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Abstract: The outbreak of Corona Virus Disease 2019 (COVID-19) has affected the lives of people all
over the world. It is particularly urgent and important to analyze the epidemic spreading law and
support the implementation of epidemic prevention measures. It is found that there is a moderate
to high correlations between the number of newly diagnosed cases per day and temperature and
relative humidity in countries with more than 10,000 confirmed cases worldwide. In this paper,
the correlation between temperature/relative humidity and the number of newly diagnosed cases is
obvious. Governments can adjust the epidemic prevention measures according to climate change,
which will more effectively control the spread of COVID-19.
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1. Introduction

Corona Virus Disease 2019 (COVID-19) is a global pandemic and serious threat to human health
which halt the economic activities [1]. The COVID-19 outbreak has become a global public health
emergency [2]. Corona Virus Disease 2019 (COVID-19) is pneumonia caused by SARS-CoV-2 infection.
Since December 2019, there have been many cases of pneumonia caused by this virus infection
all over the world. The COVID-19 pandemic forced many countries to implement full or partial
lockdown, causing a substantial reduction in the anthropogenic activities due to being prohibited
from outdoor invasion which resulted in less transportation and shutting down of industries [3].
On 11 March 2020, the World Health Organization (WHO) declared COVID-19 a world pandemic [4].
To date, COVID-19 infection has been reported worldwide and may be further transmitted by air
travel [5]. Currently, many scholars are conducting research on the spatial spread of COVID-19.
For example, Jelodar used LSTM Recurrent Neural Network (RNN) to carry out deep emotional
classification of COVID-19 [6]; Alsaeedy used the existing cellular wireless network function to detect
COVID-19 risk areas [7].

According to the data on “Baidu COVID-19 Epidemic Real-time Big Data Report”,
from 15 February to 22 June, the total number of confirmed cases of the COVID-19 in the United
States exceeded 2.31 million, and the cumulative number of deaths exceeded 120,000, reaching 123,053.
The cumulative number of confirmed cases of COVID-19 in Brazil exceeded 1.1 million, and the
cumulative number of deaths exceeded 50,000, reaching 51,271. As of 22 June, three countries in the
southern hemisphere were among the top five in the daily list of newly diagnosed cases. On 22 June,
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there were 26,616 new cases in Brazil. Therefore, there is an urgent need to evaluate the correlation
between the spread of COVID-19 and climate conditions, so as to better support the decision making
and response measures and control the further spread of COVID-19.

2. Related Research Work

2.1. Research on Epidemic Situation and Climate

Since 2000, Severe Acute Respiratory Syndrome (SARS), bird flu and other epidemics have broken
out successively. The SARS epidemic broke out in Guangdong, China in mid-November 2002, and then
spread to other parts of China and the world. Under the action of a series of countermeasures, SARS
disappeared in mid-June 2003. SARS lasted for about 7 months, and reached its peak from April to
May 2003. Bird flu epidemics mostly occur in winter and spring, and they all end in late spring to early
summer. SARS was first discovered in Guangdong and Hong Kong, China in 2003 with the warm
climate, where the average temperature from January to February is above 10 °C. The bird flu was first
discovered in Guangxi, Hubei and other provinces in 2004 with a suitable climate, while the average
temperature from January to February is around 10 °C. The COVID-19 epidemic was first reported in
Wuhan, Hubei Province, while the average temperature from January to February was also around
10 °C [8].

In China, the epidemics such as SARS and bird flu have the common characteristics of beginning
in winter, ending in summer, and originating in southern China. These viruses have high activity and
transmission capacity in low-temperature and high-humidity environment [9]. Some reference believe
that the increase temperature will the virus lose its infective activity.

At present, there have been some studies on the correlation between the COVID-19 epidemic
spread and climate. Zhu et al. [10] confirmed the highly significant correlation between absolute
humidity and daily new COVID-19 cases using Multiple Linear Regression Model, after collecting
the daily number of new cases and corresponding climate data from eight regions in four countries
in South America. David et al. [11] utilized the generalized additive model (GAM) to explore the
linear and non-linear relationship between the annual average temperature compensation and the
confirmed COVID-19 cases in the capital city of Brazil. It was found that the daily cumulative number
of confirmed cases decreased by 4.8951% when the temperature increased by 1 °C. Goswami [12] used
Sen’s Slope and Man-Kendall test and generalized additive regression model (GAM) to detect the
impact of daily temperature and relative humidity on incidence rate in India countries. Lowen [13],
Barreca [14] and Żuk [15] pointed out that environmental temperature plays an important role in the
survival and transmission of viruses.

A large number of studies reveal that temperature and humidity can affect the spread of epidemics,
thus prompting this study to further explore the global impact of environmental factors on COVID-19.

At present, all the current literature selected samples are limited to local areas, which may lead
to the problem that the conclusions are not universal. Therefore, this study collected the epidemic
situation and meteorological data in the high incidence area of global epidemic situation, analyzed
the development trend of the epidemic situation on a global scale, including more climatic conditions
that may affect the spread of the virus, so as to study the climatic factors affecting the activity
of SARS-CoV-2.

2.2. Multiple Regression Analysis

Multiple Linear Regression Models are suitable for scenarios where multiple variables affect
single outcome. It can accurately measure the correlation degree and regression fitting degree of each
variable, and improve the prediction model effect. In this study, climate factors have an impact on
the spread of the epidemic in many aspects. As it was necessary to evaluate the correlation between
various climatic factors and the spread of SARA-CoV-2. Multiple Linear Regression Models was
selected for analysis.
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Multiple Regression Analysis Models have been widely used in various scenarios of COVID-19.
Rath [16] used Multiple Linear Regression Model to predict that the number of daily active cases in
India would reach 52,290 by 15 August. Ayyoubzadeh et al. [17] used Multiple Linear Regression
Method to predict the spread of COVID-19 in Iran, and found that in addition to the incidence of the
previous day, factors that can effectively improve the accuracy of the prediction also include hand
sanitizer usage and hand washing frequency. Kass et al. [18] analyzed the relationship between Body
Mass Index (BMI) and age in patients diagnosed with COVID-19 through Multiple Linear Regression
Model, and concluded that obesity may increase the infection rate of COVID-19. Yang et al. [19]
estimated the early mortality of COVID-19 by linear regression model, and concluded that the mortality
of COVID-19 was lower than that of coronavirus epidemic caused by SARS-CoV and MERS-CoV.
Xiong et al. [20] analyzed the correlation between initial CT features and turbidity progression in
COVID-19 patients by linear regression models and Spearman correlation coefficient.

3. Data Sources and Research Methods

3.1. Data Sources

The open data sets of confirmed cases published by the Center for System Science and Engineering
(CSSE) of Johns Hopkins University were used in this study. The data from all over the world were
collated from 22 January, the early stage of the epidemic. Considering that countries with less confirmed
epidemic cases might have problems with less obvious climate characteristics, and it is necessary to
avoid the problem that too few objects lead to the research results not being universal, 65 countries
with more than 10,000 confirmed cases from 22 March to 22 June were selected. The total number of
confirmed cases per day is subtracted from that of the previous day to get the new daily number of
confirmed cases in each country, so as to reflect the epidemic transmission capacity.

The climate data in this study comes from the daily records of weather stations around the world
collected by China Meteorological Data Network (http://data.cma.cn/). We selected high average
monthly temperature, low average monthly temperature, sea level pressure, altitude, wind speed,
rainfall, dew point temperature and relative humidity as the climatic indicators of each region from
22 March to 22 June during the epidemic periods in each region to reflect the regional weather changes.

In this experiment, 65 countries with more than 10,000 confirmed COVID-19 cases at 24:00 on
22 June were selected as experimental subjects. The number of newly diagnosed cases per day and
8 climate factors were collected for experimental analysis. Set the number of new daily confirmed
cases (New) as the dependent variable y, the monthly average maximum temperature during the
epidemic periods (Tmax), the monthly average minimum temperature during the epidemic periods
(Tmin), sea level pressure (Sea_Pressure), Wind_Speed, Elevation, Rainfall, Dew point temperature
(DP), and Relative humidity (Humidity) are respectively Arguments x1, x2, x3, x4, x5, x6, x7, x8 .
The samples of observation data are shown in Table 1.

Table 1. Observation Variable Table.

Data New Tmax Tmin Sea_Pressure Wind_Speed Elevation Rainfall DP Humidity

03/22 Y1 X11 X12 X13 X14 X15 X16 X17 X18
03/23 Y2 X21 X22 X23 X24 X25 X26 X27 X28

... ... ... ... ... ... ... ... ... ...
06/22 Yn Xn1 Xn2 Xn3 Xn4 Xn5 Xn6 Xn7 Xn8

3.2. Methodology

We chose the Multiple Linear Regression Analysis Method to analyze the correlation between
the number of daily increased confirmed cases in each region and the climate indicators of the region.
Firstly, the relevant Multiple Linear Regression Method was used to perform a series of verifications
and establish a multiple regression equation. Then the Pearson correlation coefficient was used to

http://data.cma.cn/
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evaluate the relative importance of the influence of each independent variable on the dependent
variable, i.e., the correlation coefficient between each independent variable and the dependent variable.
The linear relationship between them was discovered and the correlation between the observed
variables was determined. The advantage of using this method is that the relationship between the
variables can be clearly defined and expressed quantitatively, and the influence of different climatic
factors on the number of new diagnosed cases per day can be clearly shown.

According to the selected observation variable data, the Multiple Linear Regression Models as
shown in Equation (1) can be constructed.

y = β0 + β1x1 + β2x2 + β3x3 + β4x4

+β5x5 + β6x6 + β7x7 + β8x8 + ε
(1)

where y is the dependent variable, which represents the number of newly increased confirmed cases
every day in this experiment; x1, x2, x3, x4, x5, x6, x7, x8 are independent variables, respectively
representing the monthly average maximum temperature, monthly average minimum temperature,
sea level pressure, wind speed, elevation, rainfall, dew point temperature and relative humidity in
this experiment. β0, β1, β2, β3, β4, β5, β6, β7, β8 is the unknown parameters of the corresponding
independent variables; ε is called the error term, which is an unobservable random variable with a
mean value of zero and a variance of σ2 > 0, and ε ∈ N(0, σ2). The above Linear Regression Model
can be used to predict the number of new daily confirmed cases and determine the correlation between
each independent variable and the dependent variable. Therefore, for different dates, n groups of
different data can be obtained, as shown in Equation (2).

y1 = β0 + β1x11 + ... + β8x18 + ε1

y2 = β0 + β1x21 + ... + β8x28 + ε2
...
yn = β0 + β1xn1 + ... + β8xn8 + εn

(2)

where ε1, ε2, · · · , εn is independent of each other and ε ∈ N(0, σ2).
The Pearson correlation coefficient is calculated on the basis of the above data. For a single

independent variable, the calculation method is shown in Equation (3).

R =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1 (xi − x)2 ∑n
i=1 (yi − y)2

(3)

R (Pearson correlation coefficient) is used to describe the correlation between two groups of
different data. When the development trend of two different groups of data presents weak correlation,
0 ≤ |R| < 0.3. When the development trend of two different groups of data show medium correlation,
0.3 ≤ |R| < 0.6. And When the development trendof two different groups of data presents high
correlation, 0.6 ≤ |R| < 1.0.

Pearson correlation coefficient was utilized to analyze the correlation between variables, and the
correlation coefficient values are shown in Table 2.

In Table 2, R is the correlation coefficient, R01 is the correlation coefficient between the monthly
average maximum temperature (Tmax) and the number of the daily increased confirmed cases (New),
and R10 is the correlation coefficient between the daily increased confirmed cases (New) and the
monthly average maximum temperature (Tmax). Because the correlation between the monthly average
maximum temperature (Tmax) and the number of the daily increased confirmed cases (New) is
equivalent to the correlation between the number of the daily increased confirmed cases (New) and the
monthly average maximum temperature (Tmax). Therefore, in the above table, R01 = R10, R12 = R21,
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and so on. The closer the absolute value of the correlation coefficient to 1, the stronger the correlation
between the two observed variables in the region.

Table 2. Correlation Coefficient Table.

New Tmax Tmin Sea_Pressure Wind_Speed Elevation Rainfull DP Humidity

New 1.00 R01 R02 R03 R04 R05 R06 R07 R08
Tmax R10 1.00 R12 R13 R14 R15 R16 R17 R18
Tmin R20 R21 1.00 R23 R24 R25 R26 R27 R28

Sea_Pressure R30 R31 R32 1.00 R34 R35 R36 R37 R38
Wind_Speed R40 R41 R42 R43 1.00 R45 R46 R47 R48

Elevation R50 R51 R52 R53 R54 1.00 R56 R57 R58
Rainfull R60 R61 R62 R63 R64 R65 1.00 R67 R68

DP R70 R71 R72 R73 R74 R75 R76 1.00 R78
Humidity R80 R81 R82 R83 R84 R85 R86 R87 1.00

3.3. Model Testing

After the establishment of Multiple Linear Regression Model, it is necessary to test the Linear
Regression Model. In this experiment, the modified determination coefficient R2 is selected to
determine the performance of the model.The formula for selecting the modified determination
coefficient is shown in Equation (4).

R2
= 1− SSE/(n− k− 1)

SST/(n− 1)
(4)

where SSE represents the Sum of Squares of Residuals, and SST represents the Sum of Squares of
Deviations, while n−k−1 represents the degree of freedom of the Sum of Squares of Residuals, and n−1
is the degree of freedom of the Sum of the Squares of Deviation. By dividing the SSE by their degrees of
freedom and dividing the SST by their degrees of freedom, the influence of the number of variables on
the coefficient of determination can be suppressed, and the fitting degree of the linear regression model
for the relationship between variables can be better reflected. The closer the correction coefficient is
to 1, the higher the fitting degree of the relationship between variables is, and the more accurate the
model effect is.

R2 =
SSR
SST

=
∑n

i=1 (ŷi − ȳ)2

∑n
i=1 (yi − ȳ)2 (5)

The difference between the modified determination coefficient R2 and the coefficient of
determination R2 is that a penalty term is introduced. The function of the penalty term is that our
coefficient of determination can be increased only when variables that are really helpful for analysis are
introduced, effectively solving the problem of As the number of independent variables in the model
increases, the coefficient of determination also gradually increases.

In order to ensure that there are enough data for model training, 70% of the observation data is
selected as the training set, and the remaining 30% of the observation data are used as the test set.
The climate data of the day in the test set is input into the establish multiple linear regression model,
and the predicted value of the number of new confirmed cases on that day is obtained, and compare
with the actual observation value of the day. This is to test the constructed Multiple Linear Regression
Model is in line with the actual situation.

4. Experimental Results and Discussion

4.1. Regression Analysis between the Number of New Daily Confirmed Cases and Climate Variables

After data processing with Multiple Linear Regression Models, the fitting function between the
number of new daily confirmed cases and each climate variable is obtained. Among the 65 linear
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regression models (each model for a country), the correlation coefficient of 42 models were greater
than 0.5, showing that these models have good fitting effect. Countries with the top six number of
confirmed cases as of 22 June were selected for display. Tables 3 and 4 shows the Multiple Linear
Regression Model constructed by the training set of data from United States, Brazil, India, Mexico,
South Africa and Peru.

Table 3. Multiple Linear Regression Models of Some Countries.

Country β1 β2 β3 β4 β5 β6 β7 β8 β0

Brazil −863 5554 424 826 0 0 −1409 −755 −2.7× e5

India −1286 1259 −1191 0 0 −2.1× e5 0 −7.6× e7 2.1× e9

Peru 4.4× e14 −2.3× e14 7.7× e10 388 −4.9× e10 −6.3 −6.9× e14 2.2× e14 −2.7× e16

Mexico 5 368 1 0 0 −1789 −352 793 −4548
South Africa 139 −722 0 −44 0 59 188 −164 5518

US −3.8× e9 9.0× e9 −71 84 6.1× e11 593 −7.0× e8 8.9× e8 −1.4× e14

Table 4. Modified Determination Coefficients of Some Countries.

Item Brazil India Peru Mexico South Africa US

R2 0.60 0.85 0.85 0.75 0.80 0.43

Eight climatic parameters were inputted into the established Multiple Linear Regression Model to
calculate the daily number of new confirmed cases. The results were compare with the daily number of
new confirmed cases in the observation, to detect whether the Multiple Linear Regression Models can
effectively reflect the relationship between the daily number of new confirmed cases and the climate
data. The prediction of daily number of new confirmed cases provides a theoretical basis. Figures 1–3
show the comparison between test set and model prediction of the United States, Brazil, India, Mexico,
South Africa and Peru; The red curve is the observation data of the test set, and the blue curve is the
daily increased number of confirmed cases predicted by the constructed multiple regression model.

According to Figure 1, it can be noted that the Multiple Linear Regression Model constructed by
the experiment fits with the observation data, and can predict the number of new confirmed cases
every day based on the relevant climate data.

Figure 1. Comparison of test sets and model predictions in Different Countries.
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Figure 2. Correlations between the number of daily new confirmed cases and climate variables.

Figure 3. Correlation between New and Tmax.

4.2. The Correlation between the New Confirmed Case Number and Climate in Different Countries

We explore the relationship between the daily number of new confirmed cases (New) and climate
data in different countries, and select the countries with the top six number of confirmed epidemic
cases as of 24:00 on 22 June for demonstration. The correlation coefficient between the daily number of
the confirmed cases and the climate data is shown in Table 5.
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Table 5. Correlation Coefficient between New and Climate Variables in the Top Six Countries.

Country Tmax Tmin Sea_Pressure Wind_Speed Elevation Rainfull DP Humidity

Brazil −0.81 −0.84 0.57 0.48 −2.0× e−16 0.52 −0.84 −0.85
India 0.71 0.76 0.00 0.00 −2.0× e−16 −0.84 0.00 0.00
Peru −0.69 −0.72 0.00 0.39 −9.3× e−17 −0.13 −0.38 −0.21

Mexico 0.75 0.73 −0.55 −0.31 6.7× e−16 −0.08 −0.84 −0.81
South Africa −0.41 −0.37 0.13 7 −0.1× e−16 −0.17 −0.53 −0.80
United States 0.11 0.11 −0.02 0.19 4.9× e−16 0.02 −0.32 −0.46

* Due to the lack of India’s dew point temperature and relative humidity data, the correlation is set to 0 to avoid
affecting the experimental results.

As can be seen in Table 5, the correlation coefficient between New of countries and each climatic
variable illustrates significant correlations between New and Tmax, Tmin, Humidity.

1. For Tmax and Tmin, four of the top six countries in the total number of confirmed cases showed a
strong correlation, including Brazil, India, Mexico and Peru. In addition, South Africa showed a
moderate correlation, while the United States, which had the largest number of confirmed cases,
showing a weak correlation.

2. For Humidity, four of the top six countries in the total number of confirmed cases showed strong
correlation, including Brazil, India, Mexico and South Africa, while the United States showed
moderate correlation, and Peru showed weak correlation.

4.3. The Correlation between the Number of New Daily Confirmed Cases and Various Climate Variables in
Different Countries

In the 65 countries selected in this experiment, the experimental results of the correlation
coefficient between the New and Various Climate Parameters are shown in Figure 2.

1. The New and Tmax generally show a medium or high correlation. There are 54 countries where
the New and Tmax show medium or high correlations, accounting for about 83%. Among them,
there are 31, 23, and 11 countries showing high, medium, and low correlations respectively,
accounting for about 48%, 35%, and 17% respectively, as shown in Figure 4a.

2. The New and Tmin generally show a medium or high correlation. There are 53 countries where
the New and Tmin show medium or high correlations, accounting for about 82%. Among them,
there are 31, 22, and 12 countries showing high, medium, and low correlations respectively,
accounting for about 48%, 34%, and 18% respectivle, as shown in Figure 4b.

3. There is a low correlation between the New and Sea Level Pressure overall. There are only 14
countries where the New and Sea Level Pressure show medium or high correlations, accounting
for about 22%. Among them, there are 5, 9, and 51 countries showing high, medium, and low
correlations respectively, accounting for about 8%, 14%, and 78% respectively, as shown
in Figure 4c.

4. There is a low correlation between the New and Wind Speed overall. There are only 10 countries
where the New and Wind Speed show medium or high correlations, accounting for about 15%.
Among them, there are 1, 9, and 55 countries showing high, medium, and low correlations
respectively, accounting for about 1%, 14%, and 85% respectively, as shown in Figure 4d.

5. There is a low correlation between the New and Elevation. There is no country where the New
and Elevation show medium or high correlation, while all countries show a low correlation,
as shown in Figure 4e.

6. There is a low correlation between the New and Rainfall overall. There are only 9 countries
where the New and Rainfall show medium or high correlations, accounting for about 14%.
Among them, there are 1, 8, and 56 countries showing high, medium, and low correlations
respectively, accounting for about 2%, 12%, and 86% respectively, as shown in Figure 4f.

7. The New and the Dew Point Temperature generally show a medium or high correlation. There are
41 countries where the New and the Dew Point Temperature show a medium or high correlations,
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accounting for about 63%. Among them, there are 23, 18, and 24 countries showing high, medium,
and low correlations respectively, accounting for about 35%, 28%, and 37% respectively, as shown
in Figure 4g.

8. The New and Relative Humidity generally show a medium or high correlation. There are 46
countries where the New and Relative Humidity show medium or high correlations, accounting
for about 71%. Among them, there are 21, 25, and 19 countries showing high, medium, and low
correlations respectively, accounting for about 32%, 39%, and 29% respectively, as shown
in Figure 4h.

Based on the above analysis, the following further inferences can be drawn:

1. The activity of the COVID-19 have little correlation with Elevation, Sea Level Pressure, Wind
Speed, and Rainfall. The New in all selected 65 countries shows low correlations with Elevation.
Only 22% of the selected countries have medium or high correlations between the New and Sea
Level Pressure, and only 8% of the countries show high correlations. Only 15% of the countries
have medium or high correlations between the New and Wind Speed, and only 1% of the countries
show high correlations. 14% of the countries have medium or high correlations between the New
and Rainfall, and only 2% of the countries show high correlations.

2. The activity of the COVID-19 is correlated with Tmax, Tmin, Dew Point Temperature and, Relative
Humidity. 82% of the selected 65 countries have medium or high correlations between the New
and Tmax or Tmin, and 48% of them have high correlations. 71% of the countries have medium
or high correlations between the New and the Dew Point Temperature or Relative Humidity,
and about 32% of them show high correlations.

3. The activity of the COVID-19 is mainly related to Temperature and Humidity. Since both Tmax
and Tmin belong to air temperature,and the Dew Point Temperature can be obtained from
the Relative Humidity and Temperature [21]. It is inferred that the activity of the COVID-19
is mainly related to temperature and humidity. It is worth noting that the temperature and
humidity compared with the correlation between the number of new daily confirmed cases,
more countries show medium or high correlations between temperature and the number of new
daily confirmed cases. The temperature seems to have a more obvious impact on virus activity.
However, the correlation between the number of new daily confirmed cases and humidity should
not be ignored. It is necessary to consider the impact of climate factors on the spread of the
epidemic in combination with temperature and humidity.

4.4. Geospatial Analysis of the Correlation between the New and Climate Variables

Figures 3–6 show the maps of the correlation between New and Tmax, Tmin, Relative Humidity,
verifying and demonstrating the analysis and inference above on the whole. In the maps, red color
indicates high correlation, yellow color indicates medium correlation, and blue-green color means
low correlation, while white color means unselected countries. We select most countries in the world
for analysis, trying to reveal the impact of various climate factors on the activity of COVID-19 in the
global range, and effectively reduce the risk of erroneous conclusions because the occasional weather
conditions in individual countries are similar to the climatic conditions related to virus activity, so that
the experimental results are more reliable and universal. Integrating with the spatial visualization
analysis in Figures 3–6, we further analyze and infer the following points of view:

1. The intervention of epidemic prevention and control measures can restrain the influence of
climatic factors on the spread of the epidemic. China, where the epidemic broke out in January,
shows a low correlation between the New and various climate factors. In the analysis of Israel,
South Korea, and Singapore, which had good epidemic prevention and control, the correlation
analysis between the New and various climate factors also shows a low correlation. Therefore,
this article speculates that government interventions in epidemic prevention and control measures
can effectively reduce the spread of the epidemic and restrain the impact of climate on the spread
of the epidemic.
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2. At the stage of a pandemic, climate factors are not enough to restrain the spread of the epidemic.
As of 22 June, the United States, which has the largest number of confirmed cases of the epidemic,
does not have a high correlation between the New and Temperature and Humidity. This article
speculates that the United States shows a low correlation because it was already in the pandemic
stage. The main reason affecting the number of new confirmed cases daily is the large number
of confirmed cases and their interpersonal and social contact. In the case of a large number of
confirmed cases and failure to effectively prevent interpersonal communication, Climate factors
have a low impact on the transmission speed of the epidemic. The impact of temperature and
humidity on the spread of COVID-19 is not enough to completely suppress the pandemic.

3. Temperature and Humidity in tropical areas have a more obvious impact on the spread of the
epidemic. Cases of COVID-19 have also been confirmed in the equatorial Africa and Amazon
tropical rainforest. Countries in the relevant regions such as Brazil, Colombia, Ecuador, Nigeria
and other countries have reported moderate or above correlation between the numbers of new
confirmed cases and temperature, humidity. It can also be seen from the map that more countries
in the equator and South America show medium or high correlation. This article speculates that
temperature and humidity in the equator of Africa and the Amazon rainforest have a greater
influence on the spread of the epidemic.

Figure 4. Correlation between New and Tmin.

Figure 5. Correlation between New and DP.
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Figure 6. Correlation between New and Humidity.

5. Discussion

According to the research results, temperature and humidity have a high correlation with the
activity of SARS-CoV-2. Other literature shows that in addition to temperature and humidity, biological
gender [22], obesity rate [23], age [24], comorbidities [25] can affect the transmission of COVID-19.
Therefore, the government should pay special attention to some special environment when formulating
measures to prevent and control the epidemic situation, which can make SARS-CoV-2 have high activity.
Countries should strengthen the control of disinfection and social isolation on the environment.
The development of the epidemic can be predicted according to the changes in temperature and
humidity, and corresponding prevention and control measures can be taken. According to the climate
change in the area where the virus activity changes, epidemic prevention, and control measures should
be strengthened when the virus activity is low, so as to suppress the trend of a virus outbreak and
achieve the purpose of epidemic prevention and control. At the same time, attention should be paid to
the prevention and control of the environmental factors such as temperature and humidity suitable for
virus survival and transmission channels. Therefore, countries must seize the influence of climatic
factors to take active measures to control the first COVID-19 epidemic when the virus activity is at a
low level.

Therefore, the development of the epidemic can be predicted according to the changes of
temperature and humidity, and corresponding prevention and control measures can be taken.
According to the climate change in the area where the virus activity changes, the epidemic prevention
and control measures should be strengthened when the virus activity is low, so as to suppress the
trend of virus outbreak and achieve the purpose of epidemic prevention and control. At the same
time, Attention should be paid to the prevention and control of the environmental factors such as
temperature and humidity suitable for virus survival and transmission channels. Therefore, countries
must seize the influence of climatic factors to take active measures to control the first COVID-19
epidemic when the virus activity is at a low level. At the same time, they should not relax the
prevention and control measures to prevent the second COVID-19 epidemic caused by the increase of
virus activity due to the change of climate factors.

At present, the specific mechanism of the interaction between Temperature, Humidity and Virus
activity is unknown. But like influenza virus, COVID-19 can be transmitted by aerosol [26]. Casanova
believes that compared with medium relative humidity (50%), COVID-19 has a greater survival
rate or greater protection at high relative humidity (80%) [27]. So this research speculated that low
temperature and high humidity lead to the increase of suspended solids in the atmosphere, which
provides the ideal conditions for virus attachment, replication and transmission. Low temperature can
also dry the mucous membrane, reduce the function of cilia, and support the survival and transmission
of virus and the spread of disease [28]. Therefore, it is speculated that temperature and humidity can
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affect the spread of COVID-19 by affecting the spread of COVID-19. On the one hand, temperature
affects the human mucous membrane to reduce the human resistance to viruses. On the other hand,
high humidity can increase the quality of aerosols in the air. The concentration increases the number
of aerosol particles in the air [29], which leads to an increase in the speed of virus transmission.
The combination of temperature and humidity reduces human resistance to viruses and enhances the
speed of virus transmission, thus showing that the speed of virus transmission is accelerated, and the
number of new confirmed cases increases daily.

6. Conclusions and Future Work

The analysis in this paper shows that the activity of the new coronavirus has the
following characteristics:

1. There is a high correlation between the activity of the COVID-19 and temperature and humidity,
while temperature is more correlated with the activity of the COVID-19. Wind speed, sea level
pressure, altitude, and rainfall have little effect on the spread of the epidemic.

2. The intervention of epidemic prevention and control measures can restrain the influence of
climatic factors on the spread of the virus. But climatic factors alone are not enough to restrain
the spread of the epidemic.

3. Temperature and humidity in tropical areas have a more obvious impact on the spread of
the epidemic.

Accordingly, this paper proposes the following conclusions, recommendations for global
COVID-19 prevention and control.

1. It is better for each country to take appropriate or even more stringent prevention and control
measures to minimize the risk of outbreak the epidemic by taking into account the development
and changes of climatic factors such as temperature and humidity in the early stage of
the epidemic.

2. As time goes by, the climate changes in the northern and southern hemispheres will affect the
activity of the virus. It is necessary to pay special attention to the prevention and control of the
virus, so as to prevent the spread of the COVID-19 epidemic in the southern hemisphere and
secondary outbreak in some parts of the northern hemisphere due to the increased activity of
the virus.

3. Countries with better epidemic prevention and control or countries with less serious epidemic
situation shouldn’t take it lightly. It is necessary to strictly control various public areas to prevent
the risk of re-outbreak caused by the enhancement of virus activity due to the climatic factors
such as temperature and humidity.

This paper assesses the correlation analysis between the spread of COVID-19 epidemic and
climatic factors. The number of confirmed cases is inevitably underestimated due to different detection
coverage rates of COVID-19 in different countries, and the impact of changes in policies and local
prevention and control strategies on the spread of the epidemic was not assessed in this study.
Therefore, in the future work these issues need to be more detailed exploration.
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