
International  Journal  of

Environmental Research

and Public Health

Review

Risk Prediction Models for Melanoma: A Systematic
Review on the Heterogeneity in Model Development
and Validation

Isabelle Kaiser 1 , Annette B. Pfahlberg 1 , Wolfgang Uter 1 , Markus V. Heppt 2 ,
Marit B. Veierød 3 and Olaf Gefeller 1,*

1 Department of Medical Informatics, Biometry and Epidemiology,
Friedrich Alexander University of Erlangen-Nuremberg, 91054 Erlangen, Germany;
isabelle.kaiser@fau.de (I.K.); annette.pfahlberg@fau.de (A.B.P.); wolfgang.uter@fau.de (W.U.)

2 Department of Dermatology, University Hospital Erlangen, 91054 Erlangen, Germany;
markus.heppt@uk-erlangen.de

3 Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics,
Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; m.b.veierod@medisin.uio.no

* Correspondence: olaf.gefeller@fau.de

Received: 14 September 2020; Accepted: 26 October 2020; Published: 28 October 2020
����������
�������

Abstract: The rising incidence of cutaneous melanoma over the past few decades has prompted
substantial efforts to develop risk prediction models identifying people at high risk of developing
melanoma to facilitate targeted screening programs. We review these models, regarding study
characteristics, differences in risk factor selection and assessment, evaluation, and validation methods.
Our systematic literature search revealed 40 studies comprising 46 different risk prediction models
eligible for the review. Altogether, 35 different risk factors were part of the models with nevi being the
most common one (n = 35, 78%); little consistency in other risk factors was observed. Results of an
internal validation were reported for less than half of the studies (n = 18, 45%), and only 6 performed
external validation. In terms of model performance, 29 studies assessed the discriminative ability of
their models; other performance measures, e.g., regarding calibration or clinical usefulness, were rarely
reported. Due to the substantial heterogeneity in risk factor selection and assessment as well as
methodologic aspects of model development, direct comparisons between models are hardly possible.
Uniform methodologic standards for the development and validation of risk prediction models for
melanoma and reporting standards for the accompanying publications are necessary and need to be
obligatory for that reason.
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1. Introduction

Cutaneous melanoma is one of the most lethal forms of skin cancer and accounts for the majority
of skin cancer deaths [1]. Over the past few decades, the incidence of melanoma has risen dramatically
worldwide, especially in regions with fair-skinned populations [1–3]. While in many European
populations, like the UK and the Netherlands, incidence rates increased with estimated annual
percentage changes of 4 to 6% event in recent decades, the annual increase in incidence in Australia and
New Zealand seems to have leveled off since 1995 [4]. Nonetheless, Australia and New Zealand have the
highest incidence rates worldwide, followed by Western Europe, Northern Europe, and the USA [1,3,4].
In 2018, melanoma was the fourth most common cancer in Australia regarding incidence [5]. In Europe
(except Southern Europe) and the USA, it ranks fifth and sixth [5].
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Melanoma survival is strongly related to tumor thickness at diagnosis and whether the tumor has
already metastasized or not [6]. Therefore, early diagnosis is important for the successful treatment of
the disease and to keep mortality at a low level [1,2,7].

Melanoma screening programs are essential for early diagnosis [2]. Although population-based
screening efforts have the potential to decrease the mortality rate of melanoma, as shown by the
SCREEN (Skin Cancer Research to Provide Evidence for Effectiveness of Screening in Northern
Germany) project [7,8], screening the whole population is cost-intensive and its efficacy unproven [9,10].
Thus, targeted screening of individuals at higher risk of developing melanoma is regarded as the more
effective prevention strategy [11,12]. Targeted screening needs proper identification of the subgroup
with a higher melanoma risk. To this end, so called risk prediction models for melanoma have been
developed [13]. Based on a combination of risk factors, they assess an individual’s risk of developing
melanoma. Tailored risk estimates provided by prediction models have the additional advantage
that individuals may interpret this information as more personally relevant for them and may feel
encouraged to participate in melanoma screening programs or even favorably change their behavior in
order to reduce melanoma risk [14,15].

Due to the growing general interest in cancer risk prediction and the increasing incidence rates of
melanoma, a high number of melanoma risk prediction models have been developed over the last few
decades. However, the more models are being developed, the more difficult it is for practitioners to
judge which model is the most useful [15]. Therefore, details on the performance and reliability of the
models, as well as direct comparisons of multiple models, are necessary in order to provide guidance
as to which model to use in clinical practice. For melanoma, however, quantitative comparisons of risk
prediction models are hitherto limited.

The aim of this systematic review is to give an overview of published risk prediction models for
melanoma while highlighting the heterogeneity in definition and assessment of predictors incorporated
in these models. Additionally, we describe systematically how these models have been validated and
which methods and measures to evaluate their performance have been employed.

2. Materials and Methods

2.1. Eligibility Criteria and Search Strategy

For our analysis, we searched for studies describing prediction models quantifying the risk of
melanoma and identifying people at high risk of developing melanoma, respectively. Only studies
using a multivariable prediction model were eligible for this review. The models should provide either
absolute risks or risk scores, or report the mutually adjusted relative risks of individual risk factors and
risk factor combinations in multifactorial statistical models. As we focus on the prediction of new cases
instead of the recurrence of melanoma, we concentrated on models for primary cutaneous melanoma
(both invasive and in situ). Furthermore, only studies using a well-defined statistical method for the
development of their models and risk predictions derived from these models, respectively, were eligible
for this review, while models developed primarily based on expert opinions or consensus meetings
were excluded.

We started our search with the systematic reviews of Vuong et al. [15] and Usher-Smith et al. [13],
which are the only systematic reviews regarding melanoma risk prediction. They comprise a total
of 26 different studies [16–41]. Both systematic reviews were published in 2014 and used similar
eligibility criteria. They only included studies developing multivariable prediction models for incident
primary cutaneous melanoma providing a measure of relative or absolute risk for members of the
general population. Further eligibility criteria of Usher-Smith et al. [13] were that the studies were
published as primary research articles and derived the final risk prediction model from their own
study data. In contrast, Vuong et al. [15] made no specific restrictions on publication type, study type,
and methodology. We adopted the less restrictive eligibility criteria of Vuong et al. [15], but had to
exclude two of the 26 studies [38,41], both appearing only in Usher-Smith et al. [13], from further
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consideration. One study publication [41] is only available in Russian language and could thus not be
assessed by us. The other study [38] focused on the identification of risk factors rather than on the
prediction of melanoma risk and the identification of people with a high melanoma risk, respectively.
The study did not report a prediction model containing mutually adjusted relative risks and thus did not
fulfill the eligibility criteria. We performed forward snowballing (searching within the citations to the
paper being examined [42]) on these two systematic reviews using Google Scholar and Web of Science.
Due to its reported high precision, forward snowballing is a useful approach to support the update of
systematic literature reviews [42–44], which is why we used this method to find more recent melanoma
risk prediction studies. Additionally, we performed an electronic literature search in PubMed from
May 1, 2013 (as this is the date the literature search of Vuong et al. [15] ended) up to January 31, 2020.
We used combinations of the search terms “risk/risk assessment/probability”, “prediction/model/score”
and “melanoma/skin cancer” (see Supplementary File S1 for complete search strategy).

2.2. Data Extraction

In case of studies developing several models by starting with a base model and adding more risk
factors step-by-step, only the full model has been included. Regarding studies with several models but
without a differentiation between a base and a full model, the model with the best performance was
included. If there was no model with significantly better performance, all models were selected for
analysis. For studies with separate models for men and women, or for self-assessment and physician
assessment, both models were included separately.

The characteristics of study design, study sample, analytic model, predictive factors included in
final models, and outcome measures were abstracted, as well as evaluation and performance measures.
Additionally, spatio-temporal information on the location and time of the studies were extracted.

2.3. Data Processing

The studies and their prediction models, respectively, were analyzed regarding the following aspects:
(1) the spatio-temporal information; (2) the heterogeneity of risk factors in general; (3) the disparities in
defining and ascertaining individual risk factors; (4) the validation methods, and (5) the evaluation of
model performance.

To provide aggregated information on the geographical location, we allocated the studies to the
countries and continents where their data sets originate. Additionally, we performed a temporal
synthesis by dividing the entire period of time, in which the studies were published, into eight intervals
of four years each.

To report the overall heterogeneity of risk factors, classification of model variables into meaningful
groups was performed in order to keep the amount of different risk factors manageable. Variables which
have the same meaning but different names (e.g., dysplastic nevi and atypical nevi) were aggregated.
In addition, variables that belong to the same topic (e.g., sunburns in childhood, lifetime sunburns and
sunburns without further specification) were also combined. One study used a pigmentation score as
risk factor that was calculated reproducibly from the variables hair color, eye color, tanning ability
and skin color [45]. We therefore applied the four individual factors in our analysis instead of the
score. Concerning the variable red hair (RH)-phenotype used in [46], which is a combination of the
risk factors hair color, freckles and Fitzpatrick skin type, we proceeded similarly by including the three
phenotypic characteristics as separate variables. A full list of all adaptions made is presented in the
Supplementary Table S1.

To illustrate that the assessment of the same risk factor was not uniform in all studies, the variable
nevi was analyzed in detail regarding differences in the size of the nevi that were counted, the body
site on which they were counted, the examiner who was counting and the measurement level of the
variable. The variable nevi was chosen as it is the most common risk factor in melanoma risk prediction
models. Another example is the risk factor sunburns, which we also examined regarding its diverse
definitions and measurement levels.
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Validation methods comprise internal and external validation. While internal validation relates to
the reproducibility of the model and should be performed during model development, external validation
refers to the generalizability of the model to other populations [47]. Possible internal validation methods
are split sample validation, bootstrap resampling and cross-validation.

Evaluation techniques involve measures of model performance like discrimination and calibration,
which are traditional approaches to determine the performance of prediction models. In addition,
other more recently suggested performance measures related to the clinical usefulness of a prediction
model and reclassification like decision curves and the net reclassification index (NRI) were also
considered [48]. Furthermore, we analyzed the difference between older and newer studies regarding
both validation and evaluation methods. Therefore, we divided the included studies based on the
median year of publication into two equal groups (“studies published up to 2011” and “studies published
after 2011”).

The results were summarized using descriptive statistics; frequencies and percentages were
gathered and displayed in tabular form. Percentages were relative to the total number of studies or
risk prediction models. It must be noted that the total number of studies differs from the total number
of risk prediction models, as some studies developed multiple models. In case of subgroup analyses,
e.g., when only models including the risk factor nevi are considered, percentages relate to the number
of models in this subgroup.

3. Results

3.1. Study Selection

Altogether, 24 of the 26 studies [16–37,39,40] from the two systematic reviews [13,15] were included
in our analysis. Eight further studies were identified via forward snowballing [46,49–55], while eight
studies were found in PubMed [45,56–62]. Therefore, we included 40 studies in our analysis (Figure 1).
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Thirteen of these studies developed multiple models, up to six models in one study [56]. Thus,
the total number of models described in the 40 studies amounted to 66. By only including full models
and models that have the best performance, when possible, we reduced the number of risk prediction
models to 46.

3.2. Study Characteristics

Spatio-temporal information on the location and time of the studies were aggregated and are
shown in Figures 2 and 3. Figure 2 displays the distribution of studies according to their continent
and country of origin. The majority of studies (n = 36) originated from countries under the top 20
with the highest melanoma incidence rates, which include the United States (n = 9), Australia (n = 8),
and Germany (n = 4) [63]. Four studies used data sets from several countries with high melanoma
incidences for the development of their model.
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risk prediction model.
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Figure 3. Temporal distribution of the reviewed studies showing the number of publications in eight
time intervals of four years each. (n = 40 studies).

The temporal distribution of the reviewed studies is shown in Figure 3. The most recent time
intervals, 2012–2015 and 2016–2019, show the highest numbers of publications (n = 10 each). In fact,
half of the studies were published in those eight years, while the remaining 20 studies are spread over
the larger time period from 1988 to 2011.

The key information extracted from each study is summarized in Table A1. Study designs
used were mainly case-control (n = 30) and cohort (n = 8). Two studies used published material
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from meta-analyses to obtain risk estimates. Most of the studies used logistic regression for model
development (n = 29), but also the Gail method and Cox regression were applied several times (n = 5
and n = 3 studies, respectively). The Gail method was originally developed to assess the risk of breast
cancer and combines risk estimates with incidence and mortality rates [15]. Two studies used the
machine learning techniques random forest and decision trees to build their risk prediction models.
In three studies, multiple approaches were employed to develop different models. Regarding the
reported risk measure, only eight studies calculate the absolute risk for an individual to develop
melanoma. A total of 12 studies calculated a risk score, of which 10 defined a cut-off point for being
at high risk. Three further studies used relative risks with definitions of high risk. All other studies
calculated the relative risk or odds ratio of single predictors or factor combinations without giving a
definition of when a person is considered as being at high risk.

The average number of variables incorporated in a model was six (range 1–16). Cho et al. [58]
developed their risk prediction model based on only one variable, a genetic risk score (GRS)
which comprised aggregated genetic information from 21 single nucleotide polymorphisms (SNPs).
All other studies described models including multiple independent variables. One study [55] used
data of electronic health records (EHR) and therefore included a large number of variables in the risk
prediction model; however, the exact number was not reported. As most of the risk factors were not
specified in the publication, this study was excluded in the analysis of predictors included in the models.

3.3. Risk Factors Included in the Prediction Models

After grouping all risk factors in categories as described in Supplementary Table S1, we obtained
35 different predictors. Besides phenotypic risk factors like nevi, eye color and Fitzpatrick skin type,
genetic and demographic risk factors were also used, as well as risk factors related to sun exposure
and pigmented lesions (Table 1). The most common predictor is nevi, which has been used in 78% of
the risk prediction models, followed by hair color (58%). Polygenic risk scores (PRS) were used in five
models. In total, 15 of the 35 risk factors only occur in one or a maximum of two models. Almost all
studies (except [58] and [26]) included at least one phenotypic predictor, whereas only one third of the
models included genetic risk factors.

Table 1. Absolute (n) and relative frequencies (%) of predictive factors included in the risk prediction
models for melanoma (n = 45 models *).

Risk Factors n %

Phenotypic factors
Nevi 35 77.8

Hair color 26 57.8
Fitzpatrick 17 37.8

Freckles 16 35.6
Skin color 15 33.3
Eye color 14 31.1

Tanning ability 10 22.2

Genetic factors
MC1R genotype 7 15.6

Polygenic risk score 5 11.1
SNPs 1 2.2

Demographic factors
Age 16 35.6
Sex 15 33.3

Family history of melanoma 13 28.9
Residence 3 6.7

Level of education 1 2.2
Country of birth 1 2.2
Health insurance 1 2.2

Ethnicity 1 2.2
1st degree relative with large or unusual moles 1 2.2
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Table 1. Cont.

Risk Factors n %

Sun exposure
Sunburns 13 28.9

Sunbed sessions 7 15.6
Sun exposure 7 15.6

Occupational sun exposure 2 4.4
Use of sunscreen 2 4.4

Skin lesions
Non-melanoma skin cancer 10 22.2

Atypical nevi 10 22.2
Sun damage 8 17.8

Melanoma history 5 11.1
Congenital nevi 2 4.4

Previous skin lesions treated destructively 2 4.4
Suspicious melanocytic lesions 1 2.2

Changing moles 1 2.2

Other risk factors
Skin checks 2 4.4

Hormonal contraceptive therapy 1 2.2
Age on arrival in Australia 1 2.2

Abbreviations: MC1R = melanocortin 1 receptor, SNP = Single Nucleotide Polymorphism. * Study of Richter et al. [55]
excluded due to limited reporting of predictors.

Figure 4 displays the frequencies of risk factor combinations as a heatmap. This figure only
contains those 20 risk factors that appear in more than two of the risk prediction models. A plot
with all 35 risk factors can be found in the Supplementary Figure S1. The most common predictor
combinations are nevi and hair color (n = 21, 47%), followed by nevi and freckles (n = 15, 33%) and nevi
and Fitzpatrick skin type (n = 14, 31%).

Int. J. Environ. Res. Public Health 2020, 17, x  8 of 25 

 

 

Figure 4. Heatmap indicating joint occurrences of risk factor pairs in risk prediction models for 

melanoma. Only risk factors occurring in more than two risk prediction models are included. Each 

number represents the absolute frequency of the corresponding risk factor combination. The darker 

the field the more frequent is the corresponding risk factor combination (n = 45 models). MC1R = 

melanocortin 1 receptor. 

As studies used different definitions for at first glance identical predictors and employed 

varying methods of ascertaining them, Tables 2 and 3 show the heterogeneity in the definition and 

assessment of risk factors for the two examples, nevi and sunburns. Altogether, 69% of the models 

using nevi as predictor did not specify the size of nevi that were counted. No uniform procedure was 

also discernible for the body site on which the nevi were counted. Besides on the entire body (n = 16, 

47%), nevi were also counted on only one or both arms and/or the back. Additionally, self-assessment 

of nevus counts by the study participant was approximately as frequent as the assessment by a 

professional, e.g., nurse or physician. Apart from four models, all others included nevi as a categorical 

variable. However, each study defined different categories (e.g., none/few/some/many or none/1-2/3-

5/6-9/10+). Concerning the risk factor sunburns, six out of 13 studies did not specify how they define 

sunburns. The most frequent definition was “blistering,” which was used by four studies. 

Furthermore, five studies asked for sunburns throughout the subject’s lifetime, just as many 

addressed only sunburns in childhood and three studies did not specify this aspect. The reported 

measurement level of the variable was either dichotomous (n = 8, 61.5%) or categorical (n = 5, 38.5%). 

  

Figure 4. Heatmap indicating joint occurrences of risk factor pairs in risk prediction models for
melanoma. Only risk factors occurring in more than two risk prediction models are included.
Each number represents the absolute frequency of the corresponding risk factor combination.
The darker the field the more frequent is the corresponding risk factor combination (n = 45 models).
MC1R = melanocortin 1 receptor.
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As studies used different definitions for at first glance identical predictors and employed varying
methods of ascertaining them, Tables 2 and 3 show the heterogeneity in the definition and assessment
of risk factors for the two examples, nevi and sunburns. Altogether, 69% of the models using
nevi as predictor did not specify the size of nevi that were counted. No uniform procedure was
also discernible for the body site on which the nevi were counted. Besides on the entire body
(n = 16, 47%), nevi were also counted on only one or both arms and/or the back. Additionally,
self-assessment of nevus counts by the study participant was approximately as frequent as the
assessment by a professional, e.g., nurse or physician. Apart from four models, all others included nevi
as a categorical variable. However, each study defined different categories (e.g., none/few/some/many
or none/1-2/3-5/6-9/10+). Concerning the risk factor sunburns, six out of 13 studies did not specify how
they define sunburns. The most frequent definition was “blistering,” which was used by four studies.
Furthermore, five studies asked for sunburns throughout the subject’s lifetime, just as many addressed
only sunburns in childhood and three studies did not specify this aspect. The reported measurement
level of the variable was either dichotomous (n = 8, 61.5%) or categorical (n = 5, 38.5%).

Table 2. Heterogeneity of the risk factor nevi in risk prediction models for melanoma regarding
four aspects: minimum size of nevi to be counted, body area of nevi count, type of nevi assessment,
and measurement level (n = 35 models).

Risk Factors n %

Size of nevi
≥2 mm 7 20.0
≥5 mm 2 5.7
>3 mm 1 2.9

≥2 mm and ≥5 mm, respectively 1 2.9
Not reported 24 68.6

Site of nevi count (1)

Entire body 17 48.5
Both arms 6 17.1
Right arm 2 5.7

Forearm and back 2 5.7
Back 2 5.7

Left arm 1 2.9
Not reported 6 17.1

Assessment
Physician/nurse/trained examiner 15 42.9

Self-reported 13 37.1
Not reported 7 20.0

Measurement level
Categorical 31 88.6

Metric 2 5.7
Dichotomous 1 2.9
Not reported 1 2.9

(1) One model with nevi counted on two different sites.
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Table 3. Heterogeneity of the risk factor sunburns in risk prediction models for melanoma regarding
three aspects: definition of sunburn, time period of sunburn occurrence and measurement level
(n = 13 models).

Category n %

Definition of sunburn
Blistering 4 30.8

Pain and erythema or blisters for >24 h 1 7.7
Painful 1 7.7

Peeling of skin 1 7.7
No explanation given 6 46.2

Time period
Childhood 5 38.5

Lifetime 5 38.5
Not reported 3 23.1

Measurement level
Dichotomous 8 61.5

Categorial 5 38.5

3.4. Validation and Model Performance

In total, 18 out of all 40 studies used internal data to validate their models and only six used
an external data set (Table 4), including three studies that did both internal and external validation.
The remaining 19 studies used neither internal nor external validation. One of the studies with external
validation used multiple external data sets, while the other five studies used just one external data set.
For analyzing the temporal effect on the validation methods, we compared the two subgroups (“studies
published up to 2011” and “studies published after 2011”). We found that the proportion of internal
validations in the first subgroup is only one quarter compared to more than 60% in the subgroup of
more recent studies. Furthermore, 70% of the older studies did not report any validation, while among
the studies published after 2011 this proportion decreased to 25%.

Table 4. Absolute (n) and relative frequencies (%) of methods used when evaluating risk prediction
models for melanoma regarding the methodological type of validation and the type of measures
describing model performance (n = 40 studies) *.

Studies
Published up to

2011 (n = 20)

Studies
Published after

2011 (n = 20)
All Studies (n = 40)

Validation n % n % n %

Internal validation 5 25.0 13 65.0 18 45.0
Cross-validation 1 5.0 5 25.0 6 15.0

Split sample 3 15.0 3 15.0 6 15.0
Bootstrapping 1 5.0 5 25.0 6 15.0

External validation 1 5.0 5 25.0 6 15.0
Both internal and external validation 0 0.0 3 15.0 3 7.5

Neither internal nor external validation 14 70.0 5 25.0 19 47.5

Performance measures n % n % n %

Calibration (1) 2 10.0 9 45.0 11 27.5
Hosmer–Lemeshow test 2 10.0 7 35.0 9 22.5

Graph (plot/intercept/slope) 0 0.0 3 15.0 3 7.5
Calibration in the large 0 0.0 1 5.0 1 2.5
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Table 4. Cont.

Studies
Published up to

2011 (n = 20)

Studies
Published after

2011 (n = 20)
All Studies (n = 40)

Discrimination (2) 9 45.0 20 100.0 29 72.5
AUC 8 40.0 18 90.0 26 65.0

C-index 0 0.0 3 15.0 3 7.5
Discrimination slope 0 0.0 1 5.0 1 2.5

ROC plot (without AUC calculation) 1 5.0 0 0.0 1 2.5

Overall model performance (3) 0 0.0 1 5.0 1 2.5
Brier score 0 0 1 5.0 1 2.5

Nagelkerk’s R2 0 0 1 5.0 1 2.5

Reclassification (4) 0 0.0 4 20.0 4 10.0
Net reclassification improvement 0 0.0 4.0 20.0 4 10.0
Integrated discrimination index 0 0.0 2.0 10.0 2 5.0

Clinically usefulness 3 15.0 8 40.0 11 27.5
Sensitivity/specificity 3 15.0 5 25.0 8 20.0

Decision curve 0 0.0 3 15.0 3 7.5

No performance measure at all 11 55.0 0 0.0 11 27.5

* For extended table with all references see Supplementary Table S2. (1) Two studies reported multiple calibration
measures. (2) Two studies reported multiple discrimination measures. (3) One study reported both performance
measures. (4) Two studies reported both reclassification measures.

Calibration was assessed in 11 studies and discrimination in 29 studies. The area under the
curve (AUC) was the most common measure of discriminative performance (n = 26 studies, 65%).
The proportion of studies published after 2011 reporting the AUC is 90%. Only one study reported
measures for the overall model performance. Performance measures related to reclassification and
clinical usefulness were less common (n = 4 and n = 11, respectively). In total, 73% of the studies
reported a performance measure. Nine of the 20 studies published up to 2011 did not provide a
measure of performance, while in the group of more recent studies, each study reported at least one
performance measure.

4. Discussion

This systematic review shows that an abundance of melanoma risk prediction models were
developed over the last decades, which has already been indicated by the systematic reviews of
Vuong et al. [15] and Usher-Smith et al. [13] in 2014. We identified 40 studies reporting 46 risk
prediction models that showed substantial heterogeneity in the choice of predictive factors and their
definitions. In addition, only little consistency in model evaluation and poor validation were found
among the studies.

The substantial heterogeneity of risk factors included in the prediction models is recognizable by
the fact that 35 different risk factors were used in the risk prediction models. Whereas only some of
them were frequently used, many (n = 15) were only used in one or two models. Six of the top 10 most
common predictors were the phenotypic factors like nevi, hair color, Fitzpatrick skin type, freckles,
skin color, and eye color, with nevi most frequently appearing in three quarters of the models. Thus,
phenotypic predictors are currently dominating melanoma risk prediction, which could be traced back
to their simple and fast assessment. Genetic factors, whose determination is more complex, are clearly
less frequently used. Although polygenic risk scores may have the potential to meaningfully improve
the predictive value of risk prediction models, their efficacy in clinical use is unproven [64].

As the heatmap in Figure 4 illustrates, risk factors were combined in various ways across all risk
factor groups and only a few factor combinations were frequent. In fact, not even two of all melanoma
risk prediction models in our analysis used exactly the same predictors. This heterogeneity of variables
may be conditioned by the diversity of countries from where the studies originate. Nevertheless,
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it complicates the validation by external data sets and direct comparisons between models on the same
data set. Existing cohort studies may, for example, not be used for validation due to lack of information
on one or more of the variables in the prediction model, and an existing data set used to develop one
model does probably not contain all necessary predictors for other models. New data sets explicitly
collected for preselected risk prediction models would be necessary.

By means of the two examples, nevi and sunburns, we demonstrated the considerable variation in
the definition and assessment of risk factors, which only seem to be identical at first glance, as well as,
in many cases, the lack of details in definitions and assessment methods given in the publications.
About 70% of the models using nevi as risk factor did not specify the size of nevi counted. English and
MacLennan published an IARC protocol for the identification and reporting of pigmented lesions like
nevi and atypical nevi in 1990 [65]. Nevertheless, only the publication of Fortes et al. [23] cited the IARC
protocol as reference for their nevi assessment, although 28 of the 35 risk prediction models with nevi
as risk factor were developed after its publication. Regarding sunburns, a detailed definition enabling
the distinction between a mild erythema and a painful sunburn was missing in almost half of the
models. However, even if the definition is the same in several models, there are still many differences
e.g., in the measurement levels or the categorization of quantitative variables. The more subjective a
predictor is, the more variation is seen. This makes the comparability of the risk prediction models
even more difficult. In order to externally validate models on independent data sets, uniform methods
of data acquisition and a complete reporting of all information are necessary. One recent approach to
the problem of non-uniform methods for data collection is given by the MelaNostrum consortium [66],
which is a collaboration of researchers and clinicians from Mediterranean countries. They developed
a consensus questionnaire of epidemiologic and clinical variables for melanoma risk assessment
in order to standardize data collection across different studies, centers and languages [66].

Another significant cause for the heterogeneity of results and variables used in the reviewed
studies could be traced back to the use of suboptimal primary data especially when attempting
to capture individual UV-exposure over longer periods and behavioral aspects of UV protection.
Self-reported sun exposure is commonly used, but it is uncertain how well this correlates with the
actual sun exposure [67]. Biases from recalling past sun-related behavior and socially desirable answers
are known problems, potentially limiting validity and reliability of exposure assessment [68–70].
Even when focusing on sunburn history, a commonly used marker of excessive UV exposure that has
originally been believed to be better recalled, the ascertainment in self-administered questionnaires
has been shown to lack reproducibility [71] and to underestimate the true extent of sunburns [72].
The validation of questionnaires would provide evidence for the magnitude of these problems, but this
kind of validation is rare [67,68,73].

The analysis of the evaluation methods employed in the studies showed that the actual standard
of validation and reporting of performance measures is quite poor. Nearly half of the studies (n = 18)
validated their models internally using methods like bootstrapping and cross-validation, but only
six out of 40 studies externally validated their models. The direct comparison of older and more
recent studies reveals, however, an encouraging temporal effect. The proportion of studies without
validation is clearly lower in the subgroup of studies published after 2011 compared to the subgroup
of studies published up to 2011 (25% versus 70%). Nevertheless, there are still several exceptions
among the newer studies [16,39,46,53,58], which did not report to have performed any validation
of their model. Internal validation is useful for ensuring reproducibility of the model and stability
of the predictor selection, as well as avoiding overfitting [47,74]. Applied to the data set used
for developing the model, prediction models often perform substantially better than on external
data sets, which can lead to overestimation of the predictive ability [75,76]. However, the models’
performance on independent samples is a particularly valuable indicator for their discriminatory ability
when applied in clinical practice [76]. Models developed for one population may not be valid in another
population, as specific predictors do not necessarily apply in various regions. Therefore it is important
to externally validate risk prediction models in order to verify generalizability and transportability
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of the model to other cohorts [47]. To reduce overoptimistic expectations of model performance on
independent data, Steyerberg and Harrell [77] proposed internal-external validation procedures during
model development.

Considering the increasing number of different prediction models, studies about the external
validation of multiple models may be the best way for a direct comparison of the models and to
determine which model performs best on an independent data set [75]. Due to missing information
about the model development and risk factor assessment in many cases, as discussed in previous
sections, external validations particularly by independent researchers are rare [74]. One positive
exception constitutes the study of Vuong et al. [49], who externally validated their risk prediction
model using four independent data sets from other studies.

Further discrepancies among the studies were found concerning the performance measures.
More than one-quarter of the publications (n = 11) did not report any performance measures,
although a quantification of model performance is essential to evaluate if the model is suitable for
application [48]. However, we observed an encouraging temporal effect concerning the evaluation
of model performance too. For all categories of performance measures the proportion of studies
reporting this kind of performance measure is higher in the subgroup of more recent studies than
in the subgroup of older ones. Widely used statistical concepts for the evaluation of risk prediction
models and the quality of prediction are discrimination and calibration. For the identification of
individuals with a high risk of developing a certain disease, the discriminative ability is the most
important property of the prediction models [78]. Almost 75% of the studies reported measures for
the discriminative ability e.g., the AUC or c-index. Good calibration and discrimination are necessary
but not sufficient for clinical usefulness. Hence, measures regarding the clinical usefulness can be
regarded as essential to determine whether the model is beneficial for clinical practice and decision
making [75,78]. Such performance measures related to clinical usefulness only emerged in the past
few years, which may be the reason for their sparsity among the risk prediction models included in
our analysis.

Even though this review relates to risk prediction models for melanoma, the problems identified
are not limited to this area of medicine, as demonstrated by other publications of multivariable
prediction or prognostic models addressing cardiovascular diseases, colorectal cancer, and diabetes
type 2 [79–83]. Their results confirm the lack of validation and the need for more uniform assessment
methods and independent validation. Due to the current focus on risk prediction models in general,
it is an interdisciplinary problem that significantly more models have newly been developed than
existing models were validated [74,75]. Furthermore, the fact that many risk factors are only used
in one or two models indicates that the primary focus of most studies has been the identification of
new predictors and the development of new risk prediction models, instead of the improvement and
validation of existing models [79].

Complete reporting of how a prediction model has been developed and validated is necessary
to objectively appraise the usefulness of the model [83]. Therefore it is a general requirement for
all studies developing risk prediction models to report key details on model performance and their
development process. The “Transparent Reporting of a multivariable prediction model for Individual
Prognosis Or Diagnosis” (TRIPOD) statement [84], published in 2015, provides a checklist of 22 items
essential for transparent reporting of a prediction model study. We found that only three of 10 studies
published after the TRIPOD statement, reported their methods and results according to the statement
and cited it as reference.

Considering the insufficient evaluation and the lack of quantitative comparisons, it is not surprising
that in clinical practice no risk prediction model has been fully established in its entirety. Instead the
individual risk is still mostly estimated based on single risk factors like count of nevi (>100 melanocytic
nevi), congenital nevi (>40 cm in diameter) and Fitzpatrick skin type [85]. However, not all risk
prediction models have been developed for clinical practice, e.g., the studies Barbini et al. [17],
Whiteman and Green [35] and Fang et al. [59] are preliminary studies. Other recent examples are the
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melanoma risk prediction models of Olsen et al. [52] and Vuong et al. [49], which are intended for
community use in Australia as online risk calculators [86,87].

There are some limitations of our work that require consideration. First of all, the identification
of studies reviewed here did not follow the PRISMA standard [88] and thus may not have the
same degree of systematicity and objectivity. We performed, however, a comprehensive and careful,
well-documented search for melanoma risk prediction models and identified several studies published
after the systematic reviews of Vuong [15] and Usher-Smith [13] which were the starting points of
our search. In fact, we found 16 publications of new melanoma risk prediction models that were
published in the past six years. This relatively high number confirms the topicality of melanoma
and the global interest in its prevention. A further limitation relates to the missing comparison of
discriminative ability and overall performance of the different prediction models. We intentionally
refrained from addressing this topic due to its methodologic complexity, which cannot be solved
based on the information given in the study publications. Due to our abandonment of comparing the
models with respect to their properties in practical applications, we also dropped the assessment of
risk of bias for the studies having developed the prediction models. Shortcomings in study design,
conduct and analysis can cast doubts on the study results and should be taken into consideration
when evaluating prediction models comparatively in systematic reviews. Recently, the PROBAST tool
has been developed through a consensus process to assess risk of bias and applicability of prediction
model studies [89]. For our review we avoided using the PROBAST tool since its intention was beyond
the scope of our project.

5. Conclusions

In summary, we found substantial heterogeneity in several important aspects of published
risk prediction models for melanoma. Although a large number of models has been published,
external validation is largely missing and direct comparisons between models are hardly possible.
Consequently, there is no consensus in sight how to predict individual melanoma risk appropriately.
Uniform standards for the assessment and documentation of predictors, as well as better adherence
to reporting guidelines like TRIPOD are necessary and need to be obligatory in order to ultimately
achieve a convincing solution of this problem.

Supplementary Materials: The following are available online at http://www.mdpi.com/1660-4601/17/21/7919/s1,
File 1: Complete search strategy; Table S1: Classification of model variables into meaningful groups, Table S2:
Absolute (n) and relative (%) frequencies of methods used when evaluating risk prediction models for melanoma
regarding the methodological type of validation and the type of measures describing model performance
(N = 40 studies). With references (ref.) Figure S1: Heatmap indicating relations joint occurrences of risk factor
pairs among in risk prediction models for melanoma.
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Appendix A

Table A1. Basic characteristics of studies reporting risk prediction models for melanoma. Studies are ordered according to year of publication. (N = 40 studies).

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

English and Armstrong
(1988) [20]

Case-control
study

511 cases,
511 controls 1980–1981 Australia Logistic regression Risk score

Number of raised nevi on arms, age on
arrival in Australia, mean time spent
outdoors in summer aged 10–24, family
history, personal history of
non-melanoma skin cancer

Garbe et al. (1989) [25] Case-control
study

200 cases,
200 cases 1987 Germany Logistic regression Relative risks

Number of melanocytic common nevi,
number of atypical nevi, actinic
lentigines, occupational sun exposure,
skin type

MacKie et al. (1989) [30] Case-control
study

280 cases,
280 controls 1987 Scotland Logistic regression Relative risk

(risk groups)
Benign nevi >2 mm, freckling, atypical
nevi >5 mm, episodes of severe sunburn

Augustsson et al. (1991)
[40]

Case-control
study

121 cases,
379 controls 1986–1988 Sweden Logistic regression Relative risks

Skin type, hair color, eye color, total body
nevus ≥2 mm count, number of
dysplastic nevi

Marret et al. (1992) [32] Case-control
study

583 cases,
608 controls 1984–1986 Canada Logistic regression Relative risk Hair color, skin reaction to repeated sun

exposure, freckle density, nevi density

Garbe et al. (1994) [24] Case-control
study

513 cases,
498 controls 1990–1991 Germany Logistic regression

Relative risk
estimates (risk

groups)

Number of melanocytic common nevi,
actinic lentigines, atypical nevi, skin type

Barbini et al. (1998) [17] Case-control
study

150 cases,
546 controls 1992–1995 Italy Linear discriminant

analysis

Risk score
(negative score
→ low risk)

Colorimetric variables, Fitzpatrick

Landi et al. (2001) [29] Case-control
study

183 cases,
179 controls 1994–1999 Italy Logistic regression Odds ratios Dysplastic nevi, skin color, tanning

ability, eye color

Harbauer e al. (2003) [28] Case-control
study

202 cases,
202 controls 2001 Austria Logistic regression Odds ratios Skin type, UV damage, number of nevi
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Table A1. Cont.

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

Dwyer et al. (2004) [19] Case-control
study

244 cases,
483 controls 1998–1999 Australia Logistic regression Odds ratios MC1R genotype, melanin density

Fargnoli et al. (2004) [21] Case-control
study

100 cases,
200 controls 2000–2001 Italy Logistic regression

Relative risk
estimates

(high risk: ≥ 2 (3)
risk factors in
model 3 (1))

Model 1: Hair color, eye color, skin type
Model 2: Hair color, eye color, skin type,
occupational sun exposure, atypical nevi
Model 3: Skin type, sun exposure, nevi,
atypical nevi
Model 4: Skin type, occupational sun
exposure, nevi, atypical nevi

Cho et al. (2005) [18] Cohort
study

535 cases,
total 178,155

1976, 1986,
1989

United
States Gail method

Risk score and
10-years-absolute

risk

Sex, age, family history, sunburns,
number of nevi on arms, hair color

Whiteman and Green
(2005) [35]

Published
case-control

studies
NA NA Several

countries Not reported 10-years
absolute risk

Age, place of residence, number of
melanocytic nevi, skin color,
MC1R genotype

Fears et al. (2006) [22] Case-control
study

718 cases,
945 controls 1991–1992 United

States Gail method
5-year-absolute
risk (high risk: p
≥ 0.15%)

Sex, skin color, sunburns, number of
moles >5 mm (only men), number of
moles ≥2 mm, freckling, severe sun
damage (only men), tanning ability
(only women)

Goldberg et al. (2007)
[26]

Cohort
study

3329 cases,
total 362,804 2001–2005 United

States Logistic regression Risk score (high
risk: score 4–5)

Sex, regular dermatologist, history of
previous melanoma, mole changing, age

Fortes et al. (2010) [23] Case-control
study

304 cases,
305 controls 2001–2003 Italy

Risk score was
calculated using

effect estimates from
meta-analysis

Individual risk
score (high risk:
risk score ≥ 3)

Freckles in childhood, skin color, number
of common nevi, hair color, sunburns
in childhood

Mar et al. (2011) [31]

Published
meta-analysis

and
registry

data

NA NA Australia Gail method 5-year-absolute
risk

Common nevi, atypical nevi, freckles,
hair color, family history, non-melanoma
skin cancer, personal melanoma history
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Table A1. Cont.

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

Nielsen et al. (2011) [33] Cohort
study

215 cases,
total 29,520

1990–1992
(Followup:

–2007)
Sweden Cox regression Hazard ratios for

each risk factor
Family history, number of nevi, hair
color, sunbathing vacations, sunbed use

Quéreux et al. (2011) [37] Case-control
study

171 cases,
1390 controls 2007 France

Gail method, logistic
regression and
combinatorial

analysis

Risk Score

Gail method: Sunburn in childhood,
family history, number of common nevi
on arms, density of freckles, skin type,
recalled total sun exposure
Logistic regression and combinatorial
analysis: Sex, age, skin type, presence of
freckles, number of nevi on arms, severe
blistering sunburn in childhood, life in a
country at low latitude, family history

Williams et al. (2011) [36] Case-control
study

386 cases,
727 controls 1997 United

States Logistic regression Risk score (high
risk: top 15%)

Sex, age, number of severe sunburns, hair
color, freckles, number of raised moles,
non-melanoma skin cancer history

Guther et al. (2012) [27] Cohort
study

250 cases,
total 108,281 2005–2006 Germany Logistic regression Risk score (high

risk: >0.0034)

Age, hair color, personal history of
melanoma, suspicious
melanocytic lesions

Smith et al. (2012) [39] Case-control
study

923 cases,
813 controls

Not
reported

United
States Not reported Not reported

Model A: Sex, age, hair color, eye color,
mole count, freckling, family
melanoma history
Model B: Model A + outdoor UV, indoor
UV, MC1R

Bakos et al. (2013) [16] Case-control
study

53 cases,
66 controls 2005–2008 Brazil

Risk score calculated
using effect

estimates from
meta-analysis

Risk score
(high risk: >3)

Presence of freckles in childhood, skin
color, eye color, hair color, sunburn
episodes throughout life
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Table A1. Cont.

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

Cust et al. (2013) [45] Case-control
study

413 cases,
263 controls 2000–2002 Australia Logistic regression Odds ratios

Base model: Age, sex, city
Self-reported model: MC1R genotype,
nevi, pigmentation score (2), sun and
sunbed exposure (3), family history,
non-melanoma skin cancer
Physician-measured model: Nevi,
MC1R genotype, non-melanoma skin
cancer, solar lentigines, family history,
pigmentation score (4)

Fang et al. (2013) [59]
Multiple

case-control
studies

2298 cases,
6652 controls NA United

States Logistic regression Odds ratios

Model 1: Single SNP
Model 2: PRS (5)

Model 3: Sex + age
Model 4: Sex + age + pigmentation
Model 5: Sex + age + pigmentation + PRS

Stefanaki et al. (2013)
[34]

Case-control
study

284 cases,
284 controls NA Greece Logistic regression Odds ratios

Model A: Eye color, hair color, skin color,
skin type, tanning, sunburns
Model B: All predictors in model A + 3
strongest SNPs
Model C: All predictors in model
A + all SNPs

Nikolic et al. (2014) [57] Case-control
study

341 cases,
356 controls 2001–2012 Serbia Logistic regression +

decision tree Absolute risk

Level of education, intermitted exposure,
use of sunbeds, HCT, solar damage of
skin, Fitzpatrick, hair color, eye color,
number of common nevi, number of
dysplastic nevi, congenital nevi

Penn et al. (2014) [56] Case-control
study

875 cases,
765 controls 2004–2007 United

States Logistic regression Odds ratios

Base model: Age, sex, hair color, eye
color, skin color, freckles,
mole phenotype
Full model: Base model + sun burns,
indoors tanning, MC1R genotype
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Table A1. Cont.

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

Sneyd et al. (2014) [61] Case-control
study

368 cases,
270 controls 1992–1994 New

Zealand
Logistic regression +

Gail method
5-year-absolute

risk

Women: Skin color, 1st degree relative
with large or unusual moles, number of
moles, personal history of nonmelanoma
skin cancer
Men: Number of moles, personal history,
age at diagnosis, occupation, birthplace

Davies et al. (2015) [51]
Multiple

case-control
studies

NA NA Several
countries Logistic regression Risk score (with

risk categories)

Hair color, skin type, freckles, family
history, nevi distribution, number of
large nevi, sunburn

Kypreou et al. (2016) [54] Case-control
study

800 cases,
800 controls 2000–2014 Greece Logistic regression Odds ratios

Genetic risk score (6), age, sex, eye color,
hair color, skin color, phototype,
tanning ability

Vuong et al. (2016) [49] Case-control
study

629 cases,
535 controls 2000–2002 Australia Gail method 20-year-absolute

risk

Hair color, nevi density, family history,
personal history of non-melanoma skin
cancer, sunbed use

Cho et al. (2018) [58] Cohort
study

422/289 cases
(lifetime/incident

melanoma);
total 19,102

NA–2015 United
States

Logistic regression +
Cox regression

Odds ratios and
hazard ratios Genetic risk score (7)

Cust et al. (2018) [62] Case-control
study

629 cases,
535 controls 2000–2002 Australia Logistic regression Odds ratios

Base model: Family history, hair color,
nevi, personal history of non-melanoma
skin cancer, sunburns in childhood,
sunbed sessions, freckles, eye color,
sun exposure
Full model: Base model + PRS (8)

Gu et al. (2018) [60] Case-control
study

15,976 cases,
25,504 controls NA Several

countries Logistic regression
10- and

20-year-absolute
risk

Model 1: Age, sex, country
Model 2: (1) + eye color, hair color, skin
type, common nevi
Model 3: (1) + PRS (9)

Model 4: (2) + PRS



Int. J. Environ. Res. Public Health 2020, 17, 7919 19 of 24

Table A1. Cont.

Author (Year) Study
Design

Size of Study
Sample

Year(s) of
Data

Collection
Country Analytic Model Risk Measure Variables in Final Model (1)

Hübner et al. (2018) [53]

Cohort
study

based on
data from
SCREEN
project

585 cases,
total 354,635 2003–2004 Germany Logistic regression Odds ratios

Sex, age, personal melanoma history,
family history, multiple common
nevi, atypical nevi, congenital nevi

Olsen et al. (2018) [52] Cohort
study

655 cases,
total 41,954 2011–2014 Australia Cox regression Hazard ratios

Model 1 (invasive melanoma):
Age, sex, tanning ability, moles at age
21, hair color, number of previous
skin lesions treated destructively,
sunscreen use
Model 2 (all melanoma):
(1) + ethnicity, private health
insurance, family history, past history
of excisions for skin cancer, skin
checks in past 3 years

Richter and
Khoshgoftaar (2018) [55]

Cohort
study

based on
EHR data

17,246 cases,
total 9,531,408 2011–2017 United

States

Logistic regression,
decision tree +
random forest

Risk score Not reported

Tagliabue et al. (2018)
[46]

Case-control
study

3830 cases,
2619 controls NA Several

countries Logistic regression Odds ratios
Base model: Age, sex, sunburns, number
of common nevi, RH-phenotype
Base model +MC1R genotype

Vuong et al. (2019) [50] Case-control
study

461 cases,
329 controls 2000–2002 Australia Logistic regression Relative risks

Number of nevi, solar lentigines, hair
color, personal history of
keratinocytic cancer

Abbreviations: UV = ultraviolet, MC1R = melanocortin 1 receptor, SNP = Single Nucleotide Polymorphism, PRS = Polygenic Risk Score, HCT = Hormonal Contraceptive Therapy,
SCREEN = Skin Cancer Research to provide Evidence for Effectiveness of Screening in Northern Germany, EHR = Electronic Health Records, RH-Phenotype = Red Hair-Phenotype.
(1) For studies with multiple models: Models included in analysis are highlighted in bold. (2) Score calculated from the variables: tanning ability, propensity to sunburn, skin color, eye color,
hair color and freckles. (3) Term for the individual variables total childhood sun exposure, blistering sunburns and lifetime sunbed sessions. (4) Score was calculated from the following
variables: hair color, eye color, skin reflectance, tanning ability, propensity to sunburn and freckles. (5) Comprised of 11 SNPs that demonstrated association with melanoma risk in previous
studies. (6) Based on SNPs that showed genome-wide significant association with melanoma in previous studies. (7) Calculated using 21 genome-wide association study—significant SNPs.
(8) Derived from 21 gene regions associated with melanoma. (9) Combines 204 common SNPs.



Int. J. Environ. Res. Public Health 2020, 17, 7919 20 of 24

References

1. Matthews, N.H.; Li, W.Q.; Qureshi, A.A.; Weinstock, M.A.; Cho, E. Epidemiology of melanoma. In Cutaneous
Melanoma: Etiology and Therapy; Ward, W.H., Farma, J.M., Eds.; Codon Publications: Brisbane, Australia, 2017.

2. Aitken, J.F.; Elwood, M.; Baade, P.D.; Youl, P.; English, D. Clinical whole-body skin examination reduces the
incidence of thick melanomas. Int. J. Cancer 2010, 126, 450–458. [CrossRef] [PubMed]

3. Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F.
Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012.
Int. J. Cancer 2015, 136, E359–E386. [CrossRef] [PubMed]

4. Erdmann, F.; Lortet-Tieulent, J.; Schuz, J.; Zeeb, H.; Greinert, R.; Breitbart, E.W.; Bray, F. International trends
in the incidence of malignant melanoma 1953–2008—Are recent generations at higher or lower risk?
Int. J. Cancer 2013, 132, 385–400. [CrossRef] [PubMed]

5. International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today/online-analysis-table?
v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&
cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%
5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1 (accessed on 23 July 2020).

6. Bertz, J. Epidemiologie des malignen Melanoms der Haut. Bundesgesunheitsbl Gesundh. Gesundh. 2001,
44, 484–490. [CrossRef]

7. Breitbart, E.W.; Waldmann, A.; Nolte, S.; Capellaro, M.; Greinert, R.; Volkmer, B.; Katalinic, A. Systematic skin
cancer screening in Northern Germany. J. Am. Acad Dermatol. 2012, 66, 201–211. [CrossRef]

8. Boniol, M.; Autier, P.; Gandini, S. Melanoma mortality following skin cancer screening in Germany. BMJ Open
2015, 5, e008158. [CrossRef] [PubMed]

9. Halvorsen, J.A.; Loberg, M.; Gjersvik, P.; Roscher, I.; Veierod, M.B.; Robsahm, T.E.; Nilsen, L.T.N.; Kalager, M.;
Bretthauer, M. Why a randomized melanoma screening trial is not a good idea. Br. J. Dermatol. 2018,
179, 532–533. [CrossRef]

10. U. S. Preventive Services Task Force; Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.;
Ebell, M.; Epling, J.W., Jr.; Garcia, F.A.; Gillman, M.W.; Kemper, A.R.; et al. Screening for Skin Cancer:
US Preventive Services Task Force Recommendation Statement. JAMA 2016, 316, 429–435.

11. Freedberg, K.A.; Geller, A.C.; Miller, D.R.; Lew, R.A.; Koh, H.K. Screening for malignant melanoma:
A cost-effectiveness analysis. J. Am. Acad Dermatol. 1999, 41, 738–745. [CrossRef]

12. Watts, C.G.; Cust, A.E.; Menzies, S.W.; Mann, G.J.; Morton, R.L. Cost-effectiveness of skin surveillance
through a specialized clinic for patients at high risk of melanoma. J. Clin. Oncol. 2017, 35, 63–71. [CrossRef]

13. Usher-Smith, J.A.; Emery, J.; Kassianos, A.P.; Walter, F.M. Risk prediction models for melanoma: A systematic
review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1450–1463. [CrossRef] [PubMed]

14. Glanz, K.; Volpicelli, K.; Jepson, C.; Ming, M.E.; Schuchter, L.M.; Armstrong, K. Effects of Tailored
Risk Communications for Skin Cancer Prevention and Detection: The PennSCAPE Randomized Trial.
Cancer Epidemiol. Biomark. Prev. 2015, 24, 415–421. [CrossRef] [PubMed]

15. Vuong, K.; McGeechan, K.; Armstrong, B.K.; Cust, A.E. Risk prediction models for incident primary cutaneous
melanoma: A systematic review. JAMA Dermatol. 2014, 150, 434–444. [CrossRef]

16. Bakos, L.; Mastroeni, S.; Bonamigo, R.R.; Melchi, F.; Pasquini, P.; Fortes, C. A melanoma risk score in a
Brazilian population. An. Bras. Dermatol. 2013, 88, 226–232. [CrossRef] [PubMed]

17. Barbini, P.; Cevenini, G.; Rubegni, P.; Massai, M.R.; Flori, M.L.; Carli, P.; Andreassi, L. Instrumental measurement
of skin colour and skin type as risk factors for melanoma: A statistical classification procedure. Melanoma Res. 1998,
8, 439–447. [CrossRef]

18. Cho, E.; Rosner, B.A.; Feskanich, D.; Colditz, G.A. Risk factors and individual probabilities of melanoma for
whites. J. Clin. Oncol. 2005, 23, 2669–2675. [CrossRef]

19. Dwyer, T.; Stankovich, J.M.; Blizzard, L.; FitzGerald, L.M.; Dickinson, J.L.; Reilly, A.; Williamson, J.; Ashbolt, R.;
Berwick, M.; Sale, M.M. Does the addition of information on genotype improve prediction of the risk of
melanoma and nonmelanoma skin cancer beyond that obtained from skin phenotype? Am. J. Epidemiol.
2004, 159, 826–833. [CrossRef]

20. English, D.R.; Armstrong, B.K. Identifying people at high-risk of cutaneous malignant-melanoma: Results from
a case control study in Western Australia. Brit. Med. J. 1988, 296, 1285–1288. [CrossRef]

http://dx.doi.org/10.1002/ijc.24747
http://www.ncbi.nlm.nih.gov/pubmed/19609948
http://dx.doi.org/10.1002/ijc.29210
http://www.ncbi.nlm.nih.gov/pubmed/25220842
http://dx.doi.org/10.1002/ijc.27616
http://www.ncbi.nlm.nih.gov/pubmed/22532371
https://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1
https://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1
https://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1
https://gco.iarc.fr/today/online-analysis-table?v=2018&mode=cancer&mode_population=continents&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&group_cancer=1&include_nmsc=1&include_nmsc_other=1
http://dx.doi.org/10.1007/s001030170022
http://dx.doi.org/10.1016/j.jaad.2010.11.016
http://dx.doi.org/10.1136/bmjopen-2015-008158
http://www.ncbi.nlm.nih.gov/pubmed/26373399
http://dx.doi.org/10.1111/bjd.16784
http://dx.doi.org/10.1016/S0190-9622(99)70010-1
http://dx.doi.org/10.1200/JCO.2016.68.4308
http://dx.doi.org/10.1158/1055-9965.EPI-14-0295
http://www.ncbi.nlm.nih.gov/pubmed/24895414
http://dx.doi.org/10.1158/1055-9965.EPI-14-0926
http://www.ncbi.nlm.nih.gov/pubmed/25432953
http://dx.doi.org/10.1001/jamadermatol.2013.8890
http://dx.doi.org/10.1590/S0365-05962013000200007
http://www.ncbi.nlm.nih.gov/pubmed/23739694
http://dx.doi.org/10.1097/00008390-199810000-00009
http://dx.doi.org/10.1200/JCO.2005.11.108
http://dx.doi.org/10.1093/aje/kwh120
http://dx.doi.org/10.1136/bmj.296.6632.1285


Int. J. Environ. Res. Public Health 2020, 17, 7919 21 of 24

21. Fargnoli, M.C.; Piccolo, D.; Altobelli, E.; Formicone, F.; Chimenti, S.; Peris, K. Constitutional and environmental
risk factors for cutaneous melanoma in an Italian population. A case-control study. Melanoma Res. 2004,
14, 151–157. [CrossRef]

22. Fears, T.R.; Guerry, D.; Pfeiffer, R.M.; Sagebiel, R.W.; Elder, D.E.; Halpern, A.; Holly, E.A.; Hartge, P.;
Tucker, M.A. Identifying individuals at high risk of melanoma: A practical predictor of absolute risk.
J. Clin. Oncol. 2006, 24, 3590–3596. [CrossRef]

23. Fortes, C.; Mastroeni, S.; Bakos, L.; Antonelli, G.; Alessandroni, L.; Pilla, M.A.; Alotto, M.; Zappala, A.;
Manoorannparampill, T.; Bonamigo, R.; et al. Identifying individuals at high risk of melanoma: A simple
tool. Eur. J. Cancer Prev. 2010, 19, 393–400. [CrossRef] [PubMed]

24. Garbe, C.; Buttner, P.; Weiss, J.; Soyer, H.P.; Stocker, U.; Kruger, S.; Roser, M.; Weckbecker, J.; Panizzon, R.;
Bahmer, F.; et al. Risk-factors for developing cutaneous melanoma and criteria for identifying persons
at risk—Multicenter case-control study of the Central Malignant Melanoma Registry of the German
Dermatological Society. J. Investig. Dermatol. 1994, 102, 695–699. [CrossRef] [PubMed]

25. Garbe, C.; Kruger, S.; Stadler, R.; Guggenmoosholzmann, I.; Orfanos, C.E. Markers and relative risk in a German
population for developing malignant-melanoma. Int. J. Dermatol. 1989, 28, 517–523. [CrossRef] [PubMed]

26. Goldberg, M.S.; Doucette, J.T.; Lim, H.W.; Spencer, J.; Carucci, J.A.; Rigel, D.S. Risk factors for presumptive
melanoma in skin cancer screening: American Academy of Dermatology National Melanoma/Skin Cancer
Screening Program experience 2001–2005. J. Am. Acad Dermatol. 2007, 57, 60–66. [CrossRef]

27. Guther, S.; Ramrath, K.; Dyall-Smith, D.; Landthaler, M.; Stolz, W. Development of a targeted risk-group
model for skin cancer screening based on more than 100 000 total skin examinations. J. Eur. Acad Dermatol.
2012, 26, 86–94. [CrossRef]

28. Harbauer, A.; Binder, M.; Pehamberger, H.; Wolff, K.; Kittler, H. Validity of an unsupervised self-administered
questionnaire for self-assessment of melanoma risk. Melanoma Res. 2003, 13, 537–542. [CrossRef]

29. Landi, M.T.; Baccarelli, A.; Calista, D.; Pesatori, A.; Fears, T.; Tucker, M.A.; Landi, G. Combined risk factors
for melanoma in a Mediterranean population. Br. J. Cancer 2001, 85, 1304–1310. [CrossRef]

30. MacKie, R.M.; Freudenberger, T.; Aitchison, T.C. Personal risk-factor chart for cutaneous melanoma.
Lancet 1989, 2, 487–490. [CrossRef]

31. Mar, V.; Wolfe, R.; Kelly, J.W. Predicting melanoma risk for the Australian population. Australas. J. Dermatol.
2011, 52, 109–116. [CrossRef]

32. Marrett, L.D.; King, W.D.; Walter, S.D.; From, L. Use of host factors to identify people at high-risk for
cutaneous malignant-melanoma. CMAJ 1992, 147, 445–452.

33. Nielsen, K.; Masback, A.; Olsson, H.; Ingvar, C. A prospective, population-based study of 40,000 women
regarding host factors, UV exposure and sunbed use in relation to risk and anatomic site of cutaneous
melanoma. Int. J. Cancer 2012, 131, 706–715. [CrossRef]

34. Stefanaki, I.; Panagiotou, O.A.; Kodela, E.; Gogas, H.; Kypreou, K.P.; Chatzinasiou, F.; Nikolaou, V.; Plaka, M.;
Kalfa, I.; Antoniou, C.; et al. Replication and predictive value of SNPs associated with melanoma and
pigmentation traits in a Southern European case-control study. PLoS ONE 2013, 8, e55712. [CrossRef] [PubMed]

35. Whiteman, D.C.; Green, A.C. A risk prediction tool for melanoma? Cancer Epidemiol. Biomark. Prev. 2005,
14, 761–763. [CrossRef] [PubMed]

36. Williams, L.H.; Shors, A.R.; Barlow, W.E.; Solomon, C.; White, E. Identifying persons at highest risk of
melanoma using self-assessed risk factors. J. Clin. Exp. Dermatol. Res. 2011, 2, 129.

37. Quereux, G.; Moyse, D.; Lequeux, Y.; Jumbou, O.; Brocard, A.; Antonioli, D.; Dreno, B.; Nguyen, J.M.
Development of an individual score for melanoma risk. Eur. J. Cancer Prev. 2011, 20, 217–224. [CrossRef] [PubMed]

38. Weiss, J.; Garbe, C.; Bertz, J.; Blitz, H.; Burg, G.; Hennes, B.; Jung, E.G. Risk factors for the development
of malignant melanoma in West Germany. Results of a multicenter-case control study. Hautarzt 1990,
41, 309–313.

39. Smith, L.A.; Qian, M.; Ng, E.; Shao, Y.; Berwick, M.; Lazovich, D.; Polsky, D. Development of a melanoma
risk prediction model incorporating MC1R genotype and indoor tanning exposure. J. Clin. Oncol. 2012,
30, 8574. [CrossRef]

40. Augustsson, A. Melanocytic naevi, melanoma and sun exposure. Acta Derm. Venereol. Suppl. 1991, 166, 1–34.
41. Zaridze, D.G.; Mukeriia, A.F.; Basieva, T.; Shlenskaia, I.N.; Bukin Iu, V. The role of endogenous and exogenous

factors in the etiology of skin melanoma. Vopr. Onkol. 1992, 38, 141–147.

http://dx.doi.org/10.1097/00008390-200404000-00013
http://dx.doi.org/10.1200/JCO.2005.04.1277
http://dx.doi.org/10.1097/CEJ.0b013e32833b492f
http://www.ncbi.nlm.nih.gov/pubmed/20520559
http://dx.doi.org/10.1111/1523-1747.ep12374280
http://www.ncbi.nlm.nih.gov/pubmed/8176250
http://dx.doi.org/10.1111/j.1365-4362.1989.tb04604.x
http://www.ncbi.nlm.nih.gov/pubmed/2583889
http://dx.doi.org/10.1016/j.jaad.2007.02.010
http://dx.doi.org/10.1111/j.1468-3083.2011.04014.x
http://dx.doi.org/10.1097/00008390-200310000-00013
http://dx.doi.org/10.1054/bjoc.2001.2029
http://dx.doi.org/10.1016/S0140-6736(89)92097-7
http://dx.doi.org/10.1111/j.1440-0960.2010.00727.x
http://dx.doi.org/10.1002/ijc.26408
http://dx.doi.org/10.1371/journal.pone.0055712
http://www.ncbi.nlm.nih.gov/pubmed/23393597
http://dx.doi.org/10.1158/1055-9965.EPI-14-4-ED
http://www.ncbi.nlm.nih.gov/pubmed/15824139
http://dx.doi.org/10.1097/CEJ.0b013e32834474ae
http://www.ncbi.nlm.nih.gov/pubmed/21399503
http://dx.doi.org/10.1200/jco.2012.30.15_suppl.8574


Int. J. Environ. Res. Public Health 2020, 17, 7919 22 of 24

42. Wohlin, C. Guidelines for snowballing in systematic literature studies and a replication in software engineering.
In Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering
(EASE ’14); Association for Computing Machinery: New York, NY, USA, 2014; pp. 1–10.

43. Felizardo, K.R.; Mendes, E.; Kalinowski, M.; Souza, É.F.; Vijaykumar, N.L. Using forward snowballing to
update systematic reviews in software engineering. In Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement; Association for Computing Machinery:
Ciudad Real, Spain, 2016.

44. Mendes, E.; Felizardo, K.; Wohlin, C.; Kalinowski, M. Search strategy to update systematic literature reviews
in software engineering. In 2019 45th Euromicro Conference on Software Engineering and Advanced Applications
(SEAA); Institute of Electrical and Electronics Engineers Inc.: Kallithea-Chalkidiki, Greece, 2019; pp. 355–362.

45. Cust, A.E.; Goumas, C.; Vuong, K.; Davies, J.R.; Barrett, J.H.; Holland, E.A.; Schmid, H.; Agha-Hamilton, C.;
Armstrong, B.K.; Kefford, R.F.; et al. MC1R genotype as a predictor of early-onset melanoma, compared with
self-reported and physician-measured traditional risk factors: An Australian case-control-family study.
BMC Cancer 2013, 13, 406. [CrossRef]

46. Tagliabue, E.; Gandini, S.; Bellocco, R.; Maisonneuve, P.; Newton-Bishop, J.; Polsky, D.; Lazovich, D.;
Kanetsky, P.A.; Ghiorzo, P.; Gruis, N.A.; et al. MC1R variants as melanoma risk factors independent of
at-risk phenotypic characteristics: A pooled analysis from the M-SKIP project. Cancer Manag. Res. 2018,
10, 1143–1154. [CrossRef]

47. Steyerberg, E.W.; Vergouwe, Y. Towards better clinical prediction models: Seven steps for development and
an ABCD for validation. Eur. Heart J. 2014, 35, 1925–1931. [CrossRef] [PubMed]

48. Steyerberg, E.W.; Vickers, A.J.; Cook, N.R.; Gerds, T.; Gonen, M.; Obuchowski, N.; Pencina, M.J.; Kattan, M.W.
Assessing the performance of prediction models: A framework for traditional and novel measures.
Epidemiology 2010, 21, 128–138. [CrossRef]

49. Vuong, K.; Armstrong, B.K.; Weiderpass, E.; Lund, E.; Adami, H.O.; Veierod, M.B.; Barrett, J.H.; Davies, J.R.;
Bishop, D.T.; Whiteman, D.C.; et al. Development and external validation of a melanoma risk prediction
model based on self-assessed risk factors. JAMA Dermatol. 2016, 152, 889–896. [CrossRef]

50. Vuong, K.; Armstrong, B.K.; Drummond, M.; Hopper, J.L.; Barrett, J.H.; Davies, J.R.; Bishop, D.T.;
Newton-Bishop, J.; Aitken, J.F.; Giles, G.G.; et al. Development and external validation study of a
melanoma risk prediction model incorporating clinically assessed naevi and solar lentigines. Br. J. Dermatol.
2019, 182, 1262–1268. [CrossRef] [PubMed]

51. Davies, J.R.; Chang, Y.M.; Bishop, D.T.; Armstrong, B.K.; Bataille, V.; Bergman, W.; Berwick, M.; Bracci, P.M.;
Elwood, J.M.; Ernstoff, M.S.; et al. Development and validation of a melanoma risk score based on pooled
data from 16 case-control studies. Cancer Epidem. Biomar. Prev. 2015, 24, 817–824. [CrossRef] [PubMed]

52. Olsen, C.M.; Pandeya, N.; Thompson, B.S.; Dusingize, J.C.; Webb, P.M.; Green, A.C.; Neale, R.E.;
Whiteman, D.C.; Study, Q. Risk stratification for melanoma: Models derived and validated in a
purpose-designed prospective cohort. J. Natl. Cancer Inst. 2018, 110, 1075–1083. [CrossRef]

53. Hübner, J.; Waldmann, A.; Eisemann, N.; Noftz, M.; Geller, A.C.; Weinstock, M.A.; Volkmer, B.; Greinert, R.;
Breitbart, E.W.; Katalinic, A. Association between risk factors and detection of cutaneous melanoma in the
setting of a population-based skin cancer screening. Eur. J. Cancer Prev. 2018, 27, 563–569. [CrossRef]

54. Kypreou, K.P.; Stefanaki, I.; Antonopoulou, K.; Karagianni, F.; Ntritsos, G.; Zaras, A.; Nikolaou, V.; Kalfa, I.;
Chasapi, V.; Polydorou, D.; et al. Prediction of melanoma risk in a Southern European population based on a
weighted genetic risk score. J. Investig. Dermatol. 2016, 136, 690–695. [CrossRef]

55. Richter, A.; Khoshgoftaar, T. Melanoma risk prediction with structured electronic health records.
In ACM-BCB’18: 9th ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics; Association for Computing Machinery: New York, NY, USA, 2018.

56. Penn, L.A.; Qian, M.; Zhang, E.; Ng, E.; Shao, Y.; Berwick, M.; Lazovich, D.; Polsky, D. Development of a
melanoma risk prediction model incorporating MC1R genotype and indoor tanning exposure: Impact of
mole phenotype on model performance. PLoS ONE 2014, 9, e101507.

57. Nikolic, J.; Loncar-Turukalo, T.; Sladojevic, S.; Marinkovic, M.; Janjic, Z. Melanoma risk prediction models.
Vojnosanit. Pregl. 2014, 71, 757–766. [CrossRef] [PubMed]

58. Cho, H.G.; Ransohoff, K.J.; Yang, L.Y.; Hedlin, H.; Assimes, T.; Han, J.L.; Stefanick, M.; Tang, J.Y.; Sarin, K.Y.
Melanoma risk prediction using a multilocus genetic risk score in the Women’s Health Initiative cohort.
J. Am. Acad Dermatol. 2018, 79, 36–41. [CrossRef] [PubMed]

http://dx.doi.org/10.1186/1471-2407-13-406
http://dx.doi.org/10.2147/CMAR.S155283
http://dx.doi.org/10.1093/eurheartj/ehu207
http://www.ncbi.nlm.nih.gov/pubmed/24898551
http://dx.doi.org/10.1097/EDE.0b013e3181c30fb2
http://dx.doi.org/10.1001/jamadermatol.2016.0939
http://dx.doi.org/10.1111/bjd.18411
http://www.ncbi.nlm.nih.gov/pubmed/31378928
http://dx.doi.org/10.1158/1055-9965.EPI-14-1062
http://www.ncbi.nlm.nih.gov/pubmed/25713022
http://dx.doi.org/10.1093/jnci/djy023
http://dx.doi.org/10.1097/CEJ.0000000000000392
http://dx.doi.org/10.1016/j.jid.2015.12.007
http://dx.doi.org/10.2298/VSP130722045N
http://www.ncbi.nlm.nih.gov/pubmed/25181836
http://dx.doi.org/10.1016/j.jaad.2018.02.052
http://www.ncbi.nlm.nih.gov/pubmed/29499294


Int. J. Environ. Res. Public Health 2020, 17, 7919 23 of 24

59. Fang, S.Y.; Han, J.L.; Zhang, M.F.; Wang, L.E.; Wei, Q.Y.; Amos, C.I.; Lee, J.E. Joint Effect of Multiple Common
SNPs Predicts Melanoma Susceptibility. PLoS ONE 2013, 8, e85642. [CrossRef] [PubMed]

60. Gu, F.Y.; Chen, T.H.; Pfeiffer, R.M.; Fargnoli, M.C.; Calista, D.; Ghiorzo, P.; Peris, K.; Puig, S.; Menin, C.;
De Nicolo, A.; et al. Combining common genetic variants and non-genetic risk factors to predict risk of
cutaneous melanoma. Hum. Mol. Genet. 2018, 27, 4145–4156. [CrossRef] [PubMed]

61. Sneyd, M.J.; Cameron, C.; Cox, B. Individual risk of cutaneous melanoma in New Zealand: Developing a
clinical prediction aid. BMC Cancer 2014, 14, 359. [CrossRef] [PubMed]

62. Cust, A.E.; Drummond, M.; Kanetsky, P.A.; Goldstein, A.M.; Barrett, J.H.; MacGregor, S.; Law, M.H.;
Iles, M.M.; Bui, M.; Hopper, J.L.; et al. Assessing the incremental contribution of common genomic variants
to melanoma risk prediction in two population-based studies. J. Investig. Dermatol. 2018, 138, 2617–2624.
[CrossRef] [PubMed]

63. World Cancer Research Fund. Available online: https://www.wcrf.org/dietandcancer/cancer-trends/skin-
cancer-statistics (accessed on 6 March 2020).

64. Roberts, M.R.; Asgari, M.M.; Toland, A.E. Genome-wide association studies and polygenic risk scores for
skin cancer: Clinically useful yet? Br. J. Dermatol. 2019, 181, 1146–1155. [CrossRef]

65. English, D.R.; MacLennan, R.; Rivers, J.; Kelly, J.; Armstrong, B.K. Epidemiological studies of melanocytic
naevi protocol for identifying and recording naevi. In IARC Internal Report No 90/002; International Agency
for Research on Cancer: Lyon, France, 1990.

66. Stratigos, A.J.; Fargnoli, M.C.; De Nicolo, A.; Peris, K.; Puig, S.; Soura, E.; Menin, C.; Calista, D.; Ghiorzo, P.;
Mandala, M.; et al. MelaNostrum: A consensus questionnaire of standardized epidemiologic and clinical
variables for melanoma risk assessment by the melanostrum consortium. J. Eur. Acad Dermatol. Venereol.
2018, 32, 2134–2141. [CrossRef]

67. Cargill, J.; Lucas, R.M.; Gies, P.; King, K.; Swaminathan, A.; Allen, M.W.; Banks, E. Validation of brief
questionnaire measures of sun exposure and skin pigmentation against detailed and objective measures
including vitamin D status. Photochem. Photobiol. 2013, 89, 219–226. [CrossRef]

68. Koster, B.; Sondergaard, J.; Nielsen, J.B.; Allen, M.; Olsen, A.; Bentzen, J. The validated sun exposure
questionnaire: Association of objective and subjective measures of sun exposure in a Danish population-based
sample. Br. J. Dermatol. 2017, 176, 446–456. [CrossRef]

69. Parr, C.L.; Hjartåker, A.; Laake, P.; Lund, E.; Veierød, M.B. Recall bias in melanoma risk factors and
measurement error effects: A nested case-control study within the Norwegian Women and Cancer Study.
Am. J. Epidemiol. 2009, 169, 257–266.

70. Gefeller, O. Invited Commentary: Recall bias in melanoma—Much ado about almost nothing?
Am. J. Epidemiol. 2009, 169, 267–270. [PubMed]

71. Veierød, M.B.; Parr, C.L.; Lund, E.; Hjartåker, A. Reproducibility of self-reported melanoma risk factors in a
large cohort study of Norwegian women. Melanoma Res. 2008, 18, 1–9. [PubMed]

72. Koster, B.; Sondergaard, J.; Nielsen, J.B.; Olsen, A.; Bentzen, J. Reliability and consistency of a validated sun
exposure questionnaire in a population-based Danish sample. Prev. Med. Rep. 2018, 10, 43–48.

73. Pfahlberg, A.B.; Gefeller, O. Errors in assessing risk factors for melanoma: Lack of reproducibility is the
minor problem. Melanoma Res. 2008, 18, 300–301. [PubMed]

74. Vickers, A.J. Prediction models in cancer care. CA Cancer J. Clin 2011, 61, 315–326. [PubMed]
75. Collins, G.S.; Moons, K.G. Comparing risk prediction models. BMJ 2012, 344, e3186.
76. Siontis, G.C.; Tzoulaki, I.; Castaldi, P.J.; Ioannidis, J.P. External validation of new risk prediction models is

infrequent and reveals worse prognostic discrimination. J. Clin. Epidemiol. 2015, 68, 25–34.
77. Steyerberg, E.W.; Harrell, F.E., Jr. Prediction models need appropriate internal, internal-external, and external

validation. J. Clin. Epidemiol. 2016, 69, 245–247.
78. Steyerberg, E.W. Clinical Prediction Models: A Practical Approach to Development, Validation, and Updating;

Springer: New York, NY, USA, 2009.
79. Damen, J.A.; Hooft, L.; Schuit, E.; Debray, T.P.; Collins, G.S.; Tzoulaki, I.; Lassale, C.M.; Siontis, G.C.;

Chiocchia, V.; Roberts, C.; et al. Prediction models for cardiovascular disease risk in the general population:
Systematic review. BMJ 2016, 353, i2416.

80. Mallett, S.; Royston, P.; Waters, R.; Dutton, S.; Altman, D.G. Reporting performance of prognostic models in
cancer: A review. BMC Med. 2010, 8, 21. [CrossRef] [PubMed]

http://dx.doi.org/10.1371/journal.pone.0085642
http://www.ncbi.nlm.nih.gov/pubmed/24392023
http://dx.doi.org/10.1093/hmg/ddy282
http://www.ncbi.nlm.nih.gov/pubmed/30060076
http://dx.doi.org/10.1186/1471-2407-14-359
http://www.ncbi.nlm.nih.gov/pubmed/24884419
http://dx.doi.org/10.1016/j.jid.2018.05.023
http://www.ncbi.nlm.nih.gov/pubmed/29890168
https://www.wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics
https://www.wcrf.org/dietandcancer/cancer-trends/skin-cancer-statistics
http://dx.doi.org/10.1111/bjd.17917
http://dx.doi.org/10.1111/jdv.15208
http://dx.doi.org/10.1111/j.1751-1097.2012.01221.x
http://dx.doi.org/10.1111/bjd.14861
http://www.ncbi.nlm.nih.gov/pubmed/19011114
http://www.ncbi.nlm.nih.gov/pubmed/18227701
http://www.ncbi.nlm.nih.gov/pubmed/18626317
http://www.ncbi.nlm.nih.gov/pubmed/21732332
http://dx.doi.org/10.1186/1741-7015-8-21
http://www.ncbi.nlm.nih.gov/pubmed/20353579


Int. J. Environ. Res. Public Health 2020, 17, 7919 24 of 24

81. Usher-Smith, J.A.; Walter, F.M.; Emery, J.D.; Win, A.K.; Griffin, S.J. Risk prediction models for colorectal
cancer: A systematic review. Cancer Prev. Res. 2016, 9, 13–26. [CrossRef] [PubMed]

82. Mahar, A.L.; Compton, C.; Halabi, S.; Hess, K.R.; Gershenwald, J.E.; Scolyer, R.A.; Groome, P.A.
Critical assessment of clinical prognostic tools in melanoma. Ann. Surg. Oncol. 2016, 23, 2753–2761.
[CrossRef] [PubMed]

83. Collins, G.S.; Mallett, S.; Omar, O.; Yu, L.M. Developing risk prediction models for type 2 diabetes:
A systematic review of methodology and reporting. BMC Med. 2011, 9, 103. [CrossRef]

84. Collins, G.S.; Reitsma, J.B.; Altman, D.G.; Moons, K.G. Transparent reporting of a multivariable prediction
model for individual prognosis or diagnosis (TRIPOD): The TRIPOD statement. BMJ 2015, 350, g7594.
[CrossRef] [PubMed]

85. Leitlinienprogramm Onkologie (Deutsche Krebsgesellschaft, Deutsche Krebshilfe, AWMF). S3-Leitlinie Prävention von
Hautkrebs, Langversion 1. 1. 2014, AWMF Registernummer: 032/052OL. Available online: http://leitlinienprogramm-
onkologie.de/Leitlinien.7.0.html (accessed on 9 September 2020).

86. QIMR Berghofer Medical Research Institute. Available online: https://publications.qimrberghofer.edu.au/

Custom/QSkinMelanomaRisk (accessed on 12 September 2020).
87. Melanoma Institute Australia. Available online: https://www.melanomarisk.org.au/ (accessed on 12 September 2020).
88. Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews

and meta-analyses: The PRISMA statement. BMJ 2009, 339, b2535. [CrossRef]
89. Wolff, R.F.; Moons, K.G.M.; Riley, R.D.; Whiting, P.F.; Westwood, M.; Collins, G.S.; Reitsma, J.B.; Kleijnen, J.;

Mallett, S.; Groupdagger, P. PROBAST: A tool to assess the risk of bias and applicability of prediction model
studies. Ann. Intern. Med. 2019, 170, 51–58. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1158/1940-6207.CAPR-15-0274
http://www.ncbi.nlm.nih.gov/pubmed/26464100
http://dx.doi.org/10.1245/s10434-016-5212-5
http://www.ncbi.nlm.nih.gov/pubmed/27052645
http://dx.doi.org/10.1186/1741-7015-9-103
http://dx.doi.org/10.1136/bmj.g7594
http://www.ncbi.nlm.nih.gov/pubmed/25569120
http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html
http://leitlinienprogramm-onkologie.de/Leitlinien.7.0.html
https://publications.qimrberghofer.edu.au/Custom/QSkinMelanomaRisk
https://publications.qimrberghofer.edu.au/Custom/QSkinMelanomaRisk
https://www.melanomarisk.org.au/
http://dx.doi.org/10.1136/bmj.b2535
http://dx.doi.org/10.7326/M18-1376
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Eligibility Criteria and Search Strategy 
	Data Extraction 
	Data Processing 

	Results 
	Study Selection 
	Study Characteristics 
	Risk Factors Included in the Prediction Models 
	Validation and Model Performance 

	Discussion 
	Conclusions 
	
	References

