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Abstract: Bland–Altman limits of agreement and the underlying plot are a well-established means
in method comparison studies on quantitative outcomes. Normally distributed paired differences,
a constant bias, and variance homogeneity across the measurement range are implicit assumptions to
this end. Whenever these assumptions are not fully met and cannot be remedied by an appropriate
transformation of the data or the application of a regression approach, the 2.5% and 97.5% quantiles
of the differences have to be estimated nonparametrically. Earlier, a simple Sample Quantile (SQ)
estimator (a weighted average of the observations closest to the target quantile), the Harrell–Davis
estimator (HD), and estimators of the Sfakianakis–Verginis type (SV) outperformed 10 other quantile
estimators in terms of mean coverage for the next observation in a simulation study, based on sample
sizes between 30 and 150. Here, we investigate the variability of the coverage probability of these three
and another three promising nonparametric quantile estimators with n = 50(50)200, 250(250)1000.
The SQ estimator outperformed the HD and SV estimators for n = 50 and was slightly better
for n = 100, whereas the SQ, HD, and SV estimators performed identically well for n ≥ 150.
The similarity of the boxplots for the SQ estimator across both distributions and sample sizes
was striking.

Keywords: agreement; Bland–Altman analysis; coverage; limits of agreement; method comparison;
quantile estimation; repeatability; reproducibility

1. Introduction

When comparing methods for the measurement of a continuous outcome, the Bland–Altman
Limits of Agreement (BA LoAs) are a well-known and well-established means to this end [1–3].
Mean values are plotted against the paired differences in a scatter plot that is supplemented by an
estimate of the bias (i.e., the mean of the paired differences) and the so-called LoAs (bias estimate
+/− 1.96 standard deviations of the paired differences), including the respective 95% confidence
intervals [4–7]. Under the assumptions of normally distributed paired differences, the BA LoAs
represent estimates for the boundaries between which 95% of all population differences are supposed
to lie. In the case of the variance heterogeneity of the paired differences, a normalizing transformation
(like the natural logarithm) may render the usual analysis (on the log-scale) possible, whereas a bias
that is non-constant across the measurement range might require a regression approach [3,8]. If neither
a transformation of the data, nor a regression approach are applicable, the LoAs are often estimated
by simple empirical 2.5% and 97.5% quantiles. However, various nonparametric quantile estimators
have been proposed in the literature during the recent decades, which likewise may serve in the
nonparametric estimation of 2.5% and 97.5% quantiles [9–12]. In an earlier endeavor, we performed a
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literature search on nonparametric quantile estimators from which we compared 15 in a simulation
study [13]. We assessed the performance of these estimators by the average coverage probability for one
newly generated observation from 20,000 fictive trials, and we assumed six different distributions and
sample sizes between 30 and 150 to this end. We found that a simple sample quantile estimator based on
two rank statistics [9], the Harrell–Davis estimator [14], and the estimators of the Sfakianakis–Verginis
type [15] performed, on average, closely to the nominal coverage probability of 95%. The purpose of
this paper is to illuminate the variability of the coverage probability of these nonparametric quantile
estimators in a simulation study. Three further, possibly promising nonparametric quantile estimators
from our former investigation [13] and the classical BA LoAs [3] (as a benchmark measure and for
illustrative purposes) are added. In Section 2, all nonparametric quantile estimators and the simulation
setup are described. In Section 3, the results are given and illustrated by boxplots. A discussion closes
the paper.

2. Materials and Methods

The description of the six different methods of nonparametric quantile estimation considered
here is kept brief. Further details can be found elsewhere [13].

2.1. Nonparametric Quantile Estimators

2.1.1. Sample Quantile Estimator

A random sample of n paired differences X1, . . . Xn is sorted in increasing order
X(1) ≤ X(2) ≤ . . . ≤ X(n); the symbols here denote the order statistics of the random sample. The SQ
estimator is a weighted average of the two order statistics that are closest to including p percent of all
the observations in the sample:

SQ = (1− α)X(r) + αX(r+1) (1)

with α = p(n + 1)− r, r = [p(n + 1)], and [x] is the greatest integer that is less than or equal to x [10,12].

2.1.2. Harrell–Davis Estimator

The HD estimator, as well as those estimators that follow, employs linear combinations of all the
available order statistics, weighting them according to their relative closeness to the target percentile.

They can be given as L-statistics, which is,
n

∑
j=1

Wj · X(j), where Wj and X(j) is the weight for the j-th

order statistic and the j-th order statistic itself, respectively [16]. The Harrell–Davis estimator is
given by:

HD =
n

∑
i=1

WiX(i) (2)

with weight function:

Wi = Ii/n {p(n + 1), (1− p)(n + 1)} − I(i−1)/n {p(n + 1), (1− p)(n + 1)} ,

where Ii/n {a, b} is the incomplete beta function [9,14].

2.1.3. Bernstein Polynomial Estimator

The BP estimator employs the binomial probability of observing exactly i out of n events with an
event probability of p, B(i; n, p), and is given by:
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BP =
n

∑
i=1

B(i− 1; n− 1, p)X(i) (3)

according to Cheng [17].

2.1.4. HD Estimator Using a Level Crossing Empirical Distribution

Huang [18] modified the Harrell–Davis estimator (2) by applying a weighted empirical
distribution function instead of the empirical distribution with equal weights 1/n. The Harrell–Davis
estimator using a level crossing empirical distribution function can be written as:

HDlc =
n

∑
i=1

WiX(i) (4)

with weight function:

Wi = Iqi {p(n + 1), (1− p)(n + 1)} − Iqi−1 {p(n + 1), (1− p)(n + 1)} ,

the incomplete beta function Iqi {a, b}, qi =
i

∑
j=1

wj, i = 1, . . . , n, and:

wj =


1
2

[
1− n−2√

n(n−1)

]
if j = 1, n

1√
n(n−1)

if j = 2, 3 . . . , n− 1.

2.1.5. Sfakianakis–Verginis Estimator

Sfakianakis and Verginis [15] proposed a group of three estimators, from which we chose the first
one due to the similarity of the results in our former investigation [13]. SV estimators are supposed to
better estimate quantiles in the tails of a distribution when using small samples, and they employ also
the binomial probabilities B(i; n, p) as weights for the ordered statistics X(i), i = 1, . . . , n:

SV =
2B(0; n, p) + B(1; n, p)

2
X(1) +

B(0; n, p)
2

X(2) −
B(0; n, p)

2
X(3)

+
n−1

∑
i=2

B(i; n, p) + B(i− 1; n, p)
2

X(i)

− B(n; n, p)
2

X(n−2) +
B(n; n, p)

2
X(n−1) +

2B(n; n, p) + B(n− 1; n, p)
2

X(n).

(5)

2.1.6. Navruz–Özdemir Estimator

Recently, Navruz and Özdemir [19] introduced a new quantile estimator, which is also a linear
function of the order statistics with weights of binomial probabilities:

NO = (B(0; n, p)2p + B(1; n, p)p)X(1) + B(0; n, p)(2− 3p)X(2) − B(0; n, p)(1− p)X(3)

+
n−2

∑
i=1

(B(i; n, p)(1− p) + B(i + 1; n, p)p)X(i+1) − B(n; n, p)pX(n−2)

+ B(n; n, p)(3p− 1)X(n−1) + (B(n− 1; n, p)(1− p) + B(n; n, p)(2− 2p))X(n).

(6)
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2.2. Simulation Setup

We assumed six distributions (Figure 1), the choice and number of which were motivated by
former simulation studies on nonparametric quantile estimation, i.e., 4–6 symmetric and asymmetric
distributions [11,14,15,18,19]:

1. the standard normal distribution;
2. a lognormal distribution with meanlog = 1 and sdlog = 1;
3. a beta distribution with shape parameters α = 2 and β = 5 (non-centrality parameter λ = 0);
4. a beta distribution with shape parameters α = 2 and β = 2 (λ = 0);
5. a chi-squared distribution with 4 degrees of freedom; and
6. an exponential distribution with rate parameter 1.
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Figure 1. Density functions of the assumed distributions.

For sample sizes n = 50(50)200, 250(250)1000, each distribution, and quantile estimator,
we simulated 5000 fictive trials and derived the LoAs. Their respective coverage probability c was
derived by applying the cumulative distribution function F(x) to the LoAs, i.e.,

c = F(upper LoA)− F(lower LoA). (7)

This resulted in the distributions of coverage probabilities, which we display with boxplots.
We compared the nonparametric quantile estimators with respect to (a) the average (i.e., median and
mean) coverage probability and the closeness to the nominal 95% level and (b) their variability in
terms of the 5% quantile and the first quartile. The classical BA LoAs served as the benchmark
indication of expectable variation under the standard normal distribution; their performance under the
remaining distributions illustrated the inappropriateness under non-normal distributions. The Root
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Mean Squared Error (RMSE) for the estimation of the 2.5% and 97.5% quantiles was supplemented.
Here, the true values for these quantiles were known, as were the assumed distributions. Note, though,
that the investigation of the coverage probability enabled a simultaneous assessment of both LoAs,
whereas the RMSE was related to one of the two LoAs at a time. For instance, underestimation of the
lower LoA and underestimation of the upper LoA for one set of estimated LoAs can imply the very
same coverage probability as an overestimated lower LoA and an overestimated upper LoA for another
set of estimated LoAs. The R code is available as Supplementary Material Code S1 (R Version 4.0.2).

3. Results

3.1. BA LoA

For n = 50, the median (mean) coverage probability was close to 0.95 for three distributions,
but above the nominal level for the beta distributions (Distributions 3 and 4 in Figure 2; 0.957 (0.953) and
0.972 (0.967), respectively) and slightly below for the exponential distribution (Distribution 6 in Figure 2;
0.943 (0.940)). For Distribution 4, even the first quartile exceeded 0.95 (0.953), indicating overestimation
of the BA LoA, which is visible by the box lying completely above 0.95 in Figure 2. The same applied
in the case of Distribution 3 for sample sizes of n ≥ 200 and for Distribution 2 for sample sizes of
n ≥ 500 (Figures 2 and 3). In the case of Distribution 6, the median (mean) coverage probability fell
short of the nominal level for all sample sizes, even for n = 1000 (0.948 (0.948)).
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Figure 2. Boxplots of the coverage probability for the BA LoA and n = 50(50)200.
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Figure 3. Boxplots of the coverage probability for the BA LoA and n = 250(250)1000.

3.2. Nonparametric Quantile Estimators

3.2.1. SQ Estimator

The median (mean) coverage probability of the simple sample quantile estimator SQ was
0.958–0.959 (0.952–0.954) for n = 50; the first quartile was 0.938–0.939; and the third quartile was
0.972–0.975 (Figure 4). For larger sample sizes (Supplementary Figure S2), the coverage probability
converged to the nominal level, always exceeding 0.95 on average (e.g., n = 150: median 0.952–0.953
(mean 0.950–0.951), first quartile 0.939–0.94). The 5% quantile increased likewise from 0.896 (n = 50) to
0.938 (n = 1000); see Table 1. A distinguishing feature of SQ was the similarity of the boxplots across
both distributions and sample sizes (Figure 4, Supplementary Figure S2).

Table 1. Five percent quantiles of the coverage probability by the estimator and sample size n.
For BA LoA, the 5% quantiles are shown assuming a standard normal distribution (benchmark values);
for the nonparametric estimators, the minimum of the 5% quantiles across all 6 distributions are shown.

Estimator 50 100 150 200 250 500 750 1000

BA LoA 0.893 0.914 0.922 0.927 0.929 0.936 0.939 0.941
SQ 0.896 0.913 0.919 0.922 0.925 0.933 0.936 0.938
HD 0.880 0.910 0.919 0.922 0.926 0.933 0.936 0.938
BP 0.859 0.897 0.911 0.917 0.921 0.931 0.935 0.937

HD lc 0.871 0.903 0.914 0.920 0.923 0.932 0.936 0.938
SV 0.880 0.911 0.920 0.923 0.926 0.933 0.936 0.939
NO 0.491 0.728 0.858 0.903 0.920 0.934 0.936 0.938



Int. J. Environ. Res. Public Health 2020, 17, 8330 7 of 14

1 2 3 4 5 6

0.
75

0.
85

0.
95

SQ, n=50

Distribution

C
ov

er
ag

e

1 2 3 4 5 6

0.
75

0.
85

0.
95

SQ, n=100

Distribution

C
ov

er
ag

e

1 2 3 4 5 6

0.
75

0.
85

0.
95

SQ, n=150

Distribution

C
ov

er
ag

e

1 2 3 4 5 6

0.
75

0.
85

0.
95

SQ, n=200

Distribution

C
ov

er
ag

e

Figure 4. Boxplots of the coverage probability for the SQ estimator and n = 50(50)200.

3.2.2. HD Estimator

The median (mean) coverage probability of the HD estimator was 0.941–0.946 (0.936–0.941) for
n = 50; the first quartile was 0.920–0.924; and the third quartile was 0.958–0.964 (Figure 5). For larger
sample sizes (Supplementary Figure S3), the coverage probability converged, on average, to the
nominal level (e.g., n = 150: median 0.949–0.952 (mean 0.947–0.950), first quartile 0.938–0.94). The 5%
quantile was slightly below that of SQ for n = 50, 100 (Table 1), but identical for n ≥ 150. The HD
estimator performed very similar to the SQ estimator for n ≥ 150 (Figure 5, Supplementary Figure S3).

3.2.3. BP Estimator

The BP estimator fell short of the nominal coverage probability for n ≤ 250 (Supplementary
Figures S4 and S5). For n = 250, for instance, the median (mean) and first quartile coverage probability
was 0.945–0.947 (0.944–0.946) and 0.936–0.938, respectively. The median (mean) coverage probability
reached 0.949 (0.948–0.949) for n = 750, 1000.

Comparing the HD and BP estimator for n = 200 in terms of the RMSE, the RMSE was smaller for
the HD than for the BP estimator for four distributions in the estimation of the 2.5% percentile (Table 2)
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and for one distribution in the estimation of the 97.5% percentile (Table 3). For three distributions,
the RMSE was smaller for the BP than for the HD estimator in the estimation of the 97.5% percentile.

In general, all nonparametric LoAs performed considerably close to each other in the estimation
of the 2.5% percentile for sample sizes of n ≥ 100 (Table 2). In the estimation of the 97.5% percentile,
this was the case for n ≥ 200 (Table 3).

1 2 3 4 5 6

0.
75

0.
85

0.
95

HD, n=50

Distribution

C
ov

er
ag

e

1 2 3 4 5 6
0.

75
0.

85
0.

95

HD, n=100

Distribution

C
ov

er
ag

e

1 2 3 4 5 6

0.
75

0.
85

0.
95

HD, n=150

Distribution

C
ov

er
ag

e

1 2 3 4 5 6

0.
75

0.
85

0.
95

HD, n=200

Distribution

C
ov

er
ag

e

Figure 5. Boxplots of the coverage probability for the HD estimator and n = 50(50)200.

3.2.4. HD lc Estimator

The HD lc estimator performed quite similar to the BP estimator (Supplementary Figures S6 and S7).
The median (mean) coverage probability reached, though, 0.949–0.95 (0.948–0.949) for n = 500;
for n = 250, the median (mean) and first quartile coverage probability was 0.947–0.948 (0.946–0.948)
and 0.938–0.94, respectively.

3.2.5. SV Estimator

The median (mean) coverage probability of the SV estimator was 0.942–0.946 (0.937–0.941)
for n = 50; the first quartile was 0.920–0.924; and the third quartile was 0.96–0.963 (Figure 6). For larger
sample sizes (Supplementary Figure S8), the coverage probability converged, on average, to the
nominal level (e.g., n = 150: median 0.95–0.953 (mean 0.948–0.951), first quartile 0.938–0.942).
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The 5% quantile was slightly below that of SQ for n = 50, 100 (Table 1), but identical for n ≥ 150.
The SV estimator performed very similar to the SQ estimator for n ≥ 150 and, in general, close to
identical to the HD estimator with respect to the 5% quantile, the first quartile, and the median of the
coverage probability for all sample sizes (±0.001).

Table 2. RMSE of the estimated 2.5% quantiles by sample size, estimator, and distribution.

n Estimator Normal (0,1) Lognormal (0,1) Beta (2,5,0) Beta (2,2,0) Chi-Squared (4) Exponential (1)

50 BA LoA 0.20 2.34 0.070 0.045 1.97 0.94
SQ 0.34 0.040 0.015 0.031 0.17 0.015
HD 0.28 0.037 0.014 0.028 0.16 0.017
BP 0.26 0.043 0.016 0.032 0.18 0.023

HD lc 0.26 0.039 0.014 0.029 0.17 0.019
SV 0.27 0.038 0.014 0.029 0.16 0.017
NO 0.28 0.049 0.018 0.037 0.21 0.024

100 BA LoA 0.14 2.48 0.070 0.038 2.00 0.96
SQ 0.22 0.029 0.011 0.023 0.124 0.012
HD 0.20 0.026 0.010 0.021 0.11 0.012
BP 0.18 0.028 0.010 0.022 0.12 0.014

HD lc 0.19 0.027 0.010 0.021 0.12 0.013
SV 0.20 0.026 0.009 0.020 0.11 0.012
NO 0.19 0.029 0.011 0.022 0.13 0.014

150 BA LoA 0.11 2.52 0.070 0.035 2.01 0.97
SQ 0.18 0.024 0.009 0.019 0.104 0.010
HD 0.16 0.022 0.008 0.017 0.093 0.009
BP 0.15 0.023 0.009 0.018 0.098 0.011

HD lc 0.16 0.022 0.008 0.017 0.095 0.010
SV 0.16 0.022 0.008 0.017 0.092 0.009
NO 0.15 0.023 0.009 0.018 0.099 0.011

200 BA LoA 0.095 2.55 0.070 0.034 2.01 0.98
SQ 0.16 0.021 0.008 0.017 0.092 0.009
HD 0.14 0.019 0.007 0.015 0.082 0.008
BP 0.14 0.020 0.007 0.016 0.085 0.009

HD lc 0.14 0.019 0.007 0.015 0.083 0.008
SV 0.14 0.019 0.007 0.015 0.081 0.008
NO 0.14 0.020 0.008 0.016 0.085 0.009

250 BA LoA 0.086 2.59 0.071 0.034 2.02 0.98
SQ 0.14 0.019 0.007 0.015 0.080 0.008
HD 0.13 0.017 0.006 0.014 0.073 0.007
BP 0.12 0.018 0.007 0.014 0.074 0.008

HD lc 0.12 0.017 0.007 0.014 0.073 0.008
SV 0.13 0.017 0.006 0.014 0.072 0.007
NO 0.12 0.018 0.007 0.014 0.075 0.008

500 BA LoA 0.062 2.65 0.070 0.033 2.03 0.98
SQ 0.096 0.013 0.005 0.011 0.059 0.006
HD 0.091 0.012 0.005 0.010 0.055 0.005
BP 0.090 0.012 0.005 0.010 0.056 0.006

HD lc 0.090 0.012 0.005 0.010 0.056 0.006
SV 0.091 0.012 0.005 0.010 0.055 0.005
NO 0.090 0.012 0.005 0.010 0.056 0.006

750 BA LoA 0.050 2.68 0.071 0.033 2.02 0.98
SQ 0.077 0.011 0.004 0.009 0.048 0.005
HD 0.073 0.010 0.004 0.009 0.045 0.004
BP 0.073 0.010 0.004 0.009 0.046 0.005

HD lc 0.073 0.010 0.004 0.009 0.046 0.004
SV 0.073 0.010 0.004 0.009 0.045 0.004
NO 0.073 0.010 0.004 0.009 0.046 0.005

1000 BA LoA 0.043 2.68 0.071 0.033 2.02 0.99
SQ 0.068 0.010 0.004 0.008 0.042 0.004
HD 0.065 0.009 0.003 0.007 0.040 0.004
BP 0.064 0.009 0.004 0.007 0.040 0.004

HD lc 0.064 0.009 0.003 0.007 0.040 0.004
SV 0.065 0.009 0.003 0.007 0.040 0.004
NO 0.064 0.009 0.003 0.007 0.040 0.004
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Table 3. RMSE of the estimated 97.5% quantiles by sample size, estimator, and distribution.

n Estimator Normal (0,1) Lognormal (0,1) Beta (2,5,0) Beta (2,2,0) Chi-Squared (4) Exponential (1)

50 BA LoA 0.20 2.16 0.052 0.046 1.75 0.81
SQ 0.34 3.40 0.059 0.032 2.06 0.87
HD 0.28 2.60 0.049 0.029 1.62 0.68
BP 0.26 2.01 0.048 0.033 1.40 0.59

HD lc 0.26 2.30 0.047 0.030 1.49 0.63
SV 0.28 2.54 0.049 0.029 1.61 0.68
NO 0.73 2.81 0.23 0.33 4.05 1.38

100 BA LoA 0.14 1.83 0.046 0.039 1.63 0.76
SQ 0.22 1.85 0.039 0.023 1.27 0.54
HD 0.20 1.87 0.034 0.020 1.16 0.49
BP 0.19 1.47 0.033 0.022 1.02 0.43

HD lc 0.19 1.60 0.033 0.021 1.07 0.45
SV 0.20 1.95 0.034 0.020 1.18 0.50
NO 0.38 1.62 0.13 0.18 2.05 0.70

150 BA LoA 0.11 1.69 0.044 0.036 1.63 0.74
SQ 0.18 1.37 0.031 0.019 0.99 0.43
HD 0.16 1.36 0.028 0.017 0.92 0.40
BP 0.16 1.17 0.027 0.018 0.84 0.36

HD lc 0.16 1.23 0.028 0.017 0.87 0.38
SV 0.16 1.45 0.028 0.017 0.94 0.41
NO 0.18 1.24 0.048 0.074 0.99 0.39

200 BA LoA 0.096 1.60 0.043 0.034 1.62 0.74
SQ 0.16 1.18 0.028 0.017 0.87 0.37
HD 0.14 1.14 0.025 0.015 0.79 0.34
BP 0.14 1.02 0.025 0.016 0.75 0.32

HD lc 0.14 1.07 0.025 0.016 0.77 0.33
SV 0.14 1.19 0.025 0.015 0.80 0.34
NO 0.14 1.18 0.026 0.026 0.79 0.34

250 BA LoA 0.088 1.55 0.042 0.033 1.62 0.74
SQ 0.14 1.02 0.024 0.015 0.76 0.33
HD 0.13 0.99 0.023 0.014 0.71 0.30
BP 0.13 0.91 0.022 0.014 0.68 0.29

HD lc 0.13 0.94 0.022 0.014 0.69 0.30
SV 0.13 1.02 0.022 0.014 0.71 0.31
NO 0.13 1.10 0.022 0.014 0.74 0.32

500 BA LoA 0.062 1.39 0.043 0.032 1.61 0.73
SQ 0.097 0.69 0.018 0.011 0.53 0.22
HD 0.091 0.67 0.017 0.010 0.50 0.21
BP 0.090 0.64 0.016 0.010 0.49 0.21

HD lc 0.090 0.65 0.016 0.010 0.49 0.21
SV 0.091 0.67 0.017 0.010 0.50 0.21
NO 0.094 0.72 0.017 0.010 0.53 0.22

750 BA LoA 0.050 1.34 0.043 0.033 1.60 0.73
SQ 0.079 0.57 0.014 0.009 0.44 0.18
HD 0.075 0.55 0.014 0.008 0.42 0.17
BP 0.074 0.53 0.014 0.008 0.41 0.17

HD lc 0.075 0.54 0.014 0.008 0.41 0.17
SV 0.075 0.55 0.014 0.008 0.42 0.17
NO 0.076 0.57 0.014 0.008 0.43 0.18

1000 BA LoA 0.043 1.31 0.042 0.032 1.60 0.73
SQ 0.068 0.48 0.012 0.008 0.37 0.16
HD 0.065 0.47 0.012 0.007 0.36 0.15
BP 0.064 0.46 0.012 0.007 0.35 0.15

HD lc 0.065 0.46 0.012 0.007 0.35 0.15
SV 0.065 0.47 0.012 0.007 0.36 0.15
NO 0.066 0.48 0.012 0.007 0.36 0.16
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Figure 6. Boxplots of the coverage probability for the SV estimator and n = 50(50)200.

3.2.6. NO Estimator

The NO estimator achieved a median (mean) and first quartile coverage probability of 0.95–0.951
(0.949–0.950) and 0.944–0.945 for n = 500, but fell short of the nominal coverage probability of 0.95 for
smaller sample sizes (Supplementary Figures S9 and S10). Only for sample sizes of n = 500, 750, 1000,
the NO estimator performed comparably to the SQ estimator.

4. Discussion

4.1. Key Finding

The SQ estimator, a simple sample quantile estimator based on two rank statistics, conservatively
kept, on average, the nominal coverage level of 95% for n = 50 and converged rapidly towards it
with increasing sample size. The variability of the SQ estimator, measured in terms of the 5% quantile
and the first quartile of the coverage probability, was smallest amongst all considered nonparametric
quantile estimators for n = 50, 100. For sample sizes of n ≥ 150, both the HD and the SV estimator
performed likewise well in terms of average performance and small variability. The remaining
nonparametric estimators considered in the study did so for larger sample sizes only (BP: n ≥ 750,
HD lc: n ≥ 500, and NO: n ≥ 500).
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4.2. What Does This Add to What Is Known

Harrell and Davis [14] investigated the mean squared error of their estimator to measure its
efficiency with sample sizes of a maximum n = 60 and did not recommend the HD estimator for small
n and extreme p. Dielman, Lowry, and Pfaffenberger [12] compared several quantile estimators in
terms of bias with sample sizes n = 10, 15, 25, 30 and p as small as 0.02. They concluded that there was
not one best estimator across scenarios, but the HD estimator performed well in a wide range of cases,
except when p = 0.02, 0.98. They highlighted that the HD estimator makes use of many data points
and, therefore, performed better in the estimation of middle quantiles. On the contrary, sample quantile
estimators, like the SQ estimator, performed well at p = 0.02, and the HD estimator performed better
at larger sample sizes. Sfakianakis and Verginis [15] compared the SV estimator with the HD and SQ
estimators in terms of bias and mean squared error for p = 0.01, 0.05(0.05), 0.95, 0.99 and n = 5–750.
They concluded that the SV estimator performed better than the HD and SQ estimators in most of the
examined cases did.

The nonparametric estimation of the LoAs involves two tail percentiles, p = 0.025, 0.975,
which need to be considered simultaneously. Earlier, we indicated that the SQ estimator outperformed
other quantile estimators for n = 50 in terms of the mean coverage probability for the next observation,
but the HD estimator and estimators of the Sfakianakis–Verginis type performed likewise well for
sample sizes exceeding 80 observations [13]. Here, we investigated both the average performance
and variability of nonparametric quantile estimators for the LoA. The SQ estimator outperformed the
HD and SV estimators for n = 50 and was slightly better for n = 100, whereas the SQ, HD, and SV
estimators performed identically well for n ≥ 150. The similarity of the boxplots for the SQ estimator
across both distributions and sample sizes was striking.

4.3. What Is the Implication, and What Should Change Now?

Whenever violated assumptions for the paired differences prohibit the immediate derivation
of the classical BA LoA and neither an appropriate preparatory transformation nor a regression
approach are practicable alternatives [3,8,20–22], the SQ estimator may serve as a basis for the
derivation of nonparametric LoAs. For sample sizes n ≥ 150, this holds also true for the HD
and SV estimators, although all available differences contribute to the quantile estimation, and the
target quantiles are extreme tail percentiles. The SQ estimator is not defined for n < 40; however,
a reasonably sized method comparison study is likely to enroll at least 40 subjects anyway [23–26].
Finally, the 95% confidence intervals should supplement nonparametric LoAs to indicate the estimates’
uncertainty [27,28]. Bootstrapping techniques may serve this purpose for the SQ estimator.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/22/8330/
s1: Code S1: R source code for the simulation study, Figure S2: Boxplots of the coverage probability for the
SQ estimator and n = 250(250)1000, Figure S3: Boxplots of the coverage probability for the HD estimator and
n = 250(250)1000, Figure S4: Boxplots of the coverage probability for the BP estimator and n = 50(50)200,
Figure S5: Boxplots of the coverage probability for the BP estimator and n = 250(250)1000, Figure S6: Boxplots of
the coverage probability for the HD lc estimator and n = 50(50)200, Figure S7: Boxplots of the coverage probability
for the HD lc estimator and n = 250(250)1000, Figure S8: Boxplots of the coverage probability for the SV estimator
and n = 250(250)1000, Figure S9: Boxplots of the coverage probability for the NO estimator and n = 50(50)200,
Figure S10: Boxplots of the coverage probability for the NO estimator and n = 250(250)1000.
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Abbreviations

The following abbreviations are used in this manuscript:

BA Bland–Altman
BP Bernstein Polynomial
HD Harrell–Davis
HD lc Harrell–Davis level crossing
LoAs Limits of Agreement
NO Navruz–Özdemir
RMSE Root Mean Squared Error
SQ Sample Quantile
SV Sfakianakis–Verginis
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