for instance non-smoking participants were not asked about smoking behavior. 

Additionally, the participants registered their total working hours of that day at the beginning of the 

evening EMA. Furthermore, participants were asked about the activity they were currently involved 

in, providing information about possible work environment risk factors and/or information about 

their current work environment. We developed this activities scheme to be suitable for employees in 

academic settings and confirmed its structure and completeness with literature [26]. A flowchart of 

the activity-related questions can be found in Figure 5. 
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Figure 5. Overview of activities during working hours, included in the EMA. 

As encouragement, participants received a short feedback message included in the morning 

EMA on their response performance of the previous day they participated (e.g., on Monday they 

receive their participation results of the previous Friday). 

EMA Triggering 

The EMAs followed a schedule, personalized to participants’ wishes. The morning EMA was 

triggered randomly between 30 min and 60 min after the pre-set time of the start of work. In case a 

participant was not yet at their office at that time, they could postpone it for 30 min at a time. After 

the morning EMA, a daytime EMA was scheduled for every 90 min. This schedule only changed 

when a participant put off answering a questionnaire, so that triggering the next one would result in 

less than 30 min separation between two EMA sessions. The daytime EMAs continued until the 

participant indicated they had left their office. Finally, the evening EMA triggered at the pre-set time, 

before which the participant confirmed they had left the office or postponed it again for 30 min at a 

time. Edge cases of overtime work were also handled separately. This general schedule of EMAs 

repeated every weekday, but participants had the option of indicating they would not be working at 

their office on a particular day (e.g., in case of holidays) and the schedule continued the next working 

day as normal. 

We wanted to minimize the number of missed notifications during the workday, so we took 

several steps to alert the users to them. We implemented additional notifications (re-reminders) for 

the daytime EMAs repeating every 90 min. If after the first notification the EMA was not answered 

in 15 min, a second notification was delivered. After this, no further notifications were issued for 75 

min: while participants could still choose to answer the available questionnaire, they would not be 

disturbed again until the 90-min period was through. Participants also always had the option to 

snooze the notification: if they dismissed it (swiped it away), it reappeared after 15 min. Previous 

research has shown that such a snooze function generating reminder notifications increases 

participant adherence [12]. As an additional alert, if a notification was waiting, it appeared as a heads-

up notification (in a floating window) on each smartphone unlock. 

2.2.2. Physiological Data 

Physiological data were collected via the Empatica E4 wristband, which is an unobtrusive wrist 

device [27]. We felt that a wristband was the most convenient type of wearable device for monitoring 

physiological parameters. This particular device measures heart rate variability and electrodermal 

activity, being the most researched and most reliable parameters to detect stress, that can be provided 

via peripherally located physiological measurements. Further parameters measured by the Empatica 

What have you mainly been doing within the last 10 minutes?

c) Break or personal mattera) Working with others b) Transit d) Individual work

How did you work with others?

a) Face-to-face interaction
b) Telecommunication-based 
     interaction (e.g., phone call, Skype)
c) Teaching or presenting 
    (face-to-face or online)
d) Other

What kind of interaction was that?

a) Formal
b) Informal

How many people were involved besides yourself?

a) One other person
b) Two other persons
c) More than two other persons

What type of individual work?What type of break?Where did you travel between?

a) Commuting from home to work 
    or from work to home
b) Transit from one work location 
     to another
c) Other

a) Coffee, lunch, or toilet break
b) Personal contact with others
c) Other

f) Reading
g) Writing

a) Emails
b) Data analysis or programming
c) Following an online activity 
    (e.g., webinar, workshop, course)
d) Planning (e.g., scheduling or 
    reflecting on your tasks)
e) Other

Did you use a computer or phone for that?

a) Yes
b) No
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E4 wristband were heart rate and skin temperature. Acceleration was measured to monitor context. 

The Empatica E4 wristband is one of few devices that combines all these features, and is probably the 

most mature and accurate, having been successfully used in many previous studies. We also felt that 

a wristband was the most convenient type of wearable device for monitoring physiological 

parameters. These two reasons led us to choose Empatica over a chest-worn ECG device, even though 

the latter would probably provide more accurate heart rate variability data. 

Both the baseline measures of the physiological response during the first night and the two blood 

pressure measures (during the briefing and the debriefing) were used to predict blood pressure from 

the heart rate measures, which were collected via the Empatica wristbands, to improve stress 

prediction models. 

An overview of all parameters measured and the assessment scheme can be found in Figure 2. 

2.2.3. Smartphone Sensor und Usage Data 

Apart from serving as a platform for the EMAs, our STRAW app tracked smartphone sensor and 

usage data. Such data provided cues about contextual and environmental factors to improve stress 

prediction models, as demonstrated in previous research [28]. 

One sensor that was specifically developed and extensively tested for the STRAW project is the 

detection of human voice activity [29]. This sensor is relevant for our research question, since 

communication with others or more generally the social environment is a well-known work 

environment risk factor, as described in previous literature. 

An overview of all parameters measured and the assessment scheme can be found in Figure 2. See 

Table A2 for a more detailed list and technical descriptions of them all, including the smartphone 

sensor and usage data. 

2.3. Data Management and Privacy 

The data from the EMA and smartphone sensor and usage data were stored on the smartphone 

and from there automatically transferred to a database. The data from the Empatica wristbands had 

to be transferred manually (approximately once per day) by the participants via the E4 Manager 

software to the E4 Connect cloud, which is a protected storage space provided by Empatica. The 

participants received their individual, automatically generated credentials to access the online survey 

via our STRAW website and to transfer their data from the Empatica wristband to the E4 Manager. 

During the data collection period, we were able to monitor incoming data and any potential technical 

issues via a self-developed dashboard and the E4 Connect cloud. 

Within the STRAW project, private and sensitive data were collected. Several precautions were 

taken to protect the participants’ data with utmost care. User credentials and thereby access to the 

data were only given to the researchers directly involved in data management and analysis. All data 

were pseudonymized by replacing the participants’ full names with a participant ID, a random and 

automatically generated numeric identifier. The link between these two was stored separately from 

all other data. Additionally, location data were transformed so that the true location was never 

revealed, but the distances and recurring places can still be extracted. 

The data were stored on the computer servers of the research institute in Slovenia, where servers 

dedicated to the STRAW project are accessible to authorized users only via the local internet 

connection or via a Virtual Private Network (VPN). An application vulnerability analysis carried out 

for the STRAW project showed that the risk of threats such as the data being hacked by an external 

party as very low. 

We would like to emphasize that only communication metadata were stored. For example, the 

contents of messages, notifications, or audio data were never recorded or saved. The sole interest was 

the amount, timing, and length of notifications and human voice activity. Furthermore, the feedback 

report including their results was disseminated as a printed version via personal delivery of a 

researcher or the institutions’ internal mail service. These precautions taken to protect participants’ data 

according to the General Data Protection Regulation (GDPR) were emphasized in the informed consent 

form. 
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2.4. Stress Modelling and Data Analysis 

We are going to approach stress modelling using different analytical strategies. We aim to 

improve our machine learning stress recognition models. While the existing models rely mainly on 

physiological data, this will be combined with participants’ behavior and context using the data from 

this study. These will be characterized both by features derived from smartphone usage (e.g., app 

usage) and non-digital activities (e.g., physical activity) tracked by the Empatica wristband. 

Smartphone-derived contexts will be considered potential causes and physiological data potential 

consequences of day-to-day stress. We will explore possibilities of combining all features into a single 

model and will incorporate contextual information (e.g., time of the day an EMA was responded to). 

Our second aim is to investigate the relations between work environment risk factors and stress 

outcomes, while taking work activities and health-related behaviors into account. Traditional 

statistical methods will be used for this purpose, mainly multilevel statistical modelling for repeated 

data. The combination with physiological data and smartphone sensor and usage data will provide 

additional interesting results. This rich dataset will allow distinction between the effect of 

occupational stress due to objective work environment risk factors (e.g., work activities definable 

from the EMA and automated smartphone sensor and usage data) and due to subjective appraisal of 

occupational stress experienced [10]. 

3. Discussion 

The STRAW project aims to disentangle and model relations between work environment risk 

factors, stress outcomes, physiological data, and context as inferred from smartphone sensor and 

usage data, within our target group of employees in academic settings. 

This project provides a unique opportunity to advance stress research by integrating experience 

and expertise from two diverse fields: psychosocial occupational epidemiology and machine-

learning disciplines. The results will be used to work further on personal health systems, where 

concepts of affective computing are becoming increasingly relevant to better understand users and 

achieve beneficial change in behavior. In addition to academic knowledge on occupational stress, the 

STRAW project has the potential for relevant practical impacts. Our results will provide concrete 

information on day-to-day stress experiences among academic employees, backed by solid evidence. 

This gives the possibility to advise on workplace procedures and policies, aiming to reduce stress at 

work in academic settings. 

3.1. Strengths and Limitations 

The main strength of the STRAW project is the combination of EMAs, physiological data, and 

smartphone sensor and usage data, which resulted in a rich dataset, providing the opportunity to 

explore occupational stress with subjective and objective measures, taking the work environment into 

account. The repeated measures allow research on within- and between-person levels and on 

relations between day-to-day fluctuations of work stress and chronic stress experiences. The EMA 

protocol contains a carefully planned and implemented content. Furthermore, the protocol by which 

the EMAs were triggered was customized not only to the STRAW project, but also to the individual 

participants. We developed the STRAW app over the course of over two years, built on our two pre-

studies, previous research, and our pilot study, and we keep improving it throughout the data 

collection process. The STRAW app is backed by the self-developed dashboard to ensure that we 

receive and store all data safely, to maximize the quality and quantity of results we can get, and the 

conclusions we can draw. Due to the specificity of the target group and the work setting, 

transferability of the results might be possible to some extent to other sedentary office-based jobs, but 

generalizability to other occupational fields will be limited. 

The main limitation of the STRAW project is the high demand on participants. Particularly, 

answering EMAs and wearing the Empatica wristband asks for time, effort, and adherence to the 

protocol from participants and ongoing involvement from the researchers during data collection to 

provide support. However, based on feedback from the pilot study participants, technical issues, 
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worries about privacy, or other similar problems could be either solved or limited to an acceptable 

minimum. Furthermore, ongoing involvement from the researchers to offer support in case of any 

issues or uncertainties appeared to strengthen participant adherence. The main technical restriction 

was the limitation to Android smartphones, excluding iPhone users, which was due to restrictions 

on financial and human resources. A high amount of private and sensitive data were collected, 

primarily with the smartphone sensor and usage data. However, technical precautions were taken 

for all steps of the process, from tracking the data on the smartphones until final data analysis and 

result reporting. 

3.2. Impact of the Covid-19 Pandemic 

The currently ongoing Covid-19 situation influences our professional and personal lives and 

shapes the way of working of our target population, such as increased working from home or 

remotely in general. Due to this, we had to deal with long pauses in data collection. 

In the initial protocol, participants were participating only on days when they were working at 

the office. We are now adapting this protocol and adjusting the data collection process so that 

participants can participate during working at home or remotely in general, as well. A further 

adaptation focuses on the work activities to the new way of working, such as adding “following an 

online activity (e.g., webinar, workshop, or course)” or adding the option of “teaching online” to the 

teaching and presenting options. Through this process we aim to adapt our research to novel ways 

of doing one’s job in the field of academia, being aware that the Covid-19 pandemic might have an 

influence on participants’ perception of occupational stress. 

4. Conclusions 

This study protocol describes the novelty of the STRAW project: combining an EMA study, 

physiological data, and smartphone sensor and usage data. The core of the project is the self-

developed STRAW app, providing our participants of this study on day-to-day occupation stress 

with a carefully developed and well-designed data collection tool. Through the approach of collecting 

data in real-world work environments, we will be able to draw conclusions on which work 

environment risk factors cause day-to-day stress, which stress outcomes are experienced, in which 

work settings they occur, and how these results are interconnected. We aim to disentangle the 

phenomenon of occupational stress among academics, hoping to advance research and aiming to get 

results enabling us to provide practical advice to reduce stress at work and to prevent its adverse 

consequences. 
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Appendix A 

Table A1. Questionnaires included in the STRAW project. 

Questionnaires Online survey EMA 

Pittsburgh Sleep Quality Index [30] Included Included 

Job Content Questionnaire [7] Included Included 

Work-Life Balance Inventory [31] Included Included 

Perceptions of Fair Interpersonal Treatment Scale [32] Included Included 

Utrecht Work Engagement Scale [33] Included Included 

Recovery Experience Questionnaire [34] Included Included 

COPE Inventory [35] Included Included 

Effort Reward Imbalance Questionnaire [8] Included  

Perceived Stress Scale [36] Included  

Short Form - 12 [37] Included  

Connor-Davidson Resilience Scale [38] Included  

Positive and Negative Affect Schedule [39]  Included 

Stress Appraisal Measure [40]  Included 

Larsen and Kasimatis’ Symptoms Checklist [41]  Included 

Table A2. List and technical descriptions of smartphone sensor and usage data. 

Sensors Description 

Acceleration 

There are several sources (i.e., virtual sensors) of acceleration data in a smartphone. 

Accelerometers measure acceleration magnitude in various directions and report either 

linear acceleration (without gravity effects), gravity, or combined acceleration. This is 

used further in Google’s activity recognition Application Programming Interface (API). 

Applications 

This includes the category of the application currently in use (i.e., running in the 

foreground) and data related to notifications that any application sends. Notification 

header text (but not content), the category of the application that triggered the 

notification and delivery modes (such as sound, vibration, and LED light) are logged. 

Barometer Ambient air pressure. 

Battery 

Battery information, such as current battery percentage level, voltage, and temperature, 

and its health, as well as power-related events, such as charging and discharging times 

are monitored. 

Bluetooth 

This sensor logs surrounding Bluetooth-enabled and visible devices, specifically their 

hashed Media Access Control (MAC) addresses, and Received Signal Strength Indicator 

(RSSI) in decibels. 

Communication 

Information about calls and messages sent or received by the user. This includes the call 

or message type (i.e., incoming, outgoing, or missed), length of the call session, and 

trace, a hashed phone number that was contacted. The phone numbers themselves or 

the contents of messages and calls were not logged. 

Light Luminance of the ambient light captured by the light sensor. 

Location 

Device’s current location (latitude, longitude, and altitude) and its velocity (speed and 

bearing). This uses various methods, such as GPS and known Wi-Fi’s in vicinity 

resulting in different degrees of accuracy. Location category is also acquired with 

Foursquare Application Programming Interface (API). 

Network 
Network availability (e.g., none or aeroplane mode, Wi-Fi, Bluetooth, GPS, or mobile) 

and traffic data (received and sent packets and bytes over either Wi-Fi or mobile data). 

Processor 
Processor load in Central Processing Unit (CPU) ticks and the percentage of load 

dedicated to user and system processes or idle load. 

Proximity 
Uses the sensor by the device’s display to detect nearby objects. It can either be a binary 

indicator of an object’s presence or the distance to the object. 

Screen Screen status: turned on or off and locked or unlocked. 

Temperature Temperature of the phone’s hardware sensor. 

Time zone Device’s current time zone. 

Voice activity 
A classifier trained using Weka. The features are calculated using openSMILE and the 

output is an indicator of human voice activity. 
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Wi-Fi 

Logs of surrounding Wi-Fi access points, specifically their hashed Media Access Control 

(MAC) addresses, Received Signal Strength Indicator (RSSI) in decibels, security 

protocols, and band frequency. The information on the currently connected access point 

is also included. 
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