# Supplementary material

# Table S1. PRISMA checklist.

| Section/topic                      | #  | Checklist item                                                                                                                                                                                                                                                      |
|------------------------------------|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TITLE                              |    |                                                                                                                                                                                                                                                                     |
| Title                              | 1  | Identify the report as a systematic review, meta-analysis, or both.                                                                                                                                                                                                 |
| ABSTRACT                           |    |                                                                                                                                                                                                                                                                     |
| Structured summary                 | 2  | Provide a structured summary including, as applicable: background; objectives; da<br>eligibility criteria, participants, and interventions; study appraisal and synthesis m<br>limitations; conclusions and implications of key findings; systematic review registr |
| INTRODUCTION                       |    | ·                                                                                                                                                                                                                                                                   |
| Rationale                          | 3  | Describe the rationale for the review in the context of what is already known.                                                                                                                                                                                      |
| Objectives                         | 4  | Provide an explicit statement of questions being addressed with reference to partic comparisons, outcomes, and study design (PICOS).                                                                                                                                |
| METHODS                            |    |                                                                                                                                                                                                                                                                     |
| Protocol and registration          | 5  | Indicate if a review protocol exists, if and where it can be accessed (e.g., Web addre provide registration information including registration number.                                                                                                              |
| Eligibility criteria               | 6  | Specify study characteristics (e.g., PICOS, length of follow-up) and report character considered, language, publication status) used as criteria for eligibility, giving ratio                                                                                      |
| Information sources                | 7  | Describe all information sources (e.g., databases with dates of coverage, contact wi<br>identify additional studies) in the search and date last searched.                                                                                                          |
| Search                             | 8  | Present full electronic search strategy for at least one database, including any limit could be repeated.                                                                                                                                                           |
| Study selection                    | 9  | State the process for selecting studies (i.e., screening, eligibility, included in system applicable, included in the meta-analysis).                                                                                                                               |
| Data collection process            | 10 | Describe method of data extraction from reports (e.g., piloted forms, independentl any processes for obtaining and confirming data from investigators.                                                                                                              |
| Data items                         | 11 | List and define all variables for which data were sought (e.g., PICOS, funding sour assumptions and simplifications made.                                                                                                                                           |
| Risk of bias in individual studies | 12 | Describe methods used for assessing risk of bias of individual studies (including symbols) whether this was done at the study or outcome level), and how this information is synthesis.                                                                             |
| Summary measures                   | 13 | State the principal summary measures (e.g., risk ratio, difference in means).                                                                                                                                                                                       |
| Synthesis of results               | 14 | Describe the methods of handling data and combining results of studies, if done, in consistency (e.g., I <sup>2</sup> ) for each meta-analysis.                                                                                                                     |

| Section/topic               | #  | Checklist item                                                                                                           |
|-----------------------------|----|--------------------------------------------------------------------------------------------------------------------------|
| Risk of bias across studies | 15 | Specify any assessment of risk of bias that may affect the cumulative evidence (e.g selective reporting within studies). |

| Additional analyses           | 16 | Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, me<br>indicating which were pre-specified.                                                 |
|-------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RESULTS                       |    |                                                                                                                                                                             |
| Study selection               | 17 | Give numbers of studies screened, assessed for eligibility, and included in the revie<br>exclusions at each stage, ideally with a flow diagram.                             |
| Study characteristics         | 18 | For each study, present characteristics for which data were extracted (e.g., study si period) and provide the citations.                                                    |
| Risk of bias within studies   | 19 | Present data on risk of bias of each study and, if available, any outcome level asses                                                                                       |
| Results of individual studies | 20 | For all outcomes considered (benefits or harms), present, for each study: (a) simple<br>each intervention group (b) effect estimates and confidence intervals, ideally with |
| Synthesis of results          | 21 | Present results of each meta-analysis done, including confidence intervals and mea                                                                                          |
| Risk of bias across studies   | 22 | Present results of any assessment of risk of bias across studies (see Item 15).                                                                                             |
| Additional analysis           | 23 | Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses,<br>Item 16]).                                                                         |
| DISCUSSION                    | •  | ·                                                                                                                                                                           |
| Summary of evidence           | 24 | Summarize the main findings including the strength of evidence for each main out relevance to key groups (e.g., healthcare providers, users, and policy makers).            |
| Limitations                   | 25 | Discuss limitations at study and outcome level (e.g., risk of bias), and at review-lev<br>retrieval of identified research, reporting bias).                                |
| Conclusions                   | 26 | Provide a general interpretation of the results in the context of other evidence, and research.                                                                             |
| FUNDING                       |    | •                                                                                                                                                                           |
| Funding                       | 27 | Describe sources of funding for the systematic review and other support (e.g., supplication for the systematic review.                                                      |

*From:* Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097

For more information, visit: **www.prisma-statement.org**.

 Table S2. Boolean search strategy for each database.

| PubMed                    | (("core strength"[Title/Abstract] OR "trunk strength"[Title/Abstract] OR "trunk<br>stability"[Title/Abstract] OR "trunk stabilization"[Title/Abstract] OR "trunk<br>control"[Title/Abstract] OR "core stability"[Title/Abstract] OR "core<br>stabilization"[Title/Abstract] OR "core control"[Title/Abstract] OR "lumbar<br>stability"[Title/Abstract] OR "lumbar stabilization"[Title/Abstract] OR "lumbar<br>control"[Title/Abstract] OR "spine stability"[Title/Abstract] OR "lumbar<br>control"[Title/Abstract] OR "spine stability"[Title/Abstract] OR "lumbopelvic<br>stabilization"[Title/Abstract] OR "spine control"[Title/Abstract] OR "lumbopelvic<br>stabilization"[Title/Abstract] OR "lumbopelvic control"[Title/Abstract] OR "lumbopelvic<br>stabilization"[Title/Abstract] OR "lumbopelvic stability"[Title/Abstract] OR "lumbopelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract] OR "lumbopelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract] OR "lumbopelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract] OR "lumbo-pelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract] OR "lumbo-pelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract] OR "lumbo-pelvic<br>control"[Title/Abstract] OR "lumbo-pelvic stabilization"[Title/Abstract]] AND<br>("training"[Title/Abstract] OR "stroke"[Title/Abstract]] OR "program"[Title/Abstract]] OR<br>"programme") AND ("stroke"[Title/Abstract]] NOT "cell"[Title/Abstract]]                                                                                                                                                                                      |
|---------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Scopus                    | ITTLE-ABS ("core strength" OR "trunk strength" OR "trunk stability" OR "trunk<br>stabilization" OR "trunk control" OR "core stability" OR "core stabilization" OR "core<br>control" OR "lumbar stability" OR "lumbar stabilization" OR "lumbar<br>control" OR "spine stability" OR "spine stabilization" OR "spine<br>control" OR "lumbopelvic stability" OR "lumbopelvic control" OR "lumbopelvic<br>stabilization" OR "lumbo-pelvic stability" OR "lumbo-pelvic control" OR "lumbo-pelvic<br>stabilization" OR "lumbo-pelvic stability" OR "lumbo-pelvic<br>("stroke") AND NOT ("cell" ) AND (LIMIT-TO (DOCTYPE , "ar") ) AND (LIMIT-<br>TO (LANGUAGE , "English" )) |
| Cochrane<br>and<br>EMBASE | ("core strength" OR "trunk strength" OR "trunk stability" OR "trunk stabilization" OR "trunk control" OR "core stability" OR "core stabilization" OR "core control" OR "lumbar stability" OR "lumbar stabilization" OR "lumbar control" OR "spine stability" OR "spine stabilization" OR "lumbopelvic stability" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "lumbopelvic control" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "lumbopelvic control" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "lumbopelvic control" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "lumbopelvic control" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "lumbopelvic control" OR "lumbopelvic control" OR "lumbopelvic stabilization" OR "stroke") AND ("training" OR "exercises" OR "program" OR "programme") AND ("stroke") AND NOT ("cell")                                                                                                                                                                                                                                                                                                                                                                                                             |

# Forest plot of the main outcomes analyzed

|                                                                               | Experimental  |                        |         | c    | ontrol                    |                        |        | Std. Mean Difference    |      | Std. Mean Difference                           |
|-------------------------------------------------------------------------------|---------------|------------------------|---------|------|---------------------------|------------------------|--------|-------------------------|------|------------------------------------------------|
| Study or Subgroup                                                             | Mean          | SD                     | Total   | Mean | SD                        | Total                  | Weight | IV, Random, 95% CI      | Year | IV, Random, 95% CI                             |
| De Sèze 2001                                                                  | 33.7          | 11.5                   | 10      | 20   | 18.3                      | 10                     | 6.7%   | 6.7% 0.86 [-0.07, 1.78] |      |                                                |
| Verheyden 2009                                                                | 4.82          | 4.82 2.69 17 3.31 3.59 |         | 16   | 8.9% 0.47 [-0.23, 1.16] 2 |                        |        | +                       |      |                                                |
| Yoo 2010                                                                      | 4.78          | 4.55                   | 28      | 2.45 | 4.31                      | 31                     | 10.9%  | 0.52 [-0.00, 1.04]      | 2010 |                                                |
| Vijayakumar 2011                                                              | 6.96          | 1.28                   | 10      | 3.13 | 1.24                      | 10                     | 4.1%   | 2.91 [1.58, 4.25]       | 2011 |                                                |
| Lee 2011                                                                      | 3.7           | 2.3                    | 14      | 0.9  | 1.4                       | 14                     | 7.4%   | 1.43 [0.58, 2.27]       | 2011 |                                                |
| Saeys 2012                                                                    | 8.72          | 2.8                    | 18      | 2.87 | 3.23                      | 15                     | 7.4%   | 1.90 [1.06, 2.74]       | 2012 |                                                |
| Jung 2014                                                                     | 2.4 1.5 9 0.1 |                        | 2.38    | 8    | 5.8%                      | 1.11 [0.07, 2.16]      | 2014   |                         |      |                                                |
| Jung 2015                                                                     | 2.36          | 2.36 2.94 11 -0.27 1.2 |         | 1.27 | 11                        | 6.8% 1.12 [0.21, 2.03] |        |                         |      |                                                |
| Cabanas-Valdés 2015                                                           | 5.88          | 3.48                   | 40      | 2.5  | 2.2                       | 39                     | 11.4%  | 1.15 [0.67, 1.62]       | 2015 |                                                |
| Rose 2016                                                                     | 1.83          | 1.28                   | 12      | 1.75 | 2.19                      | 12                     | 7.8%   | 0.04 [-0.76, 0.84]      | 2016 | <del></del>                                    |
| Haruyama 2016                                                                 | 4.13          | 2.38                   | 16      | 1.19 | 2.79                      | 16                     | 8.3%   | 1.11 [0.35, 1.86]       | 2016 |                                                |
| Shin 2016                                                                     | 3.08          | 2.71                   | 12      | 0.09 | 1.24                      | 12                     | 6.8%   | 1.37 [0.46, 2.28]       | 2016 |                                                |
| Park 2019                                                                     | 3.07          | 2.04                   | 14      | 0.93 | 2.23                      | 14                     | 7.9%   | 0.97 [0.18, 1.76]       | 2018 |                                                |
| Total (05% CI)                                                                |               |                        | 211     |      |                           | 208                    | 100.0% | 1 06 [0 74 1 27]        |      |                                                |
| Total (95% CI)                                                                |               |                        | 211     |      |                           | 208                    | 100.0% | 1.06 [0.74, 1.37]       |      |                                                |
| Heterogeneity: $Tau^2 = 0.17$ ; $Chi^2 = 25.59$ , $df = 12$ (P = 0.01); $I^2$ |               |                        |         |      |                           |                        | = 53%  |                         |      | -4 -2 0 2 4                                    |
| Test for overall effect: Z                                                    | = 6.51        | (P < 0                 | 0.00001 | )    |                           |                        |        |                         |      | Fayour control group Fayour intervention group |

# Figure S1. Pooled effect sizes on trunk function.

|                                                                                        | Experimental |        |       | Control |            |       | :      | Std. Mean Difference |                                                | Std. Mean Difference |
|----------------------------------------------------------------------------------------|--------------|--------|-------|---------|------------|-------|--------|----------------------|------------------------------------------------|----------------------|
| Study or Subgroup                                                                      | Mean         | SD     | Total | Mean    | SD         | Total | Weight | IV, Random, 95% CI   | Year                                           | IV, Random, 95% CI   |
| De Sèze 2001                                                                           | 1.6          | 0.5    | 10    | 0.8     | 0.7        | 10    | 7.3%   | 1.26 [0.28, 2.24]    | 2001                                           |                      |
| Yoo 2010                                                                               | 11.29        | 13.25  | 28    | 6.32    | 11.99      | 31    | 15.6%  | 0.39 [-0.13, 0.91]   | 2010                                           | +                    |
| Vijayakumar 2011                                                                       | 7.1          | 0.88   | 10    | 4.4     | 1.1        | 10    | 5.0%   | 2.60 [1.34, 3.85]    | 2011                                           |                      |
| Saeys 2012                                                                             | 19.39        | 12.61  | 18    | 9.2     | 13.52      | 15    | 11.2%  | 0.76 [0.05, 1.48]    | 2012                                           |                      |
| Cabanas-Valdés 2015                                                                    | 23.03        | 15.95  | 40    | 8.49    | 8.74       | 39    | 16.7%  | 1.12 [0.64, 1.59]    | 2015                                           |                      |
| Haruyama 2016                                                                          | 2.79         | 3.34   | 16    | 0.06    | 4.32       | 16    | 11.1%  | 0.69 [-0.03, 1.41]   | 2016                                           |                      |
| An 2017                                                                                | 2.93         | 2.96   | 15    | 1.36    | 2.84       | 14    | 10.6%  | 0.53 [-0.22, 1.27]   | 2017                                           | +                    |
| Park 2019                                                                              | 4.79         | 3.06   | 14    | 2.86    | 3.19       | 14    | 10.3%  | 0.60 [-0.16, 1.36]   | 2018                                           |                      |
| Min 2020                                                                               | 7.36         | 3.63   | 19    | 4.42    | 4.49       | 19    | 12.3%  | 0.71 [0.05, 1.36]    | 2020                                           |                      |
| Total (95% CI)                                                                         |              |        | 170   |         |            | 168   | 100.0% | 0.83 [0.52, 1.14]    |                                                | •                    |
| Heterogeneity: Tau <sup>2</sup> = 0.09; Chi <sup>2</sup> = 13.81, df = 8 (P = 0.09); I |              |        |       |         | $I^2 = 42$ | %     |        |                      | -4 $-2$ $0$ $2$ $4$                            |                      |
| rescrot overall effect. Z                                                              | (1 < 0.1     | 00001) |       |         |            |       |        |                      | Favour control group Favour intervention group |                      |

Figure S2. Pooled effect sizes on balance ability.

|                   | Expe                     | erimen | ntal  | C      | ontrol |       | 9      | Std. Mean Difference |      | Std. Mean Difference                  |  |  |  |  |
|-------------------|--------------------------|--------|-------|--------|--------|-------|--------|----------------------|------|---------------------------------------|--|--|--|--|
| Study or Subgroup | or Subgroup Mean SD Tota |        | Total | Mean S |        | Total | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                    |  |  |  |  |
| Kim 2011          | 4.6                      | 5.54   | 20    | 0.1    | 4.1    | 20    | 20.3%  | 0.91 [0.25, 1.56]    | 2011 | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| Lee 2011          | 16.5                     | 9.7    | 14    | 4.1    | 5.6    | 14    | 15.2%  | 1.52 [0.66, 2.38]    | 2011 |                                       |  |  |  |  |
| Jung 2015         | 8.28                     | 5.42   | 11    | 2.37   | 6.15   | 11    | 14.4%  | 0.98 [0.09, 1.88]    | 2015 | <b>_</b>                              |  |  |  |  |
| Haruyama 2016     | 3.37                     | 4.47   | 16    | 2.28   | 6.49   | 16    | 19.1%  | 0.19 [-0.50, 0.89]   | 2016 |                                       |  |  |  |  |
| Shin 2016         | 7.36                     | 5.5    | 12    | 0.99   | 0.63   | 12    | 13.5%  | 1.57 [0.63, 2.51]    | 2016 |                                       |  |  |  |  |
| Park 2019         | 5.69                     | 6.24   | 14    | 2.71   | 4.21   | 14    | 17.5%  | 0.54 [-0.21, 1.30]   | 2018 |                                       |  |  |  |  |
| Total (95% CI)    |                          |        | 87    |        |        | 87    | 100.0% | 0.90 [0.47, 1.33]    |      |                                       |  |  |  |  |

-2 -1 0 1 2 Favour control group Favour intervention group

#### B)

|                                                                                       | Expe                                                                                                                               | Experimental Control |       |      |      |                                    | 9                    | Std. Mean Difference |      | Std. Mean Difference                                          |
|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------|------|------|------------------------------------|----------------------|----------------------|------|---------------------------------------------------------------|
| Study or Subgroup                                                                     | Mean                                                                                                                               | SD                   | Total | Mean | SD   | Total                              | Weight               | IV, Random, 95% CI   | Year | IV, Random, 95% CI                                            |
| Howe 2005                                                                             | 1                                                                                                                                  | 1.1                  | 15    | 0.4  | 0.59 | 18                                 | 32.1%                | 0.68 [-0.03, 1.39]   | 2005 |                                                               |
| Lee 2011                                                                              | 8.7                                                                                                                                | 5.2                  | 14    | 1.8  | 2.8  | 14                                 | 24.0%                | 1.60 [0.74, 2.47]    | 2011 | <b>_</b>                                                      |
| Jung 2015                                                                             | 7.91                                                                                                                               | 5.01                 | 11    | 0.95 | 2.48 | 11                                 | 19.3%                | 1.69 [0.69, 2.70]    | 2015 |                                                               |
| Shin 2016                                                                             | 8.36                                                                                                                               | 4.5                  | 12    | 3.44 | 5.46 | 12                                 | 24.7%                | 0.95 [0.10, 1.80]    | 2016 |                                                               |
| <b>Total (95% CI)</b><br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect | 5% Cl) 52<br>;neity: Tau <sup>2</sup> = 0.07; Chi <sup>2</sup> = 4.08, df = 3 (P = 0.25;<br>overall effect: Z = 4.63 (P < 0.00001) |                      |       |      |      | <b>55</b><br>?5); I <sup>2</sup> = | <b>100.0%</b><br>26% | 1.16 [0.67, 1.66]    | _    | -2 -1 0 1 2<br>Favour control group Favour intervention group |

C)

|                                                 | Experimental             |        |         | al Control |                                |                       | 9      | Std. Mean Difference |      | Std. Mean Difference                           |  |  |
|-------------------------------------------------|--------------------------|--------|---------|------------|--------------------------------|-----------------------|--------|----------------------|------|------------------------------------------------|--|--|
| Study or Subgroup                               | Mean SD Total Mean SD To |        |         | Total      | Weight IV, Random, 95% CI Year |                       |        | IV, Random, 95% CI   |      |                                                |  |  |
| Lee 2011                                        | 5.3                      | 4.4    | 14      | 3.5        | 2.1                            | 14                    | 38.2%  | 0.51 [-0.25, 1.26]   | 2011 |                                                |  |  |
| Jung 2015                                       | 5.66                     | 6.35   | 11      | 1.65       | 4.2                            | 11                    | 32.5%  | 0.72 [-0.15, 1.58]   | 2015 |                                                |  |  |
| Shin 2016                                       | 6.32                     | 3.79   | 12      | 1.7        | 1.13                           | 12                    | 29.3%  | 1.60 [0.65, 2.54]    | 2016 | <b>_</b>                                       |  |  |
| Total (95% CI)                                  |                          |        | 37      |            |                                | 37                    | 100.0% | 0.89 [0.26, 1.52]    |      |                                                |  |  |
| Heterogeneity: Tau <sup>2</sup> :               | = 0.12; (                | Chi² = | 3.29, d | f = 2 (F)  | P = 0.1                        | L9); I <sup>2</sup> = | = 39%  |                      | -    |                                                |  |  |
| Test for overall effect: $Z = 2.78$ (P = 0.005) |                          |        |         |            |                                |                       |        |                      |      | Favour control group Favour intervention group |  |  |

Figure S3. (A) Pooled effect sizes on limits of stability forward reach of the unaffected arm; (B) Pooled effect sizes on limits of stability lateral reach of the unaffected arm; (C) Pooled effect sizes on limits of stability lateral reach of the affected arm.

|                            | Experimental Control                               |      |       |      |        |             | :      | Std. Mean Difference |      | Std. Mean Difference                           |  |  |  |  |  |  |
|----------------------------|----------------------------------------------------|------|-------|------|--------|-------------|--------|----------------------|------|------------------------------------------------|--|--|--|--|--|--|
| Study or Subgroup          | Mean                                               | SD   | Total | Mean | SD     | Total       | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |  |  |  |  |  |  |
| De Sèze 2001               | 2.2                                                | 1    | 10    | 1.1  | 1.1    | 10          | 7.3%   | 1.00 [0.06, 1.94]    | 2001 |                                                |  |  |  |  |  |  |
| Dean 2007                  | 0.41                                               | 0.35 | 6     | 0.21 | 0.16   | 6           | 4.7%   | 0.68 [-0.50, 1.86]   | 2007 |                                                |  |  |  |  |  |  |
| Saeys 2012                 | 2.45                                               | 1.31 | 18    | 1.86 | 1.38   | 15          | 13.5%  | 0.43 [-0.27, 1.12]   | 2012 | - <b>-</b>                                     |  |  |  |  |  |  |
| Chung 2013                 | 14.08                                              | 13.9 | 8     | -0.3 | 11.24  | 8           | 5.7%   | 1.08 [0.01, 2.15]    | 2013 |                                                |  |  |  |  |  |  |
| Cabanas-Valdés 2015        | 5.57                                               | 3.97 | 40    | 2.62 | 2.78   | 39          | 30.5%  | 0.85 [0.39, 1.31]    | 2015 |                                                |  |  |  |  |  |  |
| Haruyama 2016              | 0.5                                                | 0.81 | 16    | 0.12 | 0.93   | 16          | 13.2%  | 0.42 [-0.28, 1.13]   | 2016 |                                                |  |  |  |  |  |  |
| Shin 2020                  | 0.17                                               | 0.15 | 12    | 0.05 | 0.1    | 12          | 9.0%   | 0.91 [0.06, 1.76]    | 2019 |                                                |  |  |  |  |  |  |
| Min 2020                   | 0.36                                               | 0.58 | 19    | 0.32 | 0.71   | 19          | 16.1%  | 0.06 [-0.58, 0.70]   | 2020 |                                                |  |  |  |  |  |  |
| Total (95% CI)             |                                                    |      | 129   |      |        | 125         | 100.0% | 0.63 [0.38, 0.89]    |      | •                                              |  |  |  |  |  |  |
| Heterogeneity: $Tau^2 = 0$ | = 0.00; Chi <sup>2</sup> = 6.30, df = 7 (P = 0.51) |      |       |      | 0.51); | $I^2 = 0\%$ |        |                      |      |                                                |  |  |  |  |  |  |
| Test for overall effect: Z | st for overall effect: $Z = 4.85$ (P < 0.00001)    |      |       |      |        |             |        |                      |      | Favour control group Favour intervention group |  |  |  |  |  |  |
|                            |                                                    |      |       |      |        |             |        |                      |      |                                                |  |  |  |  |  |  |

Figure S4. Pooled effect sizes on gait performance.

|                                   | Experimental Control                                                      |       |         |             | ontrol |       |        | Mean Difference      |      | Mean Difference                                |  |  |  |  |  |
|-----------------------------------|---------------------------------------------------------------------------|-------|---------|-------------|--------|-------|--------|----------------------|------|------------------------------------------------|--|--|--|--|--|
| Study or Subgroup                 | Mean                                                                      | SD    | Total   | Mean        | SD     | Total | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |  |  |  |  |  |
| Chung 2013                        | 5.42                                                                      | 5.61  | 8       | 5.48        | 6.8    | 8     | 18.0%  | -0.06 [-6.17, 6.05]  | 2013 |                                                |  |  |  |  |  |
| Jung 2014                         | 5                                                                         | 11.77 | 9       | 2.6         | 7.52   | 8     | 11.0%  | 2.40 [-6.89, 11.69]  | 2014 |                                                |  |  |  |  |  |
| Haruyama 2016                     | 13.67                                                                     | 23.05 | 16      | 1.33        | 25.19  | 16    | 4.3%   | 12.34 [-4.39, 29.07] | 2016 |                                                |  |  |  |  |  |
| Shin 2016                         | 9.71                                                                      | 4.46  | 12      | 2.18        | 1.13   | 12    | 29.9%  | 7.53 [4.93, 10.13]   | 2016 |                                                |  |  |  |  |  |
| An 2017                           | 4.11                                                                      | 2.24  | 15      | 2           | 3.05   | 14    | 32.0%  | 2.11 [0.15, 4.07]    | 2017 |                                                |  |  |  |  |  |
| Min 2020                          | 11.69                                                                     | 21.27 | 19      | 18.32       | 28.07  | 19    | 4.8%   | -6.63 [-22.47, 9.21] | 2020 |                                                |  |  |  |  |  |
| Total (95% CI)                    |                                                                           |       | 79      |             |        | 77    | 100.0% | 3.40 [-0.32, 7.12]   |      | ◆                                              |  |  |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | ogeneity: Tau <sup>2</sup> = 10.25; Chi <sup>2</sup> = 15.03, df = 5 (P = |       | P = 0.0 | 1); $I^2 =$ | 67%    |       |        |                      |      |                                                |  |  |  |  |  |
| Test for overall effect           | Test for overall effect: $Z = 1.79$ (P = 0.07)                            |       |         |             |        |       |        |                      |      | Favour control group Favour intervention group |  |  |  |  |  |

Figure S5. Pooled effect sizes on functional mobility.

| Sul | bgroup | anal | lyses f | for tl | he mod | lerator | varia | abl | es | anal | yzed | l |
|-----|--------|------|---------|--------|--------|---------|-------|-----|----|------|------|---|
|     | ()     |      |         |        |        |         |       |     |    |      |      |   |

| ,                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                               | Experimental<br>Mean SD Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Woight                                                                                                                                                                                | Std. Mean Difference                                                                                                                                                                                                                                                                                                                                      | Voar                                                                                              | Std. Mean Difference                                                                                                                                                                                                                                                                    |
| De Sèze 2001                                                                                                                                                                                                                                                                                                                                                                                                    | 33.7 11.5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20 18.3 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ) 12.6%                                                                                                                                                                               | 0.86 [-0.07, 1.78]                                                                                                                                                                                                                                                                                                                                        | 2001                                                                                              |                                                                                                                                                                                                                                                                                         |
| Yoo 2010                                                                                                                                                                                                                                                                                                                                                                                                        | 4.78 2.69 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2.45 4.31 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 18.1%                                                                                                                                                                                 | 0.60 [-0.01, 1.20]                                                                                                                                                                                                                                                                                                                                        | 2010                                                                                              | <b>_</b> _                                                                                                                                                                                                                                                                              |
| Lee 2011                                                                                                                                                                                                                                                                                                                                                                                                        | 3.7 2.3 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.9 1.4 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4 13.8%                                                                                                                                                                               | 1.43 [0.58, 2.27]                                                                                                                                                                                                                                                                                                                                         | 2011                                                                                              |                                                                                                                                                                                                                                                                                         |
| Vijayakumar 2011                                                                                                                                                                                                                                                                                                                                                                                                | 6.96 1.28 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.13 1.24 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0%                                                                                                                                                                                  | 2.91 [1.58, 4.25]                                                                                                                                                                                                                                                                                                                                         | 2011                                                                                              |                                                                                                                                                                                                                                                                                         |
| Saeys 2012<br>Cabanas Valdás 2015                                                                                                                                                                                                                                                                                                                                                                               | 8.72 2.8 18<br>5.88 3.48 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.8/ 3.23 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3 13.9%                                                                                                                                                                               | 1.90 [1.06, 2.74]                                                                                                                                                                                                                                                                                                                                         | 2012                                                                                              |                                                                                                                                                                                                                                                                                         |
| Shin 2016                                                                                                                                                                                                                                                                                                                                                                                                       | 3.08 2.71 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.09 1.24 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20.7%                                                                                                                                                                                 | 1.37 [0.46, 2.28]                                                                                                                                                                                                                                                                                                                                         | 2015                                                                                              |                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                  | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 131                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 100.0%                                                                                                                                                                                | 1.32 [0.87, 1.78]                                                                                                                                                                                                                                                                                                                                         |                                                                                                   | •                                                                                                                                                                                                                                                                                       |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                               | 0.20; Chi <sup>2</sup> = 13.75, d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f = 6 (P = 0.03); I^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 56%                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | -4 -2 0 2 4                                                                                                                                                                                                                                                                             |
| lest for overall effect:                                                                                                                                                                                                                                                                                                                                                                                        | Z = 5.76 (P < 0.0000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | Favour control group Favour intervention group                                                                                                                                                                                                                                          |
| A2)                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| ,                                                                                                                                                                                                                                                                                                                                                                                                               | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s                                                                                                                                                                                     | td. Mean Difference                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | Std. Mean Difference                                                                                                                                                                                                                                                                    |
| Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                               | Mean SD Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Mean SD Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weight                                                                                                                                                                                | IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                                        | Year                                                                                              | IV, Random, 95% CI                                                                                                                                                                                                                                                                      |
| Verheyden 2009                                                                                                                                                                                                                                                                                                                                                                                                  | 4.82 2.69 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.31 3.59 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 21.7%                                                                                                                                                                                 | 0.47 [-0.23, 1.16]                                                                                                                                                                                                                                                                                                                                        | 2009                                                                                              |                                                                                                                                                                                                                                                                                         |
| Jung 2014                                                                                                                                                                                                                                                                                                                                                                                                       | 2.4 1.5 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.1 2.38 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10.8%                                                                                                                                                                                 | 1.11 [0.07, 2.16]                                                                                                                                                                                                                                                                                                                                         | 2014                                                                                              |                                                                                                                                                                                                                                                                                         |
| Jung 2015                                                                                                                                                                                                                                                                                                                                                                                                       | 2.36 2.94 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -0.27 1.27 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 13.7%                                                                                                                                                                                 | 1.12 [0.21, 2.03]                                                                                                                                                                                                                                                                                                                                         | 2015                                                                                              |                                                                                                                                                                                                                                                                                         |
| Kose 2016                                                                                                                                                                                                                                                                                                                                                                                                       | 1.83 1.28 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1.75 2.19 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.2%                                                                                                                                                                                 | 0.04 [-0.76, 0.84]                                                                                                                                                                                                                                                                                                                                        | 2016                                                                                              |                                                                                                                                                                                                                                                                                         |
| Park 2019                                                                                                                                                                                                                                                                                                                                                                                                       | 4.15 2.58 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.93 2.79 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 17.5%                                                                                                                                                                                 | 0.97 [0.18, 1.76]                                                                                                                                                                                                                                                                                                                                         | 2018                                                                                              |                                                                                                                                                                                                                                                                                         |
| Funk E015                                                                                                                                                                                                                                                                                                                                                                                                       | 5107 2101 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.000 2.200 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1113/0                                                                                                                                                                                | 0107 [0110, 1170]                                                                                                                                                                                                                                                                                                                                         | 2010                                                                                              |                                                                                                                                                                                                                                                                                         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                  | 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0%                                                                                                                                                                                | 0.76 [0.40, 1.12]                                                                                                                                                                                                                                                                                                                                         |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| Heterogeneity: Tau <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                               | 0.03; Chi <sup>2</sup> = 5.89, di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $f = 5 (P = 0.32); I^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | = 15%                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                 |                                                                                                                                                                                                                                                                                         |
| Test for overall effect:                                                                                                                                                                                                                                                                                                                                                                                        | Z = 4.15 (P < 0.0001)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | L)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | Favour control group Favour intervention group                                                                                                                                                                                                                                          |
| D1)                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| B1)                                                                                                                                                                                                                                                                                                                                                                                                             | Francisco estad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | Stid Mary Difference                                                                                                                                                                                                                                                                    |
| Study or Subaroup                                                                                                                                                                                                                                                                                                                                                                                               | Mean SD Tota                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | L Mean SD To                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | al Weigh                                                                                                                                                                              | IV. Random. 95% Cl                                                                                                                                                                                                                                                                                                                                        | Year                                                                                              | IV. Random, 95% CI                                                                                                                                                                                                                                                                      |
| De Sèze 2001                                                                                                                                                                                                                                                                                                                                                                                                    | 1.6 0.5 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0.8 0.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10 16.79                                                                                                                                                                              | 6 1.26 [0.28, 2.24]                                                                                                                                                                                                                                                                                                                                       | 2001                                                                                              |                                                                                                                                                                                                                                                                                         |
| Yoo 2010                                                                                                                                                                                                                                                                                                                                                                                                        | 11.29 13.25 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 6.32 11.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31 24.79                                                                                                                                                                              | 6 0.39 [-0.13, 0.91]                                                                                                                                                                                                                                                                                                                                      | 2010                                                                                              | + <b>-</b> -                                                                                                                                                                                                                                                                            |
| Vijayakumar 2011                                                                                                                                                                                                                                                                                                                                                                                                | 6.96 1.28 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0 3.13 1.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10 12.09                                                                                                                                                                              | 6 2.91 [1.58, 4.25]                                                                                                                                                                                                                                                                                                                                       | 2011                                                                                              |                                                                                                                                                                                                                                                                                         |
| Saeys 2012                                                                                                                                                                                                                                                                                                                                                                                                      | 19.39 12.61 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8 9.2 13.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15 21.29                                                                                                                                                                              | 6 0.76 [0.05, 1.48]                                                                                                                                                                                                                                                                                                                                       | 2012                                                                                              |                                                                                                                                                                                                                                                                                         |
| Cabanas-vaides 2015                                                                                                                                                                                                                                                                                                                                                                                             | 23.03 15.95 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5 8.49 8.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39 25.4%                                                                                                                                                                              | 5 I.12 [0.64, I.59]                                                                                                                                                                                                                                                                                                                                       | 2015                                                                                              |                                                                                                                                                                                                                                                                                         |
| Total (95% CI)                                                                                                                                                                                                                                                                                                                                                                                                  | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 05 100.09                                                                                                                                                                             | 6 1.10 [0.51, 1.70]                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | ◆                                                                                                                                                                                                                                                                                       |
| Heterogeneity: $Tau^2 = 0$                                                                                                                                                                                                                                                                                                                                                                                      | 0.31; Chi <sup>2</sup> = 13.91, df                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $= 4 (P = 0.008); I^2 =$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | = 71%                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| Test for overall effect: 2                                                                                                                                                                                                                                                                                                                                                                                      | Z = 3.62 (P = 0.0003)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   | Favour control group Favour intervention group                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| R2)                                                                                                                                                                                                                                                                                                                                                                                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                           |                                                                                                   |                                                                                                                                                                                                                                                                                         |
| B2)                                                                                                                                                                                                                                                                                                                                                                                                             | Experimental                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                       | td. Mean Difference                                                                                                                                                                                                                                                                                                                                       |                                                                                                   | Std Mean Difference                                                                                                                                                                                                                                                                     |
| B2)<br>Study or Subgroup                                                                                                                                                                                                                                                                                                                                                                                        | Experimental<br>Mean SD Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control<br>Mean SD Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S<br>Weight                                                                                                                                                                           | td. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                                                                                                 | Year                                                                                              | Std. Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016                                                                                                                                                                                                                                                                                                                                                                       | Experimental<br>Mean SD Total<br>2.79 3.34 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control<br>Mean SD Total<br>0.06 4.32 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S<br>Weight<br>53.0%                                                                                                                                                                  | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]                                                                                                                                                                                                                                                                                           | <b>Year</b><br>2016                                                                               | Std. Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019                                                                                                                                                                                                                                                                                                                                                          | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14                                                                                                                                                                                                                                                                                                                                                                                     | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>Weight<br>53.0%<br>47.0%                                                                                                                                                         | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]                                                                                                                                                                                                                                                                     | <b>Year</b><br>2016<br>2018                                                                       | Std. Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)                                                                                                                                                                                                                                                                                                                                        | Experimental<br>Mean SD Total<br>2.79 3.34 16<br>4.79 3.06 14                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>Weight<br>53.0%<br>47.0%                                                                                                                                                         | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]                                                                                                                                                                                                                                                                     | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Haterogeneity: Tou <sup>2</sup> =                                                                                                                                                                                                                                                                                            | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0.00:         Chi2 = 0.03         0.03                                                                                                                                                                                                                                                                                                                                    | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14           30           5           5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>Weight<br>53.0%<br>47.0%                                                                                                                                                         | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]                                                                                                                                                                                                                                                | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% Cl                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0         0.00; Chi <sup>2</sup> = 0.03, dt         30           Z = 2.43 (P = 0.01)         0.01)         0.01)                                                                                                                                                                                                                                                          | $\begin{tabular}{ c c c c } \hline Control & \\ \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ 2.86 & 3.19 & 14 \\ \hline & & & & & \\ \hline & & & & & \\ \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>= 0%                                                                                                                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]                                                                                                                                                                                                                                                | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                                                                                                                                                                | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di           Z = 2.43 (P = 0.01)                                                                                                                                                                                                                                                                                                | $\begin{tabular}{ c c c c } \hline Control & \\ \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ 2.86 & 3.19 & 14 \\ \hline & & & & & \\ \hline S = 1 (P = 0.87);  ^2 = & & & \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>= 0%                                                                                                                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]                                                                                                                                                                                                                                                | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)                                                                                                                                                                                                                                                         | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di           Z = 2.43 (P = 0.01)                                                                                                                                                                                                                                                                                                | $\begin{tabular}{ c c c c } \hline \hline $U$ & $U$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>= 0%                                                                                                                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]                                                                                                                                                                                                                                                | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)                                                                                                                                                                                                                                                         | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di           Z = 2.43 (P = 0.01)         Experimental                                                                                                                                                                                                                                                                           | $\begin{tabular}{ c c c c } \hline Control & & & \\ \hline \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ 2.86 & 3.19 & 14 \\ \hline & & & \\ \hline S = 1 (P = 0.87);  ^2 = \\ \hline \hline \hline Control & & \\ \hline \end{tabular}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>= 0%                                                                                                                                       | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference                                                                                                                                                                                                                         | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup                                                                                                                                                                                                                                           | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di         2           2 = 2.43         (P = 0.01)         Experimental           Mean         SD         Total                                                                                                                                                                                                                 | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14           30           F = 1 (P = 0.87); I <sup>2</sup> =           Control           Mean         SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>0%                                                                                                                                         | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                   | Year<br>2016<br>2018                                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011                                                                                                                                                                                                                               | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di         2           Z = 2.43 (P = 0.01)         Experimental         Mean           Mean         SD         Total           16.5         9.7         14                                                                                                                                                                      | $\begin{tabular}{ c c c c } \hline Control & \\ \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ 2.86 & 3.19 & 14 \\ \hline & & & & \\ \hline S = 1 (P = 0.87);  ^2 = \\ \hline & & & \\ \hline \hline \hline & & & \\ \hline \hline \hline \hline & & & \\ \hline \hline \hline \hline$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S         S           53.0%         47.0%           100.0%         0%           S         Weight           53.0%         54.5%                                                        | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]                                                                                                                                                                              | Year<br>2016<br>2018<br>Year<br>2011                                                              | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016                                                                                                                                                                                                    | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0.00; Chi <sup>2</sup> = 0.03, di         2           2 = 2.43         (P = 0.01)           Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12                                                                                                                                              | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14           F           T         (P = 0.87);   <sup>2</sup> =           Control           Mean           A           A           Total           A           Total           A           Total           A           Total           4.1         5.6         14           0.63           A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.0%<br>53.0%<br>47.0%<br>100.0%<br>○ 0%<br>Sueight<br>54.5%<br>45.5%                                                                                                                | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% Cl<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]                                                                                                                                                         | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016<br>Total (95% Cl)                                                                                                                                                                                  | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0.00; Chi <sup>2</sup> = 0.03, dl         30           0.00; Chi <sup>2</sup> = 0.03, dl         2           Z = 2.43 (P = 0.01)         Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12                                                                                                 | Control           Mean         SD         Total $0.06$ $4.32$ $16$ $2.86$ $3.19$ $14$ 30           Total           1 (P = 0.87); I <sup>2</sup> =           Control           Mean         SD         Total $4.1$ $5.6$ $14$ $0.99$ $0.63$ $12$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 53.0%<br>53.0%<br>47.0%<br>100.0%<br>• 0%<br>• 0%<br>• 0%<br>• 0%<br>• 0%<br>• 0%                                                                                                     | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]                                                                                                                                    | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =                                                                                                                                             | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0.00; Chi <sup>2</sup> = 0.03, dt         2           2.43 (P = 0.01)         0.01)           Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12           26           0.00; Chi <sup>2</sup> = 0.01, dt                                                                                   | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14 $f = 1$ (P = 0.87);   <sup>2</sup> =         30           Mean         SD         Total           4.1         5.6         12           4.1         5.6         12 $f = 1$ (P = 0.94);   <sup>2</sup> =         26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>○ %<br>S<br>Weight<br>54.5%<br>45.5%<br>100.0%<br>○ %                                                                                      | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]                                                                                                                                    | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                 | Experimental           Mean         SD         Total $2.79$ $3.34$ 16 $4.79$ $3.06$ 14 $3.00$ $5.01$ $3.06$ $0.00$ ; $Chi^2 = 0.03$ , di $Z$ $Z = 2.43$ (P = 0.01) $3.06$ Experimental         Mean         SD         Total $16.5$ $9.7$ 14 $7.36$ $5.5$ 12 $26$ $0.00$ ; $Chi^2 = 0.01$ , di $Z = 4.79$ (P < $0.000$ ) $Z = 4.79$ (P < $0.000$ )                                                                                                                                                                     | Control           Mean         SD         Total $0.06$ $4.32$ $16$ $2.86$ $3.19$ $14$ $f = 1$ (P = 0.87);   <sup>2</sup> = $30$ $\frac{Mean}{4.1}$ $5.6$ $14$ $4.1$ $5.6$ $14$ $4.1$ $5.6$ $14$ $6.9$ $0.63$ $12$ $26$ $f = 1$ (P = $0.94$ );   <sup>2</sup> = $26$ $f = 1$ (P = $0.94$ );   <sup>2</sup> = $21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>∞<br>Weight<br>54.5%<br>45.5%<br>100.0%<br>∞                                                                                               | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]                                                                                                                                    | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI                                                                                                                                                                                                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:                                                                                                                               | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di         2           Z = 2.43         (P = 0.01)         0.00; Chi <sup>2</sup> = 0.03, di           Experimental         Mean         SD         Total           16.5         9.7         14         7.36         5.5         12           26         0.00; Chi <sup>2</sup> = 0.01, di         Z = 4.79         (P < 0.000) | Control           Mean         SD         Total $0.06$ $4.32$ $16$ $2.86$ $3.19$ $14$ $5 = 1$ (P = 0.87);   <sup>2</sup> = $30$ Mean         SD         Total $4.1$ $5.6$ $14$ $0.99$ $0.63$ $12$ E $1$ (P = 0.94);   <sup>2</sup> = $26$ $5 = 1$ (P = 0.94);   <sup>2</sup> = $21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>○ 0%<br>S<br>Weight<br>54.5%<br>45.5%<br>100.0%<br>○ 0%                                                                                    | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% Cl<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]                                                                                                                                    | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group                                                              |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)                                                                                                                        | $\begin{tabular}{ c c c c c } \hline Experimental & SD & Total \\ \hline 2.79 & 3.34 & 16 \\ \hline 4.79 & 3.06 & 14 \\ \hline & & 30 \\ \hline 0.00; Chi^2 &= 0.03, di \\ \hline Z &= 2.43 & (P &= 0.01) \\ \hline \hline \\ \hline $                                                                                                                                                                                                           | Control           Mean         SD         Total $0.06$ $4.32$ $16$ $2.86$ $3.19$ $14$ $F = 1$ (P = 0.87);   <sup>2</sup> = $30$ Control         Mean         SD         Total $4.1$ $5.6$ $14$ $30$ $4.1$ $5.6$ $14$ $30$ $6.7$ $70.87$ $70.87$ $70.87$ $6.7$ $70.99$ $0.63$ $12$ $6.7$ $1 = 0.94$ $12 = 0.94$ $12 = 0.94$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S         S           53.0%         47.0%           100.0%         0%           20%         S           Weight         54.5%           45.5%         100.0%           = 0%         0% | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% Cl<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]                                                                                                                                    | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group                                                              |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)                                                                                                          | $\begin{tabular}{ c c c c c } \hline Experimental & \hline Mean & SD & Total \\ \hline 2.79 & 3.34 & 16 & 14 & & & & & & & & & & & & & & & & & $                                                                                                                                                                                                                                                                                                                                                                       | Control           Mean         SD         Total $0.06$ $4.32$ 16 $2.86$ $3.19$ 14 $F = 1$ (P = 0.87);   <sup>2</sup> =           Control           Mean         SD         Total $4.1$ $5.6$ 14 $0.99$ $0.63$ 12           26 $F = 1$ (P = 0.94);   <sup>2</sup> = $0.1$ $20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>○ 0%<br>S<br>Weight<br>54.5%<br>45.5%<br>100.0%<br>○ 0%                                                                                    | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference                                                                                                             | Year<br>2016<br>2018<br>Year<br>2011<br>2016                                                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference                                      |
| B2)<br><u>Study or Subgroup</u><br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br><u>Study or Subgroup</u><br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br><u>Study or Subgroup</u>                                                                              | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, di         2 $Z = 2.43$ (P = 0.01)         2         2.43 (P = 0.01)           Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12           26           0.00; Chi <sup>2</sup> = 0.01, di           Z = 4.79 (P < 0.0000)                        | $\begin{tabular}{ c c c c } \hline Control & SD & Total \\ \hline \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ \hline 2.86 & 3.19 & 14 \\ \hline & & & & & & \\ \hline S = 1 (P = 0.87);  ^2 = \\ \hline \hline \hline Control & & & & \\ \hline \hline Mean & SD & Total \\ \hline \hline & & & & & & \\ \hline \hline & & & & & & \\ \hline \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>= 0%<br>S<br>Weight<br>100.0%<br>= 0%<br>S<br>Weight<br>S<br>45.5%<br>100.0%<br>S<br>Weight<br>24.5%                                       | td. Mean Difference<br>IV, Random, 95% Cl<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% Cl<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% Cl                                                                                       | Year<br>2016<br>2018<br>4<br>2011<br>2011<br>2016                                                 | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI                |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br>Study or Subgroup<br>Jung 2015<br>Haruyama 2016                                                                     | Experimental           Mean         SD         Total $2.79$ $3.34$ 16 $4.79$ $3.06$ 14 $0.00$ ; Chi <sup>2</sup> = 0.03, di $Z$ $Z$ $Z$ = 2.43 (P = 0.01) $Z$ $Z$ Experimental           Mean         SD         Total $16.5$ $9.7$ 14 $7.36$ $5.5$ $12$ 26 $0.00$ ; Chi <sup>2</sup> = $0.01$ , di $Z$ = $4.79$ (P < $0.0000$ )           Experimental           Mean         SD         Total $8.28$ $5.42$ 11 $3.37$ $4.7$ $16$                                                                                     | $\begin{tabular}{ c c c c } \hline Control & \hline Mean & SD & Total \\ \hline 0.06 & 4.32 & 16 \\ \hline 2.86 & 3.19 & 14 \\ \hline & & & & & & \\ \hline S = 1 (P = 0.87);  ^2 = & & & \\ \hline \hline & & & & & & \\ \hline \hline \hline & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>0%<br>S<br>Weight<br>100.0%<br>S<br>Weight<br>100.0%<br>S<br>Weight<br>24.6%<br>40.9%                                                      | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% CI<br>0.98 [0.09, 1.88]<br>0.10 [-0.50, 0.99]                                            | Year<br>2016<br>2018<br>Year<br>2011<br>2016<br>Year<br>2015<br>2015                              | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI                |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br>Study or Subgroup<br>Jung 2015<br>Haruyama 2016<br>Park 2019                                                        | Experimental           Mean         SD         Total $2.79$ $3.34$ $16$ $4.79$ $3.06$ $14$ $300$ $0.00$ ; Chi <sup>2</sup> = $0.03$ , di $30$ $0.00$ ; Chi <sup>2</sup> = $0.03$ , di $Z$ $Z$ = $2.43$ (P = $0.01$ ) $Z$ Experimental         Mean         SD         Total $16.5$ $9.7$ $14$ $7.36$ $5.5$ $12$ $26$ $0.00$ ; Chi <sup>2</sup> = $0.01$ , di $Z$ $26$ $0.000$ ;           Experimental         Mean         SD         Total $8.28$ $5.42$ $11$ $3.37$ $4.47$ $16$ $5.69$ $6.24$ $14$ $7.62$ $12$ $12$ | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14 $f = 1$ (P = 0.87); I <sup>2</sup> =         30           Mean         SD         Total           4.1         5.6         14           0.99         0.63         12           0.11         P         0.94); I <sup>2</sup> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>0%<br>S<br>Weight<br>100.0%<br>54.5%<br>100.0%<br>24.6%<br>40.9%<br>34.5%                                                                  | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% CI<br>0.98 [0.09, 1.88]<br>0.19 [-0.50, 0.89]<br>0.54 [-0.21, 1.30]                                           | Year<br>2016<br>2018<br>Year<br>2011<br>2016<br>1<br>2016<br>Year<br>2015<br>2016<br>2015<br>2016 | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI                |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% Cl)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br>Study or Subgroup<br>Jung 2015<br>Haruyama 2016<br>Park 2019                                                        | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           0.00; Chi <sup>2</sup> 0.03, dt         2           Z         2.43         (P = 0.01)           Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12           26           0.00; Chi <sup>2</sup> 0.01, dt           Z         4.79         (P < 0.000)                                      | Control           Mean         SD         Total           0.06         4.32         16           2.86         3.19         14 $f = 1$ (P = 0.87);   <sup>2</sup> =         30 $f = 1$ (P = 0.87);   <sup>2</sup> =         16           Control $4.1$ 5.6         14 $0.99$ 0.63         12 $f = 1$ (P = 0.94);   <sup>2</sup> =         26 $f = 1$ (P = 0.94);   <sup>2</sup> =         11 $2.37$ $6.15$ 11 $2.37$ $6.15$ 11 $2.27$ $6.49$ 16 $2.71$ $4.21$ 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>○<br>0%<br>S<br>45.5%<br>100.0%<br>○<br>0%<br>S<br>Weight<br>100.0%<br>24.6%<br>40.9%<br>34.5%                                             | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% CI<br>0.98 [0.09, 1.88]<br>0.19 [-0.50, 0.89]<br>0.54 [-0.21, 1.30]                      | Year<br>2016<br>2018<br>Year<br>2011<br>2016<br>Vear<br>2015<br>2016<br>2018                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI                |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br>Study or Subgroup<br>Jung 2015<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)                                      | Experimental           Mean         SD         Total           2.79         3.34         16           4.79         3.06         14           30         0.00; Chi <sup>2</sup> = 0.03, dl         2           Z = 2.43         (P = 0.01)         2           Experimental           Mean         SD         Total           16.5         9.7         14           7.36         5.5         12         26           0.00; Chi <sup>2</sup> = 0.01, dl         Z = 4.79 (P < 0.0000)                                    | $\begin{tabular}{ c c c c } \hline $L$ Control $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>© %<br>S4.5%<br>45.5%<br>100.0%<br>S<br>Weight<br>24.6%<br>40.9%<br>34.5%<br>100.0%                                                        | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% CI<br>0.98 [0.09, 1.88]<br>0.19 [-0.50, 0.89]<br>0.54 [-0.21, 1.30]<br>0.51 [0.06, 0.95] | Year<br>2016<br>2018<br>Year<br>2011<br>2016<br>Year<br>2015<br>2016<br>2018                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI                |
| B2)<br>Study or Subgroup<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C1)<br>Study or Subgroup<br>Lee 2011<br>Shin 2016<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect:<br>C2)<br>Study or Subgroup<br>Jung 2015<br>Haruyama 2016<br>Park 2019<br>Total (95% CI)<br>Heterogeneity: Tau <sup>2</sup> = | $\begin{tabular}{ c c c c c } \hline Experimental & SD & Total \\ \hline 2.79 & 3.34 & 16 \\ \hline 4.79 & 3.06 & 14 \\ \hline & & 30 \\ \hline 0.00; Chi^2 = 0.03, di \\ \hline Z = 2.43 (P = 0.01) \\ \hline \hline & & & & \\ \hline \hline & & & & \\ \hline \hline & & & &$                                                                                                                                                                                                                                       | $\begin{array}{c c c c c c c } \hline \textbf{LCONTURU} & \textbf{SD} & \textbf{Total} \\ \hline \hline \textbf{Mean} & \textbf{SD} & \textbf{Total} \\ \hline \textbf{2.86} & \textbf{3.19} & \textbf{14} \\ \hline \textbf{5} = 1 & (\textbf{P} = 0.87); & \textbf{I}^2 = \\ \hline \textbf{Mean} & \textbf{SD} & \textbf{Total} \\ \hline \textbf{4.1} & \textbf{5.6} & \textbf{14} \\ \hline \textbf{0.99} & \textbf{0.63} & \textbf{12} \\ \hline \textbf{2.37} & \textbf{6.15} & \textbf{11} \\ \hline \textbf{2.28} & \textbf{6.49} & \textbf{16} \\ \hline \textbf{2.71} & \textbf{4.21} & \textbf{14} \\ \hline \textbf{F} = 2 & (\textbf{P} = 0.39); & \textbf{I}^2 = \\ \hline \textbf{4.1} & \textbf{41} \\ \hline \textbf{F} = 2 & (\textbf{P} = 0.39); & \textbf{I}^2 = \\ \hline \textbf{4.1} & \textbf{41} \\ \hline \textbf{5.1} & \textbf{5.1} & \textbf{5.1} & \textbf{5.1} \\ \hline \textbf{5.1} & \textbf{5.1} & \textbf{5.1} & \textbf{5.1} \\ \hline \textbf{5.28} & \textbf{6.19} & \textbf{5.1} & \textbf{5.1} \\ \hline \textbf{5.29} & \textbf{5.19} & \textbf{5.1} & \textbf{5.1} \\ \hline \textbf{5.29} & \textbf{5.19} & \textbf{5.1} & \textbf{5.1} \\ \hline \textbf{5.29} & \textbf{5.19} & \textbf{5.19} \\ \hline \textbf{5.29} & \textbf{5.19} & 5$ | S<br>Weight<br>53.0%<br>47.0%<br>100.0%<br>0%<br>S<br>Weight<br>54.5%<br>45.5%<br>100.0%<br>S<br>Weight<br>24.6%<br>40.9%<br>34.5%<br>100.0%                                          | td. Mean Difference<br>IV, Random, 95% CI<br>0.69 [-0.03, 1.41]<br>0.60 [-0.16, 1.36]<br>0.65 [0.13, 1.17]<br>td. Mean Difference<br>IV, Random, 95% CI<br>1.52 [0.66, 2.38]<br>1.57 [0.63, 2.51]<br>1.54 [0.91, 2.18]<br>td. Mean Difference<br>IV, Random, 95% CI<br>0.98 [0.09, 1.88]<br>0.19 [-0.50, 0.89]<br>0.54 [-0.21, 1.30]<br>0.51 [0.06, 0.95] | Year<br>2016<br>2018<br>Year<br>2011<br>2016<br>Year<br>2015<br>2016<br>2018                      | Std. Mean Difference<br>IV, Random, 95% CI<br>-2 -1 0 1 2<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4<br>Favour control group Favour intervention group<br>Std. Mean Difference<br>IV, Random, 95% CI<br>-4 -2 0 2 4 |

**Figure S6.** Subgroup analyses by initial trunk impairment. (A1) Effect on trunk function for studies below the median; (A2) Effect on trunk function for studies over the median; (B1) Effect on balance ability for studies below the median; (B2) Effect on balance ability for studies over the median; (C1) Effect on limits of stability forward reach of the unaffected arm for studies below the median; (C2) Effect on limits of stability forward reach of the unaffected arm for studies over the median; (C2) Effect on limits of stability forward reach of the unaffected arm for studies over the median.

# A1)

|                                   | Expe       | erimer             | ntal    | C      | ontrol  |                      | 9      | Std. Mean Difference |      | Std. Mean Difference                           |
|-----------------------------------|------------|--------------------|---------|--------|---------|----------------------|--------|----------------------|------|------------------------------------------------|
| Study or Subgroup                 | Mean       | SD                 | Total   | Mean   | SD      | Total                | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| Verheyden 2009                    | 4.82       | 2.69               | 17      | 3.31   | 3.59    | 16                   | 19.6%  | 0.47 [-0.23, 1.16]   | 2009 |                                                |
| Vijayakumar 2011                  | 6.96       | 1.28               | 10      | 3.13   | 1.24    | 10                   | 12.0%  | 2.91 [1.58, 4.25]    | 2011 |                                                |
| Jung 2014                         | 2.4        | 1.5                | 9       | 0.1    | 2.38    | 8                    | 15.1%  | 1.11 [0.07, 2.16]    | 2014 |                                                |
| Jung 2015                         | 2.36       | 2.94               | 11      | -0.27  | 1.27    | 11                   | 16.7%  | 1.12 [0.21, 2.03]    | 2015 |                                                |
| Rose 2016                         | 1.83       | 1.28               | 12      | 1.75   | 2.19    | 12                   | 18.2%  | 0.04 [-0.76, 0.84]   | 2016 |                                                |
| Park 2019                         | 3.07       | 2.04               | 14      | 0.93   | 2.23    | 14                   | 18.3%  | 0.97 [0.18, 1.76]    | 2018 |                                                |
| Total (95% CI)                    |            |                    | 73      |        |         | 71                   | 100.0% | 0.98 [0.35, 1.61]    |      | ◆                                              |
| Heterogeneity: Tau <sup>2</sup> = | = 0.40; 0  | Chi <sup>2</sup> = | 14.90,  | df = 5 | (P = 0) | .01); I <sup>2</sup> | = 66%  |                      |      |                                                |
| Test for overall effect           | :: Z = 3.0 | )5 (P =            | = 0.002 | )      |         |                      |        |                      |      | Favour control group Favour intervention group |
|                                   |            |                    |         |        |         |                      |        |                      |      | · · · · · · · · · · · · · · · · · · ·          |

### A2)

|                            | Expe     | rimer             | Ital     | C        | ontrol |              | 9      | Std. Mean Difference |      | Std. Mean Difference                           |
|----------------------------|----------|-------------------|----------|----------|--------|--------------|--------|----------------------|------|------------------------------------------------|
| Study or Subgroup          | Mean     | SD                | Total    | Mean     | SD     | Total        | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| De Sèze 2001               | 33.7     | 11.5              | 10       | 20       | 18.3   | 10           | 10.0%  | 0.86 [-0.07, 1.78]   | 2001 |                                                |
| Yoo 2010                   | 4.78     | 4.55              | 28       | 2.45     | 4.31   | 31           | 20.7%  | 0.52 [-0.00, 1.04]   | 2010 |                                                |
| Lee 2011                   | 3.7      | 2.3               | 14       | 0.9      | 1.4    | 14           | 11.5%  | 1.43 [0.58, 2.27]    | 2011 |                                                |
| Saeys 2012                 | 8.72     | 2.8               | 18       | 2.87     | 3.23   | 15           | 11.5%  | 1.90 [1.06, 2.74]    | 2012 |                                                |
| Cabanas-Valdés 2015        | 5.88     | 3.48              | 40       | 2.5      | 2.2    | 39           | 22.4%  | 1.15 [0.67, 1.62]    | 2015 |                                                |
| Haruyama 2016              | 4.13     | 2.38              | 16       | 1.19     | 2.79   | 16           | 13.5%  | 1.11 [0.35, 1.86]    | 2016 |                                                |
| Shin 2016                  | 3.08     | 2.71              | 12       | 0.09     | 1.24   | 12           | 10.4%  | 1.37 [0.46, 2.28]    | 2016 |                                                |
| Total (95% CI)             |          |                   | 138      |          |        | 137          | 100.0% | 1.13 [0.79, 1.46]    |      |                                                |
| Heterogeneity: $Tau^2 = 0$ | 0.07; Ch | <sup>2</sup> = 9. | 46, df : | = 6 (P = | = 0.15 | ); $I^2 = 3$ | 7%     |                      |      | -2 -1 0 1 2                                    |
| Test for overall effect: 2 | . = 6.52 | (P < 0            | 0.00001  | .)       |        |              |        |                      |      | Favour control group Favour intervention group |

| B1)                   |            |                           |         |            |         |           |        |                      |      |                                                |
|-----------------------|------------|---------------------------|---------|------------|---------|-----------|--------|----------------------|------|------------------------------------------------|
|                       | Expe       | erimer                    | ntal    | С          | ontro   | I         | 5      | Std. Mean Difference |      | Std. Mean Difference                           |
| Study or Subgroup     | Mean       | SD                        | Total   | Mean       | SD      | Total     | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| Vijayakumar 2011      | 7.1        | 0.88                      | 10      | 4.4        | 1.1     | 10        | 27.4%  | 2.60 [1.34, 3.85]    | 2011 |                                                |
| An 2017               | 2.93       | 2.96                      | 15      | 1.36       | 2.84    | 14        | 36.4%  | 0.53 [-0.22, 1.27]   | 2017 |                                                |
| Park 2019             | 4.79       | 3.06                      | 14      | 2.86       | 3.19    | 14        | 36.1%  | 0.60 [-0.16, 1.36]   | 2018 |                                                |
| Total (95% CI)        |            | <b>c</b> 1 · <sup>2</sup> | 39      |            |         | 38        | 100.0% | 1.12 [0.06, 2.18]    |      |                                                |
| Heterogeneity: Tau    | = 0.66; 0  | $Chi^{2} =$               | 8.58, 0 | if = 2 (i) | P = 0.0 | 01); l² = | = 77%  |                      |      | -4 -2 0 2                                      |
| lest for overall effe | ct: Z = Z. | 06 (P =                   | = 0.04) |            |         |           |        |                      |      | Favour control group Favour intervention group |

#### B2)

|                            | Exp      | eriment      | al      | c        | ontrol                |                   | Std. Mean Difference |                    |      |  |
|----------------------------|----------|--------------|---------|----------|-----------------------|-------------------|----------------------|--------------------|------|--|
| Study or Subgroup          | Mean     | SD           | Total   | Mean     | SD                    | Total             | Weight               | IV, Random, 95% CI | Year |  |
| De Sèze 2001               | 1.6      | 0.5          | 10      | 0.8      | 0.7                   | 10                | 6.9%                 | 1.26 [0.28, 2.24]  | 2001 |  |
| Yoo 2010                   | 11.29    | 13.25        | 28      | 6.32     | 11.99                 | 31                | 24.1%                | 0.39 [-0.13, 0.91] | 2010 |  |
| Saeys 2012                 | 19.39    | 12.61        | 18      | 9.2      | 13.52                 | 15                | 12.9%                | 0.76 [0.05, 1.48]  | 2012 |  |
| Cabanas-Valdés 2015        | 23.03    | 15.95        | 40      | 8.49     | 8.74                  | 39                | 28.2%                | 1.12 [0.64, 1.59]  | 2015 |  |
| Haruyama 2016              | 2.79     | 3.34         | 16      | 0.06     | 4.32                  | 16                | 12.8%                | 0.69 [-0.03, 1.41] | 2016 |  |
| Min 2020                   | 7.36     | 3.63         | 19      | 4.42     | 4.49                  | 19                | 15.1%                | 0.71 [0.05, 1.36]  | 2020 |  |
| Total (95% CI)             |          |              | 131     |          |                       | 130               | 100.0%               | 0.79 [0.53, 1.05]  |      |  |
| Heterogeneity: $Tau^2 = 0$ | .00; Chi | $^{2} = 5.1$ | 5, df = | 5 (P = ( | 0.40); I <sup>2</sup> | <sup>2</sup> = 3% |                      |                    |      |  |
| Test for overall effect: Z | = 5.96   | (P < 0.0)    | 00001)  |          |                       |                   |                      |                    |      |  |

Std. Mean Difference IV, Random, 95% CI Favour control group Favour intervention group -2

4

#### C1)

|                                   | Expe      | erimer     | ıtal    | Control  |         |       | 5           | Std. Mean Difference |      | Std. Mean Difference                           |  |  |  |
|-----------------------------------|-----------|------------|---------|----------|---------|-------|-------------|----------------------|------|------------------------------------------------|--|--|--|
| Study or Subgroup                 | Mean      | SD         | Total   | Mean     | SD      | Total | Weight      | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |  |  |  |
| Kim 2011                          | 4.6       | 5.54       | 20      | 0.1      | 4.1     | 20    | 43.8%       | 0.91 [0.25, 1.56]    | 2011 | <b>_</b>                                       |  |  |  |
| Jung 2015                         | 8.28      | 5.42       | 11      | 2.37     | 6.15    | 11    | 23.4%       | 0.98 [0.09, 1.88]    | 2015 |                                                |  |  |  |
| Park 2019                         | 5.69      | 6.24       | 14      | 2.71     | 4.21    | 14    | 32.8%       | 0.54 [-0.21, 1.30]   | 2018 |                                                |  |  |  |
| Total (95% CI)                    |           |            | 45      |          |         | 45    | 100.0%      | 0.80 [0.37, 1.24]    |      |                                                |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; 0 | $Chi^2 = $ | 0.70, d | f = 2(1) | P = 0.7 |       | -2 -1 0 1 2 |                      |      |                                                |  |  |  |
| rescrot overall effect            | . 2 - 5.0 | 0-+ (F =   | - 0.000 | 5)       |         |       |             |                      |      | Favour control group Favour intervention group |  |  |  |

#### C2)

| C=)                                                           |                    |                               |                    |           |         |                       |        |                      |      |                                                               |
|---------------------------------------------------------------|--------------------|-------------------------------|--------------------|-----------|---------|-----------------------|--------|----------------------|------|---------------------------------------------------------------|
|                                                               | Expe               | rimer                         | ntal               | C         | ontrol  | I                     | 5      | Std. Mean Difference |      | Std. Mean Difference                                          |
| Study or Subgroup                                             | Mean               | SD                            | Total              | Mean      | SD      | Total                 | Weight | IV, Random, 95% CI   | Year | r IV, Random, 95% CI                                          |
| Lee 2011                                                      | 16.5               | 9.7                           | 14                 | 4.1       | 5.6     | 14                    | 32.8%  | 1.52 [0.66, 2.38]    | 2011 | 1                                                             |
| Haruyama 2016                                                 | 3.37               | 4.47                          | 16                 | 2.28      | 6.49    | 16                    | 36.1%  | 0.19 [-0.50, 0.89]   | 2016 | 5                                                             |
| Shin 2016                                                     | 7.36               | 5.5                           | 12                 | 0.99      | 0.63    | 12                    | 31.2%  | 1.57 [0.63, 2.51]    | 2016 | 5                                                             |
| Total (95% CI)                                                |                    |                               | 42                 |           |         | 42                    | 100.0% | 1.06 [0.11, 2.01]    |      |                                                               |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect: | 0.53; 0<br>Z = 2.1 | Chi <sup>2</sup> =<br>18 (P = | 7.98, c<br>= 0.03) | lf = 2 (I | P = 0.0 | 02); I <sup>2</sup> = | = 75%  |                      |      | -2 -1 0 1 2<br>Favour control group Favour intervention group |
|                                                               |                    |                               |                    |           |         |                       |        |                      |      |                                                               |

#### D1)

|                                   | Experimental Control |             |          |          |        | I                    |        | Mean Difference     |      | Mean Difference                                |
|-----------------------------------|----------------------|-------------|----------|----------|--------|----------------------|--------|---------------------|------|------------------------------------------------|
| Study or Subgroup                 | Mean                 | SD          | Total    | Mean     | SD     | Total                | Weight | IV, Random, 95% CI  | Year | IV, Random, 95% CI                             |
| Chung 2013                        | 5.42                 | 5.61        | 8        | 5.48     | 6.8    | 8                    | 9.0%   | -0.06 [-6.17, 6.05] | 2013 |                                                |
| Jung 2014                         | 5                    | 11.77       | 9        | 2.6      | 7.52   | 8                    | 3.9%   | 2.40 [-6.89, 11.69] | 2014 |                                                |
| An 2017                           | 4.11                 | 2.24        | 15       | 2        | 3.05   | 14                   | 87.2%  | 2.11 [0.15, 4.07]   | 2017 | <b></b>                                        |
| Total (95% CI)                    |                      |             | 32       |          |        | 30                   | 100.0% | 1.93 [0.10, 3.76]   |      | •                                              |
| Heterogeneity: Tau <sup>2</sup> = | = 0.00; 0            | $Chi^2 = 0$ | 0.45, df | f = 2 (P | = 0.80 | 0); I <sup>2</sup> = | 0%     |                     |      |                                                |
| Test for overall effect           | : Z = 2.0            | 06 (P =     | 0.04)    |          |        |                      |        |                     |      | Favour control group Favour intervention group |

| D2)                               |          |                    |         |           |        |              |        |                      |      |                                                |
|-----------------------------------|----------|--------------------|---------|-----------|--------|--------------|--------|----------------------|------|------------------------------------------------|
|                                   | Exp      | erimen             | tal     | c         | ontrol |              |        | Mean Difference      |      | Mean Difference                                |
| Study or Subgroup                 | Mean     | SD                 | Total   | Mean      | SD     | Total        | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| Haruyama 2016                     | 13.67    | 23.05              | 16      | 1.33      | 25.19  | 16           | 17.2%  | 12.34 [-4.39, 29.07] | 2016 |                                                |
| Shin 2016                         | 9.71     | 4.46               | 12      | 2.18      | 1.13   | 12           | 64.2%  | 7.53 [4.93, 10.13]   | 2016 | <b>-∎</b> -                                    |
| Min 2020                          | 11.69    | 21.27              | 19      | 18.32     | 28.07  | 19           | 18.6%  | -6.63 [-22.47, 9.21] | 2020 |                                                |
| Total (95% CI)                    |          |                    | 47      |           |        | 47           | 100.0% | 5.72 [-2.27, 13.72]  |      |                                                |
| Heterogeneity: Tau <sup>2</sup> = | = 24.14; | Chi <sup>2</sup> = | 3.35, d | f = 2 (P) | = 0.19 | ); $ ^2 = 4$ | 10%    |                      |      |                                                |
| Test for overall effect           | Z = 1.4  | 40 (P =            | 0.16)   |           |        |              |        |                      |      | Favour control group Favour intervention group |

**Figure S7.** Subgroup analyses by participants' age. (A1) Effect on trunk function for studies below the median; (A2) Effect on trunk function for studies over the median; (B1) Effect on balance ability for studies below the median; (B2) Effect on balance ability for studies over the median (C1) Effect on limits of stability forward reach of the unaffected arm for studies below the median; (C2) Effect on limits of stability forward reach of the unaffected arm for studies over the median; (D1) Effects on functional mobility for studies below the median; (D2) Effects on functional mobility for studies below the median.

- . . .

. . . . .

-...

. . . .

A1)

|                                   | Experimental                                 | Control                         | Std. Mean                    | Difference         | Std. Mean Difference                           |
|-----------------------------------|----------------------------------------------|---------------------------------|------------------------------|--------------------|------------------------------------------------|
| Study or Subaroup                 | Mean SD Tot                                  | al Mean SD Total                | Weight IV. Rand              | om. 95% CI Year    | IV. Random, 95% CI                             |
| D. C) 2001                        | 22.7.11.5.1                                  | 0 20 10 2 10                    | 12.2%                        | 0.07.1.701.2001    |                                                |
| De Seze 2001                      | 35.7 11.5 1                                  | 0 20 18.5 10                    | 12.3% 0.86 [-                | 0.07, 1.78] 2001   | •                                              |
| Verheyden 2009                    | 4.82 2.69 1                                  | 7 3.31 3.59 16                  | 15.3% 0.47 [-                | 0.23, 1.16] 2009   |                                                |
| Yoo 2010                          | 4.78 4.55 2                                  | 8 2.45 4.31 31                  | 17.9% 0.52 [-                | 0.00. 1.04] 2010   | <b>⊢</b> ∎−−                                   |
| Vijavakumar 2011                  | 6 96 1 28 1                                  | 0 3 13 1 24 10                  | 8 2% 2 91                    | 1 58 4 251 2011    |                                                |
| Vijayakulliai 2011                | 0.30 1.28 1                                  | 0 3.13 1.24 10                  | 0.2% 2.91                    | 1.50, 4.25] 2011   |                                                |
| Saeys 2012                        | 8.72 2.8 1                                   | 8 2.87 3.23 15                  | 13.3% 1.90                   | 1.06, 2.74] 2012   |                                                |
| Cabanas-Valdés 2015               | 5.88 3.48 4                                  | 0 2.5 2.2 39                    | 18.5% 1.15                   | 0.67, 1.62] 2015   |                                                |
| Haruvama 2016                     | 413 238 1                                    | 6 1 19 2 79 16                  | 14.5% 1.11                   | 0 35 1 861 2016    |                                                |
| narayana 2010                     | 4.15 2.50                                    | 0 1.15 2.75 10                  | 14.5/0 1.11                  | 0.55, 1.00] 2010   |                                                |
| T                                 |                                              |                                 | 100.00/ 1.12                 |                    |                                                |
| Total (95% CI)                    | 13                                           | 9 137                           | 100.0% 1.13                  | 0.65, 1.61]        | $\bullet$                                      |
| Heterogeneity: Tau <sup>2</sup> = | 0.26: Chi <sup>2</sup> = 18.35.              | $df = 6 (P = 0.005); I^2$       | = 67%                        |                    |                                                |
| Test for overall effect:          | 7 = 4.64 (P < 0.000)                         | 01)                             | 0170                         |                    | -4 -2 0 2 4                                    |
| rescior overall effect.           | Z = 4.64 (P < 0.000)                         | 01)                             |                              |                    | Favour control group Favour intervention group |
|                                   |                                              |                                 |                              |                    |                                                |
| Δ <b>2</b> )                      |                                              |                                 |                              |                    |                                                |
| <b>A2</b> )                       |                                              |                                 |                              |                    |                                                |
|                                   | Experimental                                 | Control                         | Std. Mean D                  | ifference          | Std. Mean Difference                           |
| Study or Subaroup                 | Mean SD Total                                | Mean SD Total                   | Weight IV. Rando             | m. 95% CI Year     | IV. Random, 95% CI                             |
| bea 2011                          | 27 22 14                                     |                                 | 17.5%                        | 50 2 271 2011      |                                                |
| Lee 2011                          | 3.7 2.3 14                                   | 0.9 1.4 14                      | 17.5% 1.43 [                 | 0.58, 2.27] 2011   |                                                |
| Jung 2014                         | 2.4 1.5 9                                    | 0.1 2.38 8                      | 12.9% 1.11 [                 | 0.07, 2.16] 2014   |                                                |
| Jung 2015                         | 2 36 2 94 11                                 | -0.27 1.27 11                   | 15 7% 1 12 [                 | 21 2 031 2015      |                                                |
| Julig 2013                        | 2.30 2.94 11                                 | -0.27 1.27 11                   | 13.7% 1.12 [                 | 5.21, 2.03] 2013   |                                                |
| Shin 2016                         | 3.08 2.71 12                                 | 0.09 1.24 12                    | 15.9% 1.37 [                 | 0.46, 2.28] 2016   |                                                |
| Rose 2016                         | 1.83 1.28 12                                 | 1.75 2.19 12                    | 18.8% 0.04 [-(               | 0.76, 0.84] 2016   |                                                |
| Park 2019                         | 3 07 2 04 14                                 | 0.03 2.23 14                    | 10.1% 0.07.0                 | 18 1 761 2018      |                                                |
| Faik 2019                         | 5.07 2.04 14                                 | 0.95 2.25 14                    | 19.1% 0.97 [                 | 2018, 1.70] 2018   |                                                |
|                                   |                                              |                                 |                              |                    |                                                |
| Total (95% CI)                    | 72                                           | 71                              | 100.0% 0.98 [                | 0.55, 1.41]        |                                                |
| Heterogeneity: Tau <sup>2</sup> - | 0.09 Chi <sup>2</sup> - 7.21                 | $df = 5 (P = 0.21) \cdot 1^2 =$ | 31%                          |                    |                                                |
| Therefogenerty. Tau =             | 0.03, Chi = 7.21, 4                          | $a_1 = 5(1 = 0.21), 1 =$        | 51/0                         |                    | -2 -1 0 1 2                                    |
| lest for overall effect:          | Z = 4.49 (P < 0.000)                         | )01)                            |                              |                    | Favour control group Favour intervention group |
|                                   |                                              |                                 |                              |                    |                                                |
| <b>D</b> (1)                      |                                              |                                 |                              |                    |                                                |
| B1)                               |                                              |                                 |                              |                    |                                                |
|                                   | Experimental                                 | Control                         | Std. Mean                    | Difference         | Std. Mean Difference                           |
| Study on Subaroun                 | Mean SD Te                                   | al Mean SD Tet                  | al Weight IV Dan             | dom 05% CL Vea     | N/ Bandom 05% Cl                               |
| Study of Subgroup                 | Mean SD TO                                   | a Mean SD Tot                   | ai weight TV, Kan            | 10m, 95% CI fea    | r IV, Kandom, 95% Ci                           |
| De Sèze 2001                      | 1.6 0.5                                      | 10 0.8 0.7 1                    | 0 12.6% 1.26                 | [0.28, 2.24] 2003  | 1                                              |
| Yoo 2010                          | 11.29 13.25                                  | 28 6 32 11 99 3                 | 1 21.5% 0.39                 | -0 13 0 911 2010   | n +                                            |
| Viieveluvere 2011                 | 71 0.00                                      |                                 | 0.00                         |                    |                                                |
| Vijayakumar 2011                  | 7.1 0.88                                     | 10 4.4 1.1                      | 9.2% 2.60                    | [1.34, 3.85] 201.  |                                                |
| Saeys 2012                        | 19.39 12.61                                  | 18 9.2 13.52 1                  | .5 17.2% 0.76                | [0.05, 1.48] 2012  | 2                                              |
| Cabanas-Valdés 2015               | 23.03 15.95                                  | 40 8.49 8.74 3                  | 9 22.4% 1.12                 | [0.64, 1.59] 2015  | 5 – –                                          |
| Harman 2016                       | 2 70 2 24                                    | 16 0.06 4.32 1                  | 6 17.2% 0.60                 | 0.02 1.411 2014    |                                                |
| Haruyama 2010                     | 2.79 5.54                                    | 10 0.00 4.32                    | 0.09                         | [-0.05, 1.41] 2010 | -                                              |
|                                   |                                              |                                 |                              |                    |                                                |
| Total (95% CI)                    | 1                                            | 22 12                           | 1 100.0% 0.98                | [0.52, 1.44]       |                                                |
| Heterogeneity: $Tau^2 =$          | $0.18^{\circ} \text{ Chi}^2 = 12.55^{\circ}$ | $df = 5 (P = 0.03)$ : $I^2 =$   | 60%                          |                    |                                                |
| Test for overall offect           | 7 - 4.30 (P < 0.0001)                        | a = 5 (1 = 0.05), 1 = 1         | 0070                         |                    | -4 -2 0 2 4                                    |
| rest for overall effect.          | Z = 4.20 (P < 0.000)                         | L)                              |                              |                    | Favour control group Favour intervention group |
|                                   |                                              |                                 |                              |                    |                                                |
| <b>B</b> 2)                       |                                              |                                 |                              |                    |                                                |
| D2)                               |                                              |                                 |                              |                    |                                                |
|                                   | Experimental                                 | Control                         | Std. Mean D                  | ifference          | Std. Mean Difference                           |
| Study or Subaroup                 | Mean SD Total                                | Mean SD Total                   | Weight IV. Rando             | m. 95% CI Year     | IV. Random, 95% CI                             |
| 1. 2017                           | 2.02.2.05.15                                 | 1.26 2.04 1.4                   | 20.000 0.52.1                |                    |                                                |
| An 2017                           | 2.93 2.96 15                                 | 1.36 2.84 14                    | 30.9% 0.53 [-0               | ).22, 1.27] 2017   |                                                |
| Park 2019                         | 4.79 3.06 14                                 | 2.86 3.19 14                    | 29.6% 0.60 [-(               | 0.16, 1.36] 2018   |                                                |
| Min 2020                          | 7 36 3 63 10                                 | 4 4 2 4 4 9 1 9                 | 39.5% 0.71.0                 | 0.05 1.361 2020    | <b>_</b>                                       |
|                                   | ,.50 5.05 19                                 |                                 | 55.570 0.71 [                |                    |                                                |
|                                   |                                              |                                 |                              |                    |                                                |
| Total (95% CI)                    | 48                                           | 47                              | 100.0% 0.62 [                | 0.21, 1.03]        |                                                |
| Heterogeneity: Tau <sup>2</sup> - | 0.00 Chi <sup>2</sup> = 0.13                 | $df = 2 (P = 0.94) \cdot 1^2 -$ | 0%                           |                    |                                                |
| Test for second 4                 | 7 - 2.02 (D - 0.13)                          | $a_1 - a_3 = (1 - 0.54), 1 =$   | 070                          |                    | -2 -1 0 1 2                                    |
| lest for overall effect:          | z = 2.93 (P = 0.00)                          | 5)                              |                              |                    | Favour control group Favour intervention group |
|                                   |                                              |                                 |                              |                    | · · · · · · · · · · · · · · · · · · ·          |
| $C^{(1)}$                         |                                              |                                 |                              |                    |                                                |
| CI)                               |                                              |                                 |                              |                    |                                                |
|                                   | Experimental                                 | Control                         | Std. Mean                    | Difference         | Std. Mean Difference                           |
| Study or Subarous                 | Moon SD Tot                                  | al Moan SD Total                | Woight IV Band               | om 05% CL Voor     | IV Pandom 95% CI                               |
| study of Subgroup                 | Mean SD 10t                                  | ai mean SD 10tal                | weight iv, kand              | Jin, 95% CI tear   | iv, ranuom, 95% Ci                             |
| De Sèze 2001                      | 2.2 1 1                                      | 0 1.1 1.1 10                    | 13.1% 1.00                   | 0.06, 1.94] 2001   |                                                |
| Dean 2007                         | 0.41 0.35                                    | 6 0.21 0.16 6                   | 8.4% 0.681                   | 0.50 1.861 2007    |                                                |
| Cohanaa Valdéa 2015               | 5.71 0.55                                    | 0 0.21 0.10 0                   | 5.4/0 0.00[-                 | 0.30, 1.30) 2007   |                                                |
| Cabanas-vaides 2015               | 5.57 3.97 4                                  | 0 2.62 2.78 39                  | 54.8% 0.85                   | 0.39, 1.31] 2015   |                                                |
| Haruvama 2016                     |                                              |                                 |                              |                    |                                                |
| ,                                 | 0.5 0.81 1                                   | 6 0.12 0.93 16                  | 23.7% 0.42 [-                | 0.28, 1.13] 2016   |                                                |
| ,                                 | 0.5 0.81 1                                   | 6 0.12 0.93 16                  | 23.7% 0.42 [-                | 0.28, 1.13] 2016   |                                                |
| ,<br>Total (95% Cl)               | 0.5 0.81 1                                   | .6 0.12 0.93 16<br>2 71         | 23.7% 0.42 [-<br>100.0% 0.76 | 0.28, 1.13] 2016   |                                                |



⊢\_\_\_\_\_

2

| C2)                               |           |          |         |           |          |               |        |                      |      |                                                |
|-----------------------------------|-----------|----------|---------|-----------|----------|---------------|--------|----------------------|------|------------------------------------------------|
|                                   | Expe      | rimen    | ital    | c         | Control  |               | 5      | Std. Mean Difference |      | Std. Mean Difference                           |
| Study or Subgroup                 | Mean      | SD       | Total   | Mean      | SD       | Total         | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| Chung 2013                        | 14.08     | 13.9     | 8       | -0.3      | 11.24    | 8             | 24.9%  | 1.08 [0.01, 2.15]    | 2013 |                                                |
| Shin 2020                         | 0.17      | 0.15     | 12      | 0.05      | 0.1      | 12            | 32.6%  | 0.91 [0.06, 1.76]    | 2019 | <b>_</b>                                       |
| Min 2020                          | 0.36      | 0.58     | 19      | 0.32      | 0.71     | 19            | 42.5%  | 0.06 [-0.58, 0.70]   | 2020 | <b>_</b>                                       |
| Total (95% CI)                    |           |          | 39      |           |          | 39            | 100.0% | 0.59 [-0.08, 1.26]   |      |                                                |
| Heterogeneity: Tau <sup>4</sup> = | = 0.17; C | $hi^2 =$ | 3.84, d | f = 2 (P) | y = 0.15 | $();  ^2 = 4$ | 48%    |                      |      | -2 -1 0 1 2                                    |
| lest for overall effect           | z = 1.7   | 4 (P =   | : 0.08) |           |          |               |        |                      |      | Favour control group Favour intervention group |

Figure S8. Subgroup analyses by the start of the intervention after the stroke-onset. (A1) Effect on trunk function for studies below the median; (A2) Effect on trunk function for studies over the median; (B1) Effect on balance ability for studies below the median; (B2) Effect on balance ability for studies over the median; (C1) Effect on gait performance for studies below the median; (C2) Effect on gait performance for studies over the median.

#### A1)

|                            | Expe     | erimer     | ital   | C        | ontrol |             |        | Std. Mean Difference |      | Std. Mean Difference                     |
|----------------------------|----------|------------|--------|----------|--------|-------------|--------|----------------------|------|------------------------------------------|
| Study or Subgroup          | Mean     | SD         | Total  | Mean     | SD     | Total       | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                       |
| Yoo 2010                   | 4.78     | 4.55       | 28     | 2.45     | 4.31   | 31          | 33.4%  | 0.52 [-0.00, 1.04]   | 2010 |                                          |
| Cabanas-Valdés 2015        | 5.88     | 3.48       | 40     | 2.5      | 2.2    | 39          | 36.9%  | 1.15 [0.67, 1.62]    | 2015 |                                          |
| Jung 2015                  | 2.36     | 2.94       | 11     | -0.27    | 1.27   | 11          | 14.8%  | 1.12 [0.21, 2.03]    | 2015 |                                          |
| Shin 2016                  | 3.08     | 2.71       | 12     | 0.09     | 1.24   | 12          | 14.9%  | 1.37 [0.46, 2.28]    | 2016 |                                          |
| Total (95% CI)             |          |            | 91     |          |        | 93          | 100.0% | 0.97 [0.58, 1.35]    |      | •                                        |
| Heterogeneity: $Tau^2 = 0$ | 0.05; Ch | $i^2 = 4.$ | 24, df | = 3 (P = | 0.24)  | ; $I^2 = 2$ | 9%     |                      |      |                                          |
| Test for overall effect. 2 | = 4.91   | (F < 0     | .00001 | .)       |        |             |        |                      |      | Favour control group Favour intervention |
| A2)                        |          |            |        |          |        |             |        |                      |      |                                          |

|                                   | Expe      | erimer             | ıtal    | C      | ontrol |                      | 9      | Std. Mean Difference | Std. Mean Difference |                                                |  |  |  |
|-----------------------------------|-----------|--------------------|---------|--------|--------|----------------------|--------|----------------------|----------------------|------------------------------------------------|--|--|--|
| Study or Subgroup                 | Mean      | SD                 | Total   | Mean   | SD     | Total                | Weight | IV, Random, 95% CI   | Year                 | IV, Random, 95% CI                             |  |  |  |
| De Sèze 2001                      | 33.7      | 11.5               | 10      | 20     | 18.3   | 10                   | 11.9%  | 0.86 [-0.07, 1.78]   | 2001                 |                                                |  |  |  |
| Verheyden 2009                    | 4.82      | 2.69               | 17      | 3.31   | 3.59   | 16                   | 15.4%  | 0.47 [-0.23, 1.16]   | 2009                 | +                                              |  |  |  |
| Vijayakumar 2011                  | 6.96      | 1.28               | 10      | 3.13   | 1.24   | 10                   | 7.6%   | 2.91 [1.58, 4.25]    | 2011                 |                                                |  |  |  |
| Lee 2011                          | 3.7       | 2.3                | 14      | 0.9    | 1.4    | 14                   | 13.1%  | 1.43 [0.58, 2.27]    | 2011                 |                                                |  |  |  |
| Saeys 2012                        | 8.72      | 2.8                | 18      | 2.87   | 3.23   | 15                   | 13.1%  | 1.90 [1.06, 2.74]    | 2012                 |                                                |  |  |  |
| Jung 2014                         | 2.4       | 1.5                | 9       | 0.1    | 2.38   | 8                    | 10.4%  | 1.11 [0.07, 2.16]    | 2014                 |                                                |  |  |  |
| Haruyama 2016                     | 4.13      | 2.38               | 16      | 1.19   | 2.79   | 16                   | 14.5%  | 1.11 [0.35, 1.86]    | 2016                 |                                                |  |  |  |
| Park 2019                         | 3.07      | 2.04               | 14      | 0.93   | 2.23   | 14                   | 13.9%  | 0.97 [0.18, 1.76]    | 2018                 | <b>_</b>                                       |  |  |  |
| Total (95% CI)                    |           |                    | 108     |        |        | 103                  | 100.0% | 1.24 [0.80, 1.69]    |                      | ◆                                              |  |  |  |
| Heterogeneity: Tau <sup>2</sup> = | = 0.21; 0 | Chi <sup>2</sup> = | 14.46,  | df = 7 | (P = 0 | .04); I <sup>2</sup> | = 52%  |                      | -                    |                                                |  |  |  |
| Test for overall effect           | : Z = 5.  | 50 (P <            | < 0.000 | 01)    |        |                      |        |                      |                      | Favour control group Favour intervention group |  |  |  |

#### B1)

|                            | Expe     | eriment      | tal     | C (    | Control               |                    |        | Std. Mean Difference |      | Std. Mean Difference                           |
|----------------------------|----------|--------------|---------|--------|-----------------------|--------------------|--------|----------------------|------|------------------------------------------------|
| Study or Subgroup          | Mean     | SD           | Total   | Mean   | SD                    | Total              | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| Yoo 2010                   | 11.29    | 13.25        | 28      | 6.32   | 11.99                 | 31                 | 36.2%  | 0.39 [-0.13, 0.91]   | 2010 |                                                |
| Cabanas-Valdés 2015        | 23.03    | 15.95        | 40      | 8.49   | 8.74                  | 39                 | 38.5%  | 1.12 [0.64, 1.59]    | 2015 | <b>_</b>                                       |
| An 2017                    | 2.93     | 2.96         | 15      | 1.36   | 2.84                  | 14                 | 25.3%  | 0.53 [-0.22, 1.27]   | 2017 |                                                |
| Total (95% CI)             |          |              | 83      |        |                       | 84                 | 100.0% | 0.70 [0.21, 1.19]    |      |                                                |
| Heterogeneity: $Tau^2 = 0$ | .10; Chi | $^{2} = 4.4$ | 9, df = | 2 (P = | 0.11); I <sup>2</sup> | <sup>2</sup> = 55% |        |                      |      |                                                |
| Test for overall effect: Z | = 2.82   | (P = 0.0)    | 005)    |        |                       |                    |        |                      |      | Favour control group Favour intervention group |

#### B2)

| ,                                                                               | Exp   | eriment | tal   | c    | Control |       | 9      | Std. Mean Difference |      | Std. Mean Difference                           |
|---------------------------------------------------------------------------------|-------|---------|-------|------|---------|-------|--------|----------------------|------|------------------------------------------------|
| Study or Subgroup                                                               | Mean  | SD      | Total | Mean | SD      | Total | Weight | IV, Random, 95% CI   | Year | IV, Random, 95% CI                             |
| De Sèze 2001                                                                    | 1.6   | 0.5     | 10    | 0.8  | 0.7     | 10    | 13.3%  | 1.26 [0.28, 2.24]    | 2001 | · · · · · · · · · · · · · · · · · · ·          |
| Vijayakumar 2011                                                                | 7.1   | 0.88    | 10    | 4.4  | 1.1     | 10    | 9.4%   | 2.60 [1.34, 3.85]    | 2011 |                                                |
| Saeys 2012                                                                      | 19.39 | 12.61   | 18    | 9.2  | 13.52   | 15    | 19.3%  | 0.76 [0.05, 1.48]    | 2012 | <b>_</b> _                                     |
| Haruyama 2016                                                                   | 2.79  | 3.34    | 16    | 0.06 | 4.32    | 16    | 19.2%  | 0.69 [-0.03, 1.41]   | 2016 |                                                |
| Park 2019                                                                       | 4.79  | 3.06    | 14    | 2.86 | 3.19    | 14    | 18.0%  | 0.60 [-0.16, 1.36]   | 2018 | +                                              |
| Min 2020                                                                        | 7.36  | 3.63    | 19    | 4.42 | 4.49    | 19    | 20.8%  | 0.71 [0.05, 1.36]    | 2020 |                                                |
| Total (95% CI)                                                                  |       |         | 87    |      |         | 84    | 100.0% | 0.95 [0.50, 1.39]    |      | •                                              |
| Heterogeneity: $Tau^2 = 0.13$ ; $Chi^2 = 8.94$ , $df = 5$ (P = 0.11); $I^2 = 4$ |       |         |       |      |         |       | 1%     |                      | H    | 4 -2 0 2 4                                     |
| Test for overall effect: $Z = 4.20$ (P < 0.0001)                                |       |         |       |      |         |       |        |                      | -    | Favour control group Favour intervention group |

#### C1)

|                                                              | Expe              | erimer             | ntal             | c       | ontrol                |       | 9      | Std. Mean Difference |                                                               | Std. Mean Difference                  |
|--------------------------------------------------------------|-------------------|--------------------|------------------|---------|-----------------------|-------|--------|----------------------|---------------------------------------------------------------|---------------------------------------|
| Study or Subgroup                                            | Mean              | SD                 | Total            | Mean    | SD                    | Total | Weight | IV, Random, 95% CI   | Year                                                          | IV, Random, 95% CI                    |
| Kim 2011                                                     | 4.6               | 5.54               | 20               | 0.1     | 4.1                   | 20    | 49.5%  | 0.91 [0.25, 1.56]    | 2011                                                          | · · · · · · · · · · · · · · · · · · · |
| Jung 2015                                                    | 8.28              | 5.42               | 11               | 2.37    | 6.15                  | 11    | 26.4%  | 0.98 [0.09, 1.88]    | 2015                                                          | <b>-</b>                              |
| Shin 2016                                                    | 7.36              | 5.5                | 12               | 0.99    | 0.63                  | 12    | 24.1%  | 1.57 [0.63, 2.51]    | 2016                                                          | <b>_</b>                              |
| Total (95% CI)                                               |                   |                    | 43               |         |                       | 43    | 100.0% | 1.09 [0.63, 1.55]    |                                                               |                                       |
| Heterogeneity: Tau <sup>2</sup> =<br>Test for overall effect | Chi² =<br>53 (P < | 1.38, d<br>< 0.000 | lf = 2 (l<br>01) | P = 0.5 | 50); I <sup>2</sup> = | = 0%  |        | -                    | -2 -1 0 1 2<br>Favour control group Favour intervention group |                                       |

9

| C2)                               |          |                    |          |           |           |                      |                    |                      |         |                                                               |
|-----------------------------------|----------|--------------------|----------|-----------|-----------|----------------------|--------------------|----------------------|---------|---------------------------------------------------------------|
|                                   | Expe     | erimen             | ital     | Co        | ontrol    |                      | S                  | td. Mean Difference  |         | Std. Mean Difference                                          |
| Study or Subgroup                 | Mean     | SD                 | Total    | Mean      | SD 7      | Fotal                | Weight             | IV, Random, 95% CI   | Year    | IV, Random, 95% CI                                            |
| Lee 2011                          | 16.5     | 9.7                | 14       | 4.1       | 5.6       | 14                   | 30.7%              | 1.52 [0.66, 2.38]    | 2011    | <b>_</b>                                                      |
| Haruyama 2016                     | 3.37     | 4.47               | 16       | 2.28      | 6.49      | 16                   | 35.6%              | 0.19 [-0.50, 0.89]   | 2016    |                                                               |
| Park 2019                         | 5.69     | 6.24               | 14       | 2.71      | 4.21      | 14                   | 33.7%              | 0.54 [-0.21, 1.30]   | 2018    |                                                               |
| Total (95% CI)                    |          |                    | 44       |           |           | 44                   | 100.0%             | 0.72 [-0.03, 1.47]   |         |                                                               |
| Heterogeneity: Tau <sup>2</sup> = | 0.28; 0  | Chi <sup>2</sup> = | 5.72. d  | f = 2 (P) | 9 = 0.06  | ); $ ^2 =$           | 65%                |                      |         |                                                               |
| Test for overall effect:          | Z = 1.8  | 88 (P =            | 0.06)    |           |           |                      |                    |                      |         | -2 -1 0 1 2<br>Favour control group Favour intervention group |
| D1)                               |          |                    |          |           |           |                      |                    |                      |         |                                                               |
|                                   | Exp      | perime             | ental    |           | Control   |                      |                    | Std. Mean Difference |         | Std. Mean Difference                                          |
| Study or Subgroup                 | Mea      | n SE               | ) Tota   | l Mean    | SD        | Tota                 | l Weight           | IV, Random, 95% C    | I Yea   | r IV, Random, 95% Cl                                          |
| Dean 2007                         | 0.4      | 1 0.3              | 56       | 0.21      | 0.16      |                      | 5 9.4%             | 0.68 [-0.50, 1.86    | j 2007  |                                                               |
| Chung 2013                        | 14.0     | 8 13.9             | 98       | 3 -0.3    | 11.24     |                      | 3 11.4%            | 1.08 [0.01, 2.15     | ] 2013  | 3                                                             |
| Cabanas-Valdés 2015               | 5.5      | 7 3.97             | 7 40     | 2.62      | 2.78      | 3                    | 9 61.1%            | 0.85 [0.39, 1.31     | .] 2015 |                                                               |
| Shin 2020                         | 0.1      | 7 0.1              | 5 12     | 0.05      | 0.1       | 1                    | 2 18.1%            | 0.91 [0.06, 1.76     | [] 2019 |                                                               |
| Total (95% CI)                    |          |                    | 66       | i         |           | 6                    | 5 100.0%           | 0.87 [0.51, 1.23     | 1       | •                                                             |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; C  | $hi^2 = 0$         | ).26, df | = 3 (P =  | = 0.97);  | $I^2 = 0$            | %                  |                      |         |                                                               |
| Test for overall effect:          | Z = 4.7  | 3 (P <             | 0.0000   | 1)        |           |                      |                    |                      |         | -2 -1 0 1 2                                                   |
|                                   |          |                    |          |           |           |                      |                    |                      |         | Favour control group Favour intervention group                |
| D2)                               |          |                    |          |           |           |                      |                    |                      |         |                                                               |
|                                   | Expe     | rimen              | tal      | Co        | ontrol    |                      | S                  | td. Mean Difference  |         | Std. Mean Difference                                          |
| Study or Subgroup                 | Mean     | SD                 | Total    | Mean      | SD T      | Fotal                | Weight             | IV, Random, 95% CI   | Year    | IV, Random, 95% CI                                            |
| De Sèze 2001                      | 2.2      | 1                  | 10       | 1.1       | 1.1       | 10                   | 14.6%              | 1.00 [0.06, 1.94]    | 2001    |                                                               |
| Saevs 2012                        | 2.45     | 1.31               | 18       | 1.86      | 1.38      | 15                   | 26.9%              | 0.43 [-0.27, 1.12]   | 2012    |                                                               |
| Haruvama 2016                     | 0.5      | 0.81               | 16       | 0.12      | 0.93      | 16                   | 26.4%              | 0.42 [-0.28, 1.13]   | 2016    |                                                               |
| Min 2020                          | 0.36     | 0.58               | 19       | 0.32      | 0.71      | 19                   | 32.1%              | 0.06 [-0.58, 0.70]   | 2020    | <b>_</b>                                                      |
| Total (05% CI)                    |          |                    | 62       |           |           | 60                   | 100.0%             | 0 20 [0 02 0 75]     |         |                                                               |
| I otal (95% CI)                   | 0.00.0   | -1-12              | 2 6 7 4  | 6 2 (5    |           | <b>60</b>            | 100.0%             | 0.59 [0.05, 0.75]    |         |                                                               |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; 0  | _ni <sup>-</sup> = | 2.67, d  | f = 3 (P) | r = 0.44  | ); 1- =              | 0%                 |                      |         | -2 -1 0 1 2                                                   |
| lest for overall effect:          | Z = 2    | L4 (P =            | = 0.03)  |           |           |                      |                    |                      |         | Favour control group Favour intervention group                |
| E1)                               |          |                    |          |           |           |                      |                    |                      |         |                                                               |
|                                   | Expe     | erimer             | ntal     | С         | ontrol    |                      |                    | Mean Difference      |         | Mean Difference                                               |
| Study or Subgroup                 | Mean     | SD                 | Total    | Mean      | SD        | Total                | Weight             | IV, Random, 95% CI   | Year    | IV, Random, 95% CI                                            |
| Chung 2013                        | 5.42     | 5.61               | 8        | 5.48      | 6.8       | 8                    | 23.4%              | -0.06 [-6.17, 6.05]  | 2013    |                                                               |
| Shin 2016                         | 9.71     | 4.46               | 12       | 2.18      | 1.13      | 12                   | 37.2%              | 7.53 [4.93, 10,13]   | 2016    |                                                               |
| An 2017                           | 4.11     | 2.24               | 15       | 2         | 3.05      | 14                   | 39.4%              | 2.11 [0.15, 4.07]    | 2017    | <b>_</b>                                                      |
| Total (05% CI)                    |          |                    | 25       |           |           | 24                   | 100.0%             | 262 0 78 901         |         |                                                               |
|                                   | 11 70    | Ch:2               | 12.25    |           |           | 54                   | 12 0.0%            | 5.02 [-0.76, 6.01]   |         |                                                               |
| Heterogeneity: Tau <sup>2</sup> = | = 11.78; | Chi <sup>2</sup> = | = 12.28  | a, at = a | 2 (P = 0) | .002);               | $1^{\circ} = 84\%$ |                      |         | -10 -5 0 5 10                                                 |
| lest for overall effect           | Z = 1.0  | 61 (P =            | = 0.11)  |           |           |                      |                    |                      |         | Favour control group Favour intervention group                |
| E-2)                              |          |                    |          |           |           |                      |                    |                      |         |                                                               |
| G <b>4</b> )                      | E        |                    | tal      |           | Control   |                      |                    | Moon Difference      |         | Moon Difference                                               |
| Study or Subgroup                 | Mean     | si imen<br>SD      | Total    | Mean      | SD        | Tota                 | Weight             | IV, Random, 95% Cl   | Year    | IV, Random, 95% Cl                                            |
| lung 2014                         | 5        | 11.77              | 9        | 2.6       | 7.52      | \$                   | 52.9%              | 2.40 [-6.89, 11 69]  | 2014    |                                                               |
| Haruvama 2016                     | 13.67    | 23.05              | 16       | 1.33      | 25.19     | 16                   | 5 22.5%            | 12.34 [-4.39, 29.07] | 2016    |                                                               |
| Min 2020                          | 11.69    | 21.27              | 19       | 18.32     | 28.07     | 19                   | 24.6%              | -6.63 [-22.47, 9.21] | 2020    | · · _ · _ ·                                                   |
|                                   |          | /                  | 20       | 20.02     | 20.07     |                      | 2.1070             |                      | 2020    |                                                               |
| Total (95% CI)                    |          |                    | 44       |           |           | 43                   | 3 100.0%           | 2.41 [-6.29, 11.11]  |         |                                                               |
| Heterogeneity: Tau <sup>2</sup> = | 14.80;   | Chi <sup>2</sup> = | 2.61, d  | lf = 2 (F | P = 0.27  | '); I <sup>2</sup> = | 23%                |                      |         |                                                               |
| Test for overall effect:          | Z = 0.5  | 4 (P =             | 0.59)    |           |           |                      |                    |                      |         | Favour control group Favour intervention group                |

Figure S9. Subgroup analyses by total volume (minutes) of the additional trunk exercise programs. (A1) Effect on trunk function for studies below the median; (A2) Effect on trunk function for studies over the median; (B1) Effect on balance ability for studies below the median; (B2) Effect on balance ability for studies over the median; (C1) Effect on limits of stability forward reach of the unaffected arm for studies below the median; (C2) Effect on limits of stability forward reach of the unaffected arm for studies over the median; (D1) Effects on gait performance for studies below the median; (D2) Effects on gait performance for studies over the median; (E1) Effects on functional mobility for studies below the median; (E2) Effects on functional mobility for studies over the median.

|                             | Eligibility<br>criteria<br>specified | Subjects<br>random<br>allocation | Concealed<br>allocation | Similar<br>groups<br>baseline | Subjects<br>blinding | Therapists<br>blinding | Assessors<br>blinding | Outcome<br>measurement in<br>85% of the<br>subjects<br>initially<br>allocated | Intention<br>to treat | Between-<br>group<br>statistical<br>comparison | Point<br>measures<br>and<br>variability |
|-----------------------------|--------------------------------------|----------------------------------|-------------------------|-------------------------------|----------------------|------------------------|-----------------------|-------------------------------------------------------------------------------|-----------------------|------------------------------------------------|-----------------------------------------|
| DeSèze et<br>al., 2001      | ~                                    | ~                                | ~                       | ~                             | Х                    | Х                      | ~                     | ~                                                                             | ~                     | ~                                              | <b>v</b>                                |
| Howe et al.,<br>2005        | v                                    | V                                | v                       | V                             | Х                    | Х                      | V                     | v                                                                             | Х                     | v                                              | Х                                       |
| Dean et al.,<br>2007        | v                                    | V                                | v                       | V                             | Х                    | Х                      | V                     | V                                                                             | V                     | V                                              | ~                                       |
| Verheyden<br>et al., 2009   | v                                    | v                                | v                       | V                             | Х                    | Х                      | v                     | V                                                                             | V                     | V                                              | ~                                       |
| Yoo et al.,<br>2010         | v                                    | v                                | Х                       | V                             | Х                    | Х                      | Х                     | ?                                                                             | ?                     | V                                              | Х                                       |
| Kim et al.,<br>2011         | v                                    | V                                | Х                       | V                             | Х                    | Х                      | Х                     | V                                                                             | V                     | V                                              | Х                                       |
| Vijayakumar<br>et al., 2011 | v                                    | V                                | v                       | V                             | Х                    | Х                      | V                     | ?                                                                             | ?                     | V                                              | Х                                       |
| Lee et al.,<br>2011         | v                                    | V                                | Х                       | V                             | Х                    | Х                      | V                     | V                                                                             | Х                     | V                                              | ~                                       |
| Saeys et al.,<br>2012       | V                                    | V                                | V                       | V                             | Х                    | Х                      | ~                     | V                                                                             | V                     | V                                              | ~                                       |
| Chung et al.,<br>2013       | V                                    | V                                | Х                       | V                             | Х                    | Х                      | Х                     | V                                                                             | V                     | V                                              | ~                                       |
| Jung et al.,<br>2014        | ~                                    | ~                                | ~                       | ~                             | Х                    | Х                      | ~                     | ~                                                                             | X                     | ~                                              | Х                                       |

Table S3. PEDro scale to assess methodological quality.

| Cabanas-<br>Valdés et al.,<br>2015 | ~ | ~ | v | V | Х | Х | v        | v        | X | ~ | v |
|------------------------------------|---|---|---|---|---|---|----------|----------|---|---|---|
| Jung et al.,<br>2015               | ~ | ~ | V | ~ | X | Х | V        | Х        | Х | ~ | ~ |
| Haruyama<br>et al., 2016           | ~ | ~ | ~ | V | Х | Х | <b>v</b> | <b>v</b> | Х | ~ | ~ |
| Shin et al.,<br>2016               | ~ | ~ | ~ | V | Х | Х | ~        | <b>v</b> | ~ | ~ | ~ |
| Rose et al.,<br>2016               | ~ | ~ | ~ | ~ | Х | Х | v        | <b>v</b> | Х | ~ | ~ |
| An et al.,<br>2017                 | ~ | ~ | V | ~ | Х | Х | ?        | ~        | Х | ~ | ~ |
| Park et al.,<br>2019               | ~ | ~ | ~ | ~ | ~ | Х | X        | ~        | Х | ~ | Х |
| Min et al.,<br>2020                | ~ | ~ | ~ | ~ | X | X | V        | ~        | ~ | ~ | ~ |

| № of<br>studies | Study<br>design      | Risk of<br>bias<br>(PEDro) | Inconsistency        | Indirectness         | Imprecision          | Publication<br>bias | Sample<br>Experimental<br>group | Sample<br>Control<br>group | Pooled effect size<br>(95% CI)                                  | Certainity       | Importance |
|-----------------|----------------------|----------------------------|----------------------|----------------------|----------------------|---------------------|---------------------------------|----------------------------|-----------------------------------------------------------------|------------------|------------|
|                 |                      |                            |                      |                      | Trunk functio        | on                  |                                 |                            |                                                                 |                  |            |
| 13              | randomised<br>trials | serious<br>ª               | serious <sup>b</sup> | serious <sup>c</sup> | not serious          | none                | 211                             | 208                        | SMD <b>1.06 SD</b><br>higher<br>(0.74 higher to 1.37<br>higher) | ⊕○○○<br>VERY LOW | CRITICAL   |
|                 |                      |                            |                      |                      | Balance abili        | ty                  |                                 |                            |                                                                 |                  |            |
| 9               | randomised<br>trials | serious<br>ª               | not serious          | serious <sup>c</sup> | not serious          | none                | 170                             | 168                        | SMD <b>0.83 SD</b><br>higher<br>(0.52 higher to 1.14<br>higher) |                  | CRITICAL   |
|                 |                      |                            |                      | Limits of st         | tability - Forw      | ard unaffected      |                                 |                            |                                                                 |                  |            |
| 6               | randomised<br>trials | serious<br>ª               | not serious          | serious <sup>c</sup> | serious <sup>d</sup> | none                | 87                              | 87                         | SMD <b>0.9 SD higher</b><br>(0.47 higher to 1.33<br>higher)     | €<br>VERY LOW    | CRITICAL   |
|                 |                      |                            |                      | Limits of s          | tability - Late      | ral unaffected      |                                 |                            |                                                                 |                  |            |
| 4               | randomised<br>trials | serious<br>ª               | not serious          | serious <sup>c</sup> | serious <sup>d</sup> | none                | 52                              | 55                         | SMD <b>1.16 SD</b><br>higher<br>(0.67 higher to 1.66<br>higher) | ⊕OOO<br>VERY LOW | CRITICAL   |
|                 |                      |                            |                      | Limits of            | stability - Lat      | eral affected       |                                 |                            |                                                                 |                  |            |
| 3               | randomised<br>trials | serious<br>ª               | not serious          | not serious          | serious <sup>d</sup> | none                | 37                              | 37                         | SMD <b>0.89 SD</b><br>higher<br>(0.26 higher to 1.52<br>higher) |                  | CRITICAL   |
|                 |                      |                            |                      |                      | Gait performa        | nce                 |                                 |                            |                                                                 |                  |            |
| 8               | randomised<br>trials | not<br>serious             | not serious          | serious <sup>c</sup> | serious <sup>d</sup> | none                | 129                             | 125                        | SMD <b>0.63 SD</b><br>higher<br>(0.38 higher to 0.89<br>higher) |                  | CRITICAL   |
|                 |                      |                            |                      | F                    | unctional mob        | ility               |                                 |                            |                                                                 |                  |            |

# Table S4. Quality of evidence (GRADE approach) between additional trunk-focused exercises vs conventional rehabilitation.

| 6 | randomised | serious | serious <sup>b</sup> | not serious | very                    | none | 79 | 77 | MD 3.4 higher        |          |          |
|---|------------|---------|----------------------|-------------|-------------------------|------|----|----|----------------------|----------|----------|
|   | trials     | а       |                      |             | serious <sup>d, e</sup> |      |    |    | (-0.32 lower to 7.12 | VERVIOW  | CRITICAL |
|   |            |         |                      |             |                         |      |    |    | higher)              | VERT LOW |          |

Abbreviations. PEDro: Physiotherapy Evidence Database Scale; CI: Confidence interval; SMD: Standardized mean difference; MD: Weighted Mean difference; I<sup>2</sup>: Inconsistency Statistic;

a. Downgraded one level since at least two studies scored ≤6 on the PEDro scale

b. Downgraded one level due to an Inconsistency statistic (I<sup>2</sup>)  $\ge$  50%

c. Downgraded one level because different test/scales were employed to measure the outcome

d. Downgraded one level due to a sample with less than 300 participants

e. Downgraded one level due to large confidence intervals (Includes the 0-Hypothesis)