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Abstract: The coronavirus disease 2019 (COVID-19) first identified at the end of 2019, significantly
impacts the regional environment and human health. This study assesses PM2.5 exposure and
health risk during COVID-19, and its driving factors have been analyzed using spatiotemporal
big data, including Tencent location-based services (LBS) data, place of interest (POI), and PM2.5

site monitoring data. Specifically, the empirical orthogonal function (EOF) is utilized to analyze
the spatiotemporal variation of PM2.5 concentration firstly. Then, population exposure and health
risks of PM2.5 during the COVID-19 epidemic have been assessed based on LBS data. To further
understand the driving factors of PM2.5 pollution, the relationship between PM2.5 concentration
and POI data has been quantitatively analyzed using geographically weighted regression (GWR).
The results show the time series coefficients of monthly PM2.5 concentrations distributed with a
U-shape, i.e., with a decrease followed by an increase from January to December. In terms of spatial
distribution, the PM2.5 concentration shows a noteworthy decline over the Central and North China.
The LBS-based population density distribution indicates that the health risk of PM2.5 in the west is
significantly lower than that in the Middle East. Urban gross domestic product (GDP) and urban
green area are negatively correlated with PM2.5; while, road area, urban taxis, urban buses, and urban
factories are positive. Among them, the number of urban factories contributes the most to PM2.5

pollution. In terms of reducing the health risks and PM2.5 pollution, several pointed suggestions to
improve the status has been proposed.

Keywords: spatiotemporal big data; empirical orthogonal function (EOF); geographic weighted
regression (GWR); population distribution; COVID-19

1. Introduction

Coronavirus disease 2019 (COVID-19) is a lung disease caused by a novel coronavirus first detected
in late 2019, which has a significant impact on the regional environment [1–3] and human health [4,5].
Many scholars discussed the clinical manifestations [6] of COVID-19 and the risk factors of death and
its detailed clinical course [7,8], providing an important basis for the rapid and accurate diagnosis of
COVID-19 patients. Airborne pollutants with diameters less than or equal to 2.5 microns are known
as PM2.5 or fine particles. Due to the characteristics of small diameter, large-area coverage, strong
activity, easy bonding with toxic substances, PM2.5 can be suspended in the atmosphere for a long
time, severely impacting on the regional environment and Earth’s biological cycle [9]. Furthermore,
they are prone to provide carriers for toxic substances, e.g., absorbing harmful gases such as polycyclic
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aromatic hydrocarbons (PAHs) from industrial exhaust gas and polluted microorganisms, which then
enter the human body through breathing, causing harm to the immune system, respiratory tract,
cardiovascular and cerebrovascular system, and nervous center system of the human body and causing
a series of diseases. With the prevalence of the internet of things (IoT), artificial intelligence (AI) and
cloud computing, the spatiotemporal big data, e.g., location-based service (LBS) and place of interest
(POI) data, that derived from navigation and positioning, location and trajectory, online car-hailing
order, social media network, and macro national economic, are increasing rapidly. The rational and
effective use of spatiotemporal big data will play a positive role in understanding influence factors of
PM2.5 concentration, and quantitatively assessing the population exposure and health risks of PM2.5

during COVID-19.
Compared the state-of-the-art studies on PM2.5 exposure and health risks, most studies used

census-based population data, which ignores the spatial heterogeneity of population, and indirectly
leads to lower accuracy. With the rise of the IoT, more and more portable mobile devices are adding
LBS, a service that records real-time data about people’s activities in space and time. Compared to
traditional demographics-based or global positioning system (GPS)-based location recording data,
integrated LBS and PM2.5 data can improve the assessment of the population exposure and health
risks because it can be modeled with high precision by establishing a relationship between PM2.5

concentrations and population density. The spatial and temporal distributions of PM2.5 have been
extensively studied using geostatistical methods [10,11], as well as the pattern of spatial distribution of
PM2.5 was analyzed. For China, most studies focused on the Jing-Jin-Ji urban agglomeration [12,13],
the Yangtze River economic zones [14–16], and the Pearl River Delta region [17], Cheng-Yu urban
agglomeration [18]. Studies at the national scale are also increasingly being undertaken. Li et al. [19]
used statistical methods and geographic information system (GIS) technology to systematically analyze
the PM2.5 concentration to discover the spatial and temporal distribution patterns of air pollution in
the 161 cities of mainland China in 2014. In addition, Zhang et al. [20] found that PM2.5 is associated
with an increase in disease morbidity and mortality by examining indicators of the biological effects of
PM2.5. Fu et al. [21] established an empirical model of human health risk factors caused by excessive
PM2.5 concentration, and studied the impact of the combination of population spatial distribution
and PM2.5 spatial distribution on population health. Song et al. [22] used spatiotemporal big data
(micro-blog location data) to study the Jing-Jin-Ji urban agglomeration of PM2.5 for dynamic exposure
and health risk assessment. However, current studies rarely consider the mobility of the population
when assessing the PM2.5 exposure and health risk, especially in the COVID-19 epidemic.

In this study, a comprehensive assessment of the population exposure, health risks, and driving
factors of PM2.5 nationwide during the COVID-19 epidemic has been conducted by using high-precision
spatiotemporal data. To be specific, the empirical orthogonal function (EOF) is used to analyze the patterns
of PM2.5 concentrations in China in both the temporal and spatial dimensions. Then, high-precision LBS
data are used to explore the potential relationship between Chinese population and PM2.5 exposure
during the COVID-19 epidemic, and to quantitatively assess the corresponding health risk. In order to
quantify the driving factors of PM2.5 that impact health risk, this study uses geographically weighted
regression (GWR) method to quantify the relationship between POI and PM2.5. This study expects to
provide comprehensive reference and decision making for better protecting the ecological environment.

2. Materials and Methods

2.1. Study Area and Datasets

As a developing country, China is facing the twofold challenges of economic development and
environmental protection. China’s economy is sustained growing, with a gross domestic product (GDP)
of 990,865 million yuan in 2019, an increase of 67.1% compared with that of 2013. Meanwhile, energy
consumption reached 4.86 billion tons of standard coal in 2019, a significant increase over total energy
consumption in 2013. Environmental protection is a basic national policy and an important strategy



Int. J. Environ. Res. Public Health 2020, 17, 7664 3 of 19

for achieving sustainable development, and is an integral part of comprehensive pollution control
and environmental protection planning. According to the China Air Quality Improvement Report.
(2013–2018) [23] published by the Ministry of Ecology in 2019, overall air quality in China improved
from 2013 to 2018, and the emissions of major air pollutants decreased significantly. The average
concentration of PM2.5 in 74 cities using ambient air quality standards fell by 42%. China has also
actively formulated a national climate change strategy to promote environmental improvement by
reducing carbon emissions.

The data involved in this study mainly include PM2.5 monitoring station data, POI data, national
secondary industry output value data, a digital elevation model (DEM), LBS data, and urban population
data (Figure 1).
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Figure 1. Study area and data, (a) elevation, (b) spatial distribution of particulate matter (PM2.5)
monitoring sites and Tencent’s location-based services (LBS) in China, (c) gross domestic product
(GDP), and (d) secondary production.

(1) PM2.5 concentration was obtained from the National Real-time Urban Air Quality Release System
of the China environmental monitoring general station [24] (national air quality monitoring
stations were in only 190 cities in 2014, and since then all cities have been covered). Data from
1670 stations were acquired until 2020. To present the spatiotemporal distribution of PM2.5,
a GIS-based spatial interpolation is applied to convert to 1 × 1 km grid.

(2) POI data, were derived from the National Bureau of Statistics [25] and the local bureau of
statistics, mainly including six factors that affect the distribution of PM2.5 concentration, including
urban GDP, green space, road area, the number of urban taxis, the number of urban buses,
and the number of urban factories. Urban GDP includes primary, secondary, and tertiary
industry GDP, in units of 10,000 yuan. The urban green area contains public, residential, unit
affiliated, protective, production, road green, and scenic forest areas, and the unit is hectares.
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The road area includes urban main roads, secondary, and branch roads, with a unit of 10,000 m2.
The number of urban taxis and buses is the total number of vehicles in operation at the end of
each year. The number of urban factories contains capital-intensive industrial, labor-intensive,
resource-intensive, and knowledge-technology-intensive factories. The time period of all POI
data was from 2014 to 2017.

(3) LBS data came from Tencent location big data [26], which use positioning technology to obtain a
position in the whole scene. Relying on the full coverage and high accuracy of LBS data, to study
the impact of the COVID-19 epidemic on population mobility, this study selected four main time
nodes because of the limited permission to access the Tencent’s services, i.e., 25 December 2020,
11 January 2020, 7 March 2020, and 3 April 2020. On 25 December 2019 people in China were
producing and living normally. The turning point of the COVID-19 outbreak was 11 January
2020. Since this period, the number of patients infected with COVID-19 has continued to increase.
It is also the time node when the Spring Festival travel season began. The peak number of
COVID-19 infections was on 7 March 2020. On 3 April 2020 the COVID-19 epidemic in China was
basically under control, and the life of the people returned to normal. The temporal resolution
of LBS data is the hour, and the data accumulatively obtained 297,535,280 positioning times
of 4,194,304 positioning points. The study uses the grid mapping method of the geographic
information system to map the positioning data to a 1× 1 km grid, and the number of positioning
of all the positioning points in the same grid is summed to obtain the population of the grid.

(4) Auxiliary data contained 2017 national secondary industry output value data and 2019 national
urban population data from the National Bureau of Statistics [25], and DEM data were from the
Resource and Environment Science and Data Center [27].

2.2. Empirical Orthogonal Function (EOF)

EOF was first proposed by the statistician Pearson in 1902 [28], and is known as the spatiotemporal
decomposition in geological applications [29–35]. The absolute value of the time series coefficient
represents the degree of air pollution, the closer it comes to zero, better the air quality is. This study
firstly calculated the average PM2.5 concentration Pi j of 1657 stations in 367 prefecture-level cities in
31 provinces of China (excluding Hong Kong, Macao, and Taiwan) from 2014 to 2019, then estimates
the PM2.5 concentrations anomalies Pmn and the covariance matrix A jk,

Pmn =
(
Pi j − Pi j

)
(1)

Amk =
1
m
·Pmn·(Pnk)

T (2)

where i, m represents the year, i = m = 1, 2, . . . , 6; and j, k, n is the station at each city, j = k = n = 1, 2, . . . ,
1657; Amk is a real symmetric, positive definite square matrix of order n. The Jacobi method was used
to solve the eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ · · · ≥ λk ≥ · · · ≥ λn and eigenvectors of the covariance matrix
A jk. The eigenvalues and corresponding eigenvectors can be formulated by,

Ann·Xk = λk·Xk (3)

where Xnn is the natural orthogonal function of the original field Pmn, and its time series coefficient can
be expressed as,

Tmn = Pmn·Xnn =


T11 T12 . . . T1n
T21 T22 . . . T2n

. . . . . . . . . . . .
Tm1 Tm2 . . . Tmn

 (4)
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where Tmn and Pmn are matrices with the same order. The original field can be represented as a linear
combination of natural orthogonal functions,

Pmn(t, s) = Tmn(t)·Xnn(s) (5)

where s represents the space point and t represents the observation time. In general, the most
important information in the original field can be fully reflected by the first few eigenvectors and time
series coefficients.

2.3. Particulate Matter (PM2.5) Exposure Assessment

LBS data are adopted to conduct PM2.5 exposure assessment and health risk analysis, since LBS
data are with a daily temporal resolution, which can accurately reflect the population mobility [36].
In this study, the LBS data are employed as an indicator to quantify the spatial and temporal patterns
of population distribution. Due to the differences of socio-economic development and mobile internet
penetration among different cities, the population dynamic distribution of each city is estimated
separately. Since the daily total location data contains duplicate data, in order to eliminate the impact
of duplicate data, this study redistributes the total population data of each city based on the hourly
LBS data location data (Equation (6)), and generates the density map of LBS data by aggregating all the
geotagged records of each grid.

Poppq =
Ppq∑z

p=1 Ppq
·Tolp (6)

where ppq is the positioning quantity of Tencent’s position data in the p grid; z is the total number
of pixels in the city; Tolp is the total population of the city. For each city, the PM2.5 exposures were
assessed via a pixel-based method (Equation (7)) [37], which can effectively reduce the potential zoning
effect of the modifiable areal unit problem (MAUP) [38].

EPM =
Popp × PMp∑n

p=1 Popp
(7)

where PMp stands for PM2.5 concentration; Popp is the data redistributed based on LBS data. EPM

represents a population-weighted assessment of PM2.5 exposure.

2.4. Health Risk Assessment of PM2.5 during COVID-19 Outbreaks

In this study, the health risk of PM2.5 was evaluated using the long-term risk assessment value
recommended by the World Health Organization (WHO). With reference to the assessment method of
the WHO, the health risk of residents was assessed using the PM2.5 concentration obtained and the
current status of population distribution.

E = β·(c− c0)·E0·Pp (8)

where E represents the potential risk of disease of residents under the current PM2.5 concentration; β
is the proportion of the mortality caused by the change of PM2.5. In this study, the mortality rate of
PM2.5 decreased by 10 µg/m3 by 6% [39]; c is the actual PM2.5 concentration; c0 is the referenced PM2.5

concentration; E0 is the health effect of residents under the referenced concentration. The mortality
rate in the population census (7.14%) was selected in this study; and Pp is the population at the
current location.

2.5. Geographic Weighted Regression (GWR)

General linear and non-linear regression were widely used in previous studies to analyze the
relation between two groups of variables, However, taking consideration of heterogeneity of POI data,
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an advanced method of GWR is adopted in this study to eliminate spatial heterogeneity and improve
the fitting results. Fotheringham et al. [40], based on the thinking behind the local smooth GWR model,
is put forward [41–43]. The GWR model can be formulated by,

yp = β0
(
up, vp

)
+ β1

(
up, vp

)
·xp1 + · · ·+ βq

(
up, vp

)
·xpq + εs (9)

where
(
up, vp

)
represents the spatial position p, (p = 1, 2, . . . , 367). The spatial regression coefficient

of β0, β1, . . . , βq is a function of position space coordinates which indicates the degree that spatial
independent variables affected dependent variables. εs is a deviation, it represents the degree of
deviation of two variables. yp is PM2.5 concentration. xpq is POI data.

3. Results and Discussion

This study focuses on the following four parts: (1) through spatial autocorrelation analysis and EOF
decomposition, discussing the temporal and spatial characteristics of PM2.5 concentration; (2) based
on the spatiotemporal distribution of PM2.5, calculating the population exposure of PM2.5 based on
Tencent LBS data during the COVID-19 epidemic; (3) adopting the long-term health assessment method
of air quality recommended by the World Health Organization (WHO) to assess the health risk of
PM2.5 during the COVID-19 epidemic; (4) the relationship between PM2.5 and its driving factors were
quantitatively analyzed using the GWR method to address the health threat posed by PM2.5 to human
beings, and relevant measures are proposed to address these driving factors.

3.1. EOF Analysis of Monthly PM2.5 Concentration

This study used the EOF spatiotemporal decomposition of PM2.5 station observations from
367 cities during 2014–2019 to reveal the spatial and temporal patterns of PM2.5. Because the first
feature vector has a cumulative contribution of variance greater than 70% (Figure 2), it was chosen to
characterize the spatial pattern of PM2.5 concentration.

Int. J. Environ. Res. Public Health 2020, 17, x 6 of 19 

𝑦𝑝 = 𝛽0(𝑢𝑝 , 𝑣𝑝) + 𝛽1(𝑢𝑝 , 𝑣𝑝) ∙ 𝑥𝑝1 + ⋯ + 𝛽𝑞(𝑢𝑝 , 𝑣𝑝) ∙ 𝑥𝑝𝑞 + 𝜀𝑠 (9) 
 

where (𝑢𝑝 , 𝑣𝑝) represents the spatial position 𝑝, (𝑝 = 1,2, … ,367). The spatial regression coefficient 

of 𝛽0,𝛽1,…, 𝛽𝑞  is a function of position space coordinates which indicates the degree that spatial 

independent variables affected dependent variables. 𝜀𝑠  is a deviation, it represents the degree of 

deviation of two variables. 𝑦𝑝 is PM2.5 concentration. 𝑥𝑝𝑞is POI data. 

3. Results and Discussion 

This study focuses on the following four parts: (1) through spatial autocorrelation analysis and 

EOF decomposition, discussing the temporal and spatial characteristics of PM2.5 concentration; (2) 

based on the spatiotemporal distribution of PM2.5, calculating the population exposure of PM2.5 based 

on Tencent LBS data during the COVID-19 epidemic; (3) adopting the long-term health assessment 

method of air quality recommended by the World Health Organization (WHO) to assess the health 

risk of PM2.5 during the COVID-19 epidemic; (4) the relationship between PM2.5 and its driving factors 

were quantitatively analyzed using the GWR method to address the health threat posed by PM2.5 to 

human beings, and relevant measures are proposed to address these driving factors.  

3.1. EOF Analysis of Monthly PM2.5 Concentration 

This study used the EOF spatiotemporal decomposition of PM2.5 station observations from 367 

cities during 2014–2019 to reveal the spatial and temporal patterns of PM2.5. Because the first feature 

vector has a cumulative contribution of variance greater than 70% (Figure 2), it was chosen to 

characterize the spatial pattern of PM2.5 concentration. 

 

Figure 2. Variance contribution rate of each feature vector. 

The time series coefficient reflects the variations of PM2.5 concentration over time. Figure 3 shows 

the change in time series coefficients corresponding to the PM2.5 eigenvector for each month during 

the six-year period of 2014–2019. The time series coefficients of PM2.5 concentration have the same 

changing trend, and the difference between months is significant, with the peak intervals located in 

the month of January from 2015–2019. The valley value of the time series coefficient of PM2.5 

concentration is located in August 2014, August 2015, August 2016, August 2017, September 2018 

and August 2019. Overall, the time series coefficients for each year show a U-shaped distribution 

characteristic of increase after an initial decrease. In China, precipitation is scarce in January, 

February and December each year, and the phenomenon of “temperature inversion” is prominent, 

which seriously hinders the horizontal transportation and vertical diffusion of air, and easily causes 

pollutants to gather in the surface layer, making PM2.5 pollution more serious [44]. Meanwhile, the 

temperature in January, February, and December is low, and people use more electricity to keep 

warm. Insufficient combustion of fossil fuels by facilities such as thermal power plants and coal 

Figure 2. Variance contribution rate of each feature vector.

The time series coefficient reflects the variations of PM2.5 concentration over time. Figure 3 shows
the change in time series coefficients corresponding to the PM2.5 eigenvector for each month during
the six-year period of 2014–2019. The time series coefficients of PM2.5 concentration have the same
changing trend, and the difference between months is significant, with the peak intervals located in the
month of January from 2015–2019. The valley value of the time series coefficient of PM2.5 concentration
is located in August 2014, August 2015, August 2016, August 2017, September 2018 and August 2019.
Overall, the time series coefficients for each year show a U-shaped distribution characteristic of increase
after an initial decrease. In China, precipitation is scarce in January, February and December each
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year, and the phenomenon of “temperature inversion” is prominent, which seriously hinders the
horizontal transportation and vertical diffusion of air, and easily causes pollutants to gather in the
surface layer, making PM2.5 pollution more serious [44]. Meanwhile, the temperature in January,
February, and December is low, and people use more electricity to keep warm. Insufficient combustion
of fossil fuels by facilities such as thermal power plants and coal furnaces causes a substantial increase
in PM2.5 concentrations [45]. In addition, the large amount of straw burning also contributes to a high
concentration of PM2.5 [46]. According the variation of time series coefficient from 2014–2019, values of
2018 and 2019 are relatively low, indicating that PM2.5 concentration declined significantly from 2018.
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The spatial distribution of the EOF first feature vector reflects the overall spatial distribution
characteristics of PM2.5 concentrations on the monthly scale. From Figure 4, it can be seen that the
high PM2.5 concentration areas in China in 2014 were mainly concentrated in the Jing-Jin-Ji urban
agglomeration and Heilongjiang Province, and the high PM2.5 concentration areas from 2015 to
2019 were concentrated in Hebei Province, Henan Province, and Hubei Province and the spatial
distribution of PM2.5 concentration sprawling from the area to its surroundings. As seen in Figure 1a,
the Jing-Jin-Ji urban agglomeration, Henan, and Shandong Province are located in the lower elevation
plain, and surrounded by mountains, which are not conducive to the atmospheric transmission of
PM2.5. In addition, the irrational industrial structure within these regions leads to the emission of
endogenous pollutants [47]. Since 2015, the Xinjiang Autonomous Region (XAR) started to appear as
the region of second highest PM2.5 concentration, with peaks in Urumqi and Kashgar in 2019. On the
one hand, because XAR is far from the ocean, precipitation is scarce, and it has China’s largest desert,
the Taklamakan Desert, whose wind fields basically dominate in the low precipitation and drought of
XAR [48]. On the other hand, the population of XAR is growing rapidly, and at a rate higher than the
national average [49]. Increasing winter heating facilities and population growth has had a serious
impact on the fragile environment of the XAR, which causes serious PM2.5 pollution. In addition,
there are many mines around Urumqi. With the development of Midong District, high-pollution
industries such as petrochemicals, chlor-alkali chemicals, coal, electricity and coal chemicals have
gathered here [50], and large freight vehicles have a large traffic flow, which is affected by secondary
particles and coal. The impact of smoke and vehicle emissions is greater, resulting in serious PM2.5

pollution around Urumqi. PM2.5 concentrations reached troughs in southwest Yunnan Province,
southwest Sichuan Province, Tibet Autonomous Region, and southeast coastal areas. On the one hand,
the underdeveloped economy (Figure 1c) and low industrial output (Figure 1d) in these regions are
the predominant reasons. On the other hand, the terrain of these areas is rugged (Figure 1a), and the
primary industry, tertiary industry service industry and tourism are mainly developed, which have
less impact on PM2.5, so the level of PM2.5 pollution in these areas is low.
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3.2. PM2.5 Population Exposure Assessment

In order to analyze the changes in PM2.5 population exposure during the COVID-9 epidemic.
Based on the spatiotemporal distribution of PM2.5, this research selects LBS big data during the
COVID-19 epidemic, and uses a GIS-based method to allocate the acquired population data to a grid
of 1 × 1 km. On this basis, we have calculated a population density distribution map (Figure 5).

As shown in Figure 5, the maximum value areas of national population density in December
2019 are distributed in the North China Plain, the Yangtze River Delta urban agglomeration, the Pearl
River Delta urban agglomeration, the Chengdu-Chongqing urban agglomeration and Central China.
The minimum areas are mainly distributed in the western and northwestern regions of China. In January
2020, the maximum value areas are concentrated in the North China Plain, the Yangtze River Delta
urban agglomeration, the Pearl River Delta urban agglomeration, the Chengdu-Chongqing urban
agglomeration, and Central China. January 2020 compared to December 2019, when the range of
maximum value areas is decreasing, and population density shows a trend of spreading from high
value areas to the low. Statistics by the State Railway Administration [51] and the Civil Aviation
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Administration of China (CAAC) [52] show that the number of transported passengers was 321,862,000
in January 2020. The degree of population mobility is large, and the trend of mobility is the movement
of people from first-tier and new first-tier cities such as Beijing, Shanghai, Guangzhou, Shenzhen,
and Wuhan to surrounding smaller cities.
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In March 2020, the scope of the region of maximum population density compared to January
2020. The region of greatest values is concentrated in the Yangtze River Delta, Pearl River Delta,
and Chengdu-Chongqing urban agglomeration. As a result of the COVID-19 epidemic, the number
of COVID-19 infected patients in the country peaked in March 2020, while there were no large
number of new suspected infections, access to various community units in the country was strictly
controlled, and road, railway and air transport authorities also took corresponding measures to
restrict population movement. Enterprises in some cities gradually resumed work and production in
March, but employees had to be quarantined for 14 days for observation before resuming work and
production, resulting in lower urban population density in first-tier and new first-tier cities in China.
In April 2020, the maximum population density areas of large cities were concentrated in the Jing-Jin-Ji
urban agglomerations, the Yangtze River Delta, the Pearl River Delta, the Chengdu-Chongqing urban
agglomeration, Wuhan and Changsha, with an increasing trend compared to March 2020, but there
is still a gap compared to the population density in January 2020, and with the state’s push for
enterprises to resume work and production, most of the enterprises have started production activities
in April 2020, and the population density range has an increasing trend in the first-tier and new
first-tier cities. In general, the more densely populated areas are mainly distributed in the middle and
lower reaches of the Yangtze River Delta (Shanghai, Jiangsu, Zhejiang, Anhui, etc.), the Pearl River
Delta (Guangzhou, Shenzhen, Hong Kong Special Administrative Region of China, Macao Special
Administrative Region of China, etc.), the Jing-Jin-Ji urban agglomeration (Beijing, Tianjin, Hebei, etc.),
and the Chengdu-Chongqing urban agglomeration (Chongqing, Chengdu, Mianyang, etc.). The total
economic output and per capita GDP are relatively high in the region. The population distribution



Int. J. Environ. Res. Public Health 2020, 17, 7664 10 of 19

throughout China is characterized by a relatively high concentration of people in the eastern part of
the country and a relatively sparse population in the western part.

At the end of 2019, a sudden outbreak of COVID-19 epidemic, bringing a heavy blow. From the
comparison between Figure 5a,b, the population density of Hubei changed greatly from 25 December
2019 to 11 January 2020, and the change in Wuhan City was particularly noticeable. The official report
by the Wuhan Municipal Railway Bureau on 11 January 2020, the stations under the jurisdiction of the
Wuhan Railway Bureau sent 570,000 passengers, including about 100,000 student passengers. As can
be seen from Figure 6c, the population density of Hubei has also declined significantly compared
to January 2020, with the range of population density in Wuhan shrinking considerably. Due to the
COVID-19 outbreak in Wuhan, the city of Wuhan has been blocked to management since 24 January
2020, and the degree of population movement has decreased, reducing the spatial range of the
maximum value of population density in Wuhan. From Figure 5d, the spatial extent of population
density in cities of Hubei, except Wuhan, tends to expand, accompanied by a gradual intensification of
population mobility with the resumption of work in Hubei.
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Figure 6. PM2.5 exposure in typical population-intensive cities based on demographic and LBS data.
(a) Beijing, (b) Shanghai, (c) Guangzhou, (d) Chengdu, and (e) Wuhan.
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To further quantify the changes of the COVID-19 situation on PM2.5 exposure and the effectiveness
of LBS data, data analysis on five typical population-intensive cities of China (i.e., Beijing, Shanghai,
Guangzhou, Chengdu, and Wuhan) was performed, in which the daily PM2.5 ground monitoring
station data [24], demographic data and LBS data were used. In Figure 6, green curves are daily PM2.5

exposure based on demographic data for the period of December 2019 to April 2020 (the duration of
COVID-19); by contrast, blue curves are the reference of PM2.5 exposure using historical average data
(December 2014 to April 2019); marks (red star) represent LBS-based PM2.5 exposure on four dates
mentioned above.

The influence of the COVID-19 situation on air pollution can be concluded by the comparison of
demographic-based PM2.5 exposure, i.e., the result in the duration of COVID-19 (green curve) and
the result in the historical average (blue curve). Take Wuhan for example, as show in Figure 6e, we
found that the PM2.5 exposure in Wuhan during the COVID-19 pandemic saw a significantly drop
due to the community containment measures. Similarly, cities such as Beijing, Shanghai, Guangzhou,
Chengdu, follow the same pattern. The effectiveness of LBS data can be concluded by the comparison
of demographic-based PM2.5 exposure in the duration of COVID-19 (green curve) and LBS-based
PM2.5 exposure on four dates (red star). Although we only obtained LBS data at four key time nodes
because of access restrictions, the trend of LBS-based PM2.5 exposure (red star) is consistent with
demographic-based PM2.5 exposure (green curve) in these cities. It demonstrates that LBS data on four
key dates can characterize the variation of PM2.5 exposure well during the COVID-19 pandemic.

As shown in Figure 7, the areas with the highest exposure values on 25 December 2019 occurred in
Henan, Hebei, Beijing, the northwestern part of Shandong, the Pearl River Delta, Chengdu, Chongqing,
and the capital cities of the Northeast, the exposure values of other cities are relatively low. The areas
with the largest exposure values on 11 January 2020 were mainly concentrated in Henan, Beijing, Tianjin,
Hebei, Shanghai, Heilongjiang, and the Pearl River Delta. The area with the highest PM2.5 exposure
on 7 March 2020 appeared around Shanghai. The maximum value on 3 April 2020 appeared in the
Pearl River Delta, Wuhan and surrounding areas of Shanghai. According to the trend of the exposure
values of PM2.5 from December 2019 to April 2020, it can be seen that the exposure values of large cities
such as the Jing-Jin-Ji urban agglomeration, the Pearl River Delta, the Yangtze River Delta, and the
Chengdu-Chongqing urban agglomeration have maintained at a relatively high level. From December
2019 to April 2020 in these regions, the exposure of PM2.5 gradually decreased. Because these areas
were central cities for economic development, with a large population density and dense urban space,
PM2.5 is difficult to diffuse, the values of exposure are large. From Figure 7a,b, the PM2.5 exposure in
large cities in January 2020 is lower than that in December 2019. It is related to the Spring Festival travel.
With the migration of the population, PM2.5 exposure in the Jing-Jin-Ji urban agglomeration relatively
reduced. Combined with the spatial distribution of PM2.5, the reason for the decrease in the exposure
of PM2.5 in March 2020 compared with January 2020 is related to the control measures issued by
government in response to the COVID-19 epidemic. When the COVID-19 occurred, all provinces across
the country (autonomous regions and municipalities directly under the central government) launched
a first-level emergency response to major public health emergencies. All communities, streets, villages,
and towns across the country have implemented community isolation through grid management,
and the flow of people has been greatly reduced. In addition, the provinces announced that in
addition to guaranteeing the operation of public utilities (e.g., water supply, gas supply, power supply,
communication and other industries), epidemic prevention and control (e.g., medical equipment,
medicines, protective products production and sales), the people’s daily life (e.g., supermarket stores,
food production and supply and other industries) and other enterprises other than those related to
important national economy and people’s livelihood are all shut down. PM2.5 exposure was enhanced
in April 2020 compared to March 2020, particularly in Hunan, Hubei, Jiangxi, Yunnan and the Pearl
River Delta, due to the fact that with the vast majority of the country’s enterprises’ after more than
a month of adjustment, most companies have regained their original capacity, accompanied by the
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population movement caused by the resumption of production and the enhanced plant emissions led
to an uptick in PM2.5 exposure in April 2020.
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3.3. Health Risk Assessment of PM2.5 during COVID-19 Outbreaks

The results are based on the health risk assessment of PM2.5, and the potential risks of disease
from PM2.5 shown in the study results all exclude diseases due to the COVID-19 epidemic. The results
of PM2.5 health risks in China (Figure 8) show that the maximum potential death toll in December
2019 was 139,424, and the areas with high PM2.5 health risks cover the largest area. In March 2020
and April 2020, the impact of PM2.5 was lower than that in December 2019 and January 2020. In April
2020, areas with high health risks covered the lowest area, and the maximum potential death toll was
33,462. Compared with the decrease of 105,962 people in December 2019, the decline was relatively
large. In terms of geographical distribution, the health risks of PM2.5 in the western region are
significantly lower than those in the central and eastern regions. The areas with higher PM2.5 health
risks are mainly concentrated in Beijing, Tianjin, Hebei, Henan, Chengdu, Chongqing, Pearl River
Delta, northwestern XAR and Shanghai. According to the population density map based on LBS data
(Figure 5), the population during the Spring Festival transport in 2020 will migrate from first-tier cities
and new first-tier cities to small cities. According to data from the Beijing Railway Administration,
during the Spring Festival travel period, Beijing sent a total of 8,274,100 passengers, and the population
density in Beijing decreased. Population migration has reduced the population density of first-tier
cities and new first-tier cities, reducing PM2.5 exposure and reducing the health risks caused by PM2.5.
With the evolution of the COVID-19 epidemic, communities across the country were blocked between
the end of January 2020 and March 2020, traffic on the roads was reduced, airports, railway stations
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and other places of passenger access were strictly controlled, and population movement was reduced,
resulting in a reduced health risk from PM2.5.
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The health risk caused by PM2.5 was low in the Tibet Autonomous Region, Qinghai, western
Sichuan, northwestern Gansu, and central XAR. The COVID-19 epidemic did not have a significant
impact on the health risk of PM2.5. From the topography (Figure 1a) and population density map
(Figure 5) of the study area, it can be found that these areas have complex topography and a large
degree of undulation, which are not suitable for human habitation, making the population density
lower and the health risk caused by lower PM2.5 concentrations in these areas smaller. In addition,
the GDP per capita (Figure 1c) in these regions is low, and the output value of the secondary industry
(Figure 1d) is also low, making economic development relatively backward. Moreover, these regions
have primary agriculture, animal husbandry, fishery, and tertiary tourism as the pillar industries of
their economies, and there is little air pollution caused by PM2.5 from large industries, so the health
risk caused by PM2.5 is relatively low.

3.4. Driving Factors Affecting PM2.5 Concentration

PM2.5 poses a threat to human health, in order to explore the impact of PM2.5 caused by
anthropogenic activities and aids the reduction of health risk, the study selected six driving factors
(i.e., GDP, road area, green area, number of taxis, number of buses, and number of factories) from
POI data and used the GWR method to quantify the impact of these variables on PM2.5. In order
to effectively explore the primary driving factors on PM2.5 concentration, this study respectively
selects the adaptive Gaussian Akaike information criterion (AIC) index (determine the best bandwidth
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through the minimum information criterion) to be the kernel function and bandwidth of the GWR
model, the correlation between the above driving factors and PM2.5 concentration was analyzed.

The difference in spatial regression coefficients between PM2.5 and various variables reveals the
spatial heterogeneity of PM2.5 concentration. The spatial regression coefficient of the GWR model
reflects the degree of influence of each variable on the PM2.5 concentration (Figure 9). When the spatial
regression coefficient is positive, it means that the variable is positively correlated with the PM2.5

concentration, and the larger the variable is, the greater the impact on PM2.5, and vice versa. From the
parameter estimation and validation results of the GWR model (Table 1), coefficients of determination
(R2) of the six explanatory variables are above 60%, indicating that the GWR model can better fit the
relationship between PM2.5 concentration and each variable.
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explanatory variables. (a) urban GDP; (b) the area of urban green space; (c) road area; (d) number of
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Table 1. Estimation and validation of regression results of the geographically weighted regression
(GWR) model.

Year AICc R2 Adjusted R2 Residual Squares

2014 2094.78 0.6759 0.6328 19,078.16
2015 2095.02 0.6910 0.6501 19,473.78
2016 2107.93 0.6303 0.5869 20,026.23
2017 1977.24 0.6738 0.6315 13,311.88

From Figure 9a, the national PM2.5 concentration and GDP show a negative correlation (Table 2),
indicating that the GDP is high and the corresponding PM2.5 concentration is low. The most obvious
performance is the urban agglomeration in the middle and lower reaches of the Yangtze River, with the
largest absolute value of the regression coefficient. The higher the total urban GDP is, the more attention
is paid to the reduction of PM2.5 pollution. Regression coefficients ranged from −10 to −5 × 10−3 in areas
such as Ningxia Hui Autonomous Region and central Inner Mongolia, where industry is underdeveloped
(Figure 1d), the economy is mainly based on primary and tertiary services, and urban PM2.5 emissions
are low, so GDP and PM2.5 show a strong negative correlation. In the southern part of Guangxi Zhuang
Autonomous Region and the three provinces of Northeast China, with correlation coefficients between
0 and 5, as the output value of secondary industries in these regions was larger (Figure 1d), and PM2.5

emissions from factories were higher, so GDP showed a weak positive correlation with PM2.5.

Table 2. Mean value of spatial regression coefficient of GWR model (×10−3).

Year Urban GDP Road Area Green Space Area Taxis Buses Factories

2014 −6.3 2.1 −0.8 1.7 1.9 7.4
2015 −4.8 1.7 −0.5 1.1 2.3 3.3
2016 −0.5 1.4 −0.4 0.8 2.8 3.1
2017 −1.7 1.1 −0.4 0.4 1.9 0.8

As shown in Figure 9b, urban green areas in South China, East China, Central China, North China,
Chengdu-Chongqing urban agglomeration showed negative correlation with PM2.5, with correlation
coefficients between −5 × 10−3 and 0, indicating that the larger the urban green area, the lower the
urban PM2.5 concentration. Green plants can not only absorb air pollutants such as dust, sulfide,
nitrous oxide, etc., but also the coronal layer of the plant will reduce the speed of wind and block
particles in the air. Plant leaves will absorb dust during respiration and photosynthesis. Official data
assumes that in an acre of forest planted with 100 trees, 22−60 tons of dust can be absorbed in a year [53].
As a result, urban greenery has a stronger cleaning and air purification function. In the southwest and
the west, except for most of the Chengdu-Chongqing urban agglomeration and the northwest, there is
a weak positive correlation between the urban green area and PM2.5, and the correlation coefficient
is between 0 and 5 × 10−3. Since these areas are located in the first and second terrain (Figure 1a),
the climatic conditions and precipitation conditions are not conducive to large-scale vegetation growth.
Most vegetation types are grasslands and low shrubs, and the absorption effect of PM2.5 is significantly
weak, while the absorption intensity of PM2.5 by tall vegetation are intensive in the eastern region [54].

As shown in Figure 9c–e, road area and the numbers of urban taxis and buses show a positive
correlation with PM2.5 concentration (Table 2). The average regression coefficient between road area
and PM2.5 is between 0 and 5 × 10−3 The population density of Inner Mongolia Autonomous Region,
western Yunnan and Tibet Autonomous Region is low due to topography (Figure 1a), climate, and other
factors (Figure 5). The roads are scattered, giving the road area and PM2.5 a positive correlation.
The regression coefficients for the number of urban taxis and PM2.5 ranged from −5 × 10−3 to 0,
with a weak negative correlation in Northeast China, where industry contributed the most to PM2.5

due to the concentrated distribution of heavy industry in the region (Figure 1d). The regression
coefficient between the number of urban buses and PM2.5 is from 0 to 5 × 10−3 and the Jing-Jin-Ji urban
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agglomeration has a strong positive correlation with Shanxi and eastern Inner Mongolia, with the
regression coefficient from 5 × 10−3 to 10 × 10−3. Road area is proportional to urban traffic emissions,
with higher emissions (PM2.5, nitrogen oxides, carbon oxides, etc.) from urban traffic with major road.
According to the China Mobile Source Environmental Management Annual Report (2019) released by
the Ministry of Ecology and Environment, China has been the world’s largest producer and seller of
motor vehicles for 10 consecutive years and, in 2018, the total amount of four pollutants emitted from
motor vehicles in the country was initially accounted for 40.653 million tons. This includes 442,000 tons
of particulate matter. Automobiles are the main contributors to air pollution emissions from motor
vehicles [55]. The topography of Yunnan, Guizhou, and southwestern Sichuan (Figure 1a) resulted in a
weak negative correlation between the number of bus and PM2.5.

From Figure 9f there is a significant positive correlation between the number of factories in Central,
North, Southwest and Northwest China on PM2.5, with regression coefficients between 0 and 20 × 10−3,
with the strongest correlation in Shanxi and Central Inner Mongolia. The distribution of secondary
industry values in China (Figure 1d) shows that these regions have higher secondary industry emissions.
The greater the number of urban factories, the higher the emissions of pollutants (nitrogen oxides,
carbon oxides, PM2.5, etc.) resulting from the factories’ production activities. The spatial regression
coefficients of the number of factories and PM2.5 show an increasing trend from east to west of China,
while the South China show a weak negative correlation trend, indicating that South China pays
attention to the emission of PM2.5 from factories. Meanwhile, South China is close to the ocean, and the
PM2.5 concentration generated by factories is positively influenced by the sea breeze that accompanies
the ocean currents [56].

The quantitative analysis of the driving factors of PM2.5 found that the number of urban factories
has the greatest impact on PM2.5, indicating that industrial emissions dominated the China’s PM2.5

pollution. In terms of reducing the health risks and pollution prevention measures caused by PM2.5,
industrial emissions should be controlled. Launching laws and regulations for PM2.5 prevention
and control, and formulating relevant standards for industrial waste gas and waste emissions from
factories, is necessary. The relevant departments should ensure the implementation of the system.
The government promotes the location of new factory sites, increases planning for PM2.5 prevention
and control in industrial parks, and provides technical support for replacing new clean equipment in
factories, while the authorities will increase the supply of clean energy such as electricity and natural
gas to reduce reliance on traditional energy sources in factories and reduce PM2.5 emissions. Vegetation
coverage is an important part of urban ecological construction. Relevant planning departments should
make reasonable plans for vegetation planting areas around factories and inside cities to prevent the
spread of PM2.5 from further harming surrounding residents’ health, because trees play a unique
ecological function in the purification of atmospheric fine particles.

4. Conclusions

In this paper, we have evaluated the population exposure and health risk of PM2.5 in the context
of the COVID-19 epidemic, as well as spatiotemporal distribution and driving factors of PM2.5 from
spatiotemporal big data, including station monitoring of PM2.5 concentration, urban POI, and LBS
data. The EOF study of the national monthly PM2.5 distribution pattern and its evolution in 2014–2019
found that, the time series coefficients of the first feature vector of monthly PM2.5 in 2014–2019
showed obvious characteristics, and the time series coefficients showed a downward and then upward
trend from year to year, roughly in a U-shaped distribution. In terms of spatial distribution, PM2.5

concentrations in central and northern China are relatively higher than those in the surrounding areas,
and the distribution pattern shows attenuation from central and northern China to its surrounding
areas. From 2014 onwards, PM2.5 gradually changed from one center (Central China and North China)
to two centers (Central China, North China and XAR). The population density distribution based on
the LBS data in China shows that the eastern areas are concentrated and the western areas are relatively
sparse. In March and April 2020, most of the PM2.5 concentration were below 35 µg/m3, which is
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caused by the control measures on population movement and industrial production in the cities during
the COVID-19 epidemic. The health risk of PM2.5 in the western region is significantly lower than that
in central and eastern regions. After the outbreak of COVID-19, the domestic health risk caused by
PM2.5 significantly reduced. The GWR of PM2.5 with GDP, urban green space, road area, number of
urban taxis, number of urban buses and number of urban factories demonstrates that GDP and urban
green space were negatively correlated with PM2.5, while road area, number of urban taxis, number of
urban buses and number of urban factories were positively correlated with PM2.5. In terms of reducing
the health risks and pollution prevention measures brought about by PM2.5, it is recommended that
relevant authorities restrict factory emissions and promote new energy transportation and encourage
residents to travel green.

Author Contributions: H.H. was responsible for setting up experiments, completing the experiments and
retrieving data and wrote the initial draft of the manuscript; Y.S. principally conceived the idea for the study,
and was responsible for the design of the study, writing and editing of this manuscript; C.J., T.L. and L.Y.
participated in the experimentation, writing and/or editing of this manuscript; M.G. responsible in some form
in the concept, and editing of this manuscript. All authors have read and agreed to the published version of
the manuscript.

Funding: This work is partially supported by a grant from State Key Laboratory of Resources and Environmental
Information System, and by the National Natural Science Foundation of China under Grant No. 41771380,
41701446, and 41971356.

Acknowledgments: Thanks to the China Environmental Monitoring Station for the PM2.5 data released in the
national city air quality real-time release system (http://106.37.208.233:20035), and the Tencent-based location
service (http://heat.qq.com/) and spatiotemporal big data and POI data provided by the National Bureau of
Statistics (http://data.stats.gov.cn/).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Becker, S.; Soukup, J.M. Exposure to urban air particulates alters the macrophage-mediated inflammatory
response to respiratory viral infection. J. Toxicol. Environ. Health Part. A 1999, 57, 445–457.

2. Yongjian, Z.; Jingu, X.; Fengming, H.; Liqing, C. Association between short-term exposure to air pollution
and COVID-19 infection: Evidence from China. Sci. Total Environ. 2020, 138704.

3. Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution
sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [CrossRef] [PubMed]

4. World Health Organization. Home Care for Patients with COVID-19 Presenting with Mild Symptoms and
Management of Their Contacts: Interim Guidance, 17 March 2020; World Health Organization: Geneve,
Switzerland, 2020.

5. Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019
(COVID-19) outbreak in China: Summary of a report of 72 314 cases from the Chinese Center for Disease
Control and Prevention. JAMA 2020, 323, 1239–1242. [CrossRef]

6. Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.; Hui, D.S.C.; et al. Clinical
characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [CrossRef]

7. Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; et al. Clinical course and
risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study.
Lancet 2020, 395, 1054–1062. [CrossRef]

8. Chan, J.F.-W.; Yuan, S.; Kok, K.-H.; To, K.K.-W.; Chu, H.; Yang, J.; Xing, F.; Liu, J.; Yip, C.C.-Y.; Poon, R.W.-S.;
et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person
transmission: A study of a family cluster. Lancet 2020, 395, 514–523. [CrossRef]

9. He, K.; Yang, F.; Ma, Y.; Zhang, Q.; Yao, X.; Chan, C.K.; Cadle, S.; Chan, T.; Mulawa, P. The characteristics of
PM2.5 in Beijing, China. Atmos. Environ. 2001, 35, 4959–4970. [CrossRef]
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