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Abstract: The study of the carbon emission intensity of agricultural production is of great significance
for the formulation of a rational agricultural carbon reduction policy. This paper examines the regional
differences, spatial-temporal pattern and dynamic evolution of the carbon emission intensity of
agriculture production from 1991 to 2018 through the Theil index and spatial data analysis. The results
are shown as follows: The overall differences in carbon emission intensity of agriculture production
presents a slightly enlarging trend, while the inter-regional differences in carbon emissions intensity is
decreasing, but the intra-regional difference of carbon emissions intensity presented an expanding
trend. The difference in carbon emission intensity between the eastern and central regions is not
obvious, and the difference in carbon emission intensity in the western region shows a fluctuating
and increasing trend. The overall differences caused by intra-regional differences; the average annual
contribution of intra-regional differences is 67.84%, of which the average annual contribution of
western region differences is 64.24%. The carbon emission intensity of agricultural production in
China shows a downward trend, with provinces with high carbon emission intensity remaining
stable, while provinces with low intensity are expanding. The Global Moran’s I index indicates that
China’s carbon emission intensity of agricultural production shows a clear trend of spatial aggregation.
The agglomeration trend of high agricultural carbon emission remains stable, and the overall pattern of
agricultural carbon emission intensity shows a pattern of increasing differentiation from east to west.

Keywords: agriculture carbon emission; Theil index; spatial correlation; spatial-temporal pattern

1. Introduction

Balanced economic development and environment protection have become hot topics around
the world. With the rapid development of the global economy, global warming has brought great
challenges to the sustainable development of human society. China has achieved remarkable economic
growth and has become the world’s second largest economy, but it also has a large amount of carbon
emissions [1]. China has become one of the largest greenhouse gas emitters [2,3], which accounts
for nearly 30% of global emissions [4,5]. Therefore, China’s carbon emissions reduction will have a
positive impact on global carbon emissions reduction. China has pledged to peak its carbon dioxide
emissions by 2030 under the Paris Agreement, but study suggests that the peak may come earlier [6].

Although most of the carbon emissions come from industry and services, agricultural carbon
emissions should not be underestimated. Greenhouse gas (GHG) emission from agricultural activities
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is one of the important parts of global GHG emissions [7,8]. Agriculture have become the second
largest source of global greenhouse gas emissions, and the emissions are increasing at a fast speed of
approximately 1% per annum [9,10]. Meanwhile, agriculture is the biggest source of anthropogenic
non-CO, emissions, being responsible for around 40% of total CHy, 60% of N, O and 20-35% of CO; [11].
The agricultural sector is an important component of China’s national economy. China’s agricultural
economy is developing rapidly; however, this rapid development has also led to a significant increase
in carbon emissions. The major sources of agricultural carbon emissions are soil, intestinal fermentation
of ruminants, biomass fuel burning, rice cultivation, and animal manure. Energy use in agricultural
activities such as cultivation, land leveling, irrigation, farmland consolidation and fertilizing and
herbicides production are also important sources of direct carbon emissions in agricultural sector [12].
Therefore, agricultural sector carbon emission reduction is an important link to improve the capability
of agriculture to responses climate change; it is also a necessary choice to achieve economic growth,
ecological environmental development, and sustainable agricultural development.

China’s agricultural activities produce a higher proportion of carbon than any other country [13],
greenhouse gases from agricultural production accounting for 10-12% of global greenhouse gas emissions,
compared to 16-17% in China [13-16], 17% of greenhouse gases, 50% of CHy, and 92% of N;O came from
the agricultural sector in China [17-19]. China has decided to reduce its CO, emission intensity by 40-50%
by 2020 from the 2005 level [20]. The concept of green development has now become the goal of China’s
socio-economic development.

This study focuses on the differences in the carbon emissions intensity of agricultural production in
three major regions of China and the changes in the carbon emissions intensity of agricultural production
at the provincial level. As a traditionally large agricultural country, due to different factors, there are great
differences between different regions of China in the reduction of carbon emissions from agricultural
economic development. Therefore, it has great significance to study the regional differences and spatial and
temporal variations in the carbon emission intensity of Chinese agricultural to influence the formulation
and implementation of carbon emissions reduction policies in the agricultural sector. However, before we
can do that, we need to be clear about the source of carbon emissions, carbon emissions and carbon
emissions intensity.

The aim of this paper is to further explore the temporal and spatial differentiation of carbon
emissions from agricultural production in China. Firstly, this paper uses Theil index to quantitatively
analyze the regional differences in the China’s agricultural production carbon emission intensity based
on the regional differences and their causes. Secondly, the spatial measurement method is used to
analyze the spatiotemporal change characteristics of carbon emission intensity of agricultural production
in China. Finally, the spatial agglomeration of agricultural carbon emission intensity at provincial level
is analyzed by using the Moran’ I index and hot and cold spot analysis. It also helps to put forward
appropriate agricultural carbon emissions reduction strategies in different provinces of China.

2. Methodologies

2.1. Measuring Agricultural Carbon Emissions

The measurement of agricultural carbon emission is the basis for analysis for this paper.
When producers engage in agricultural activities, they contribute to agricultural carbon emissions
studied in this paper. According to the available data, the agricultural carbon emissions are mainly
summarized into the following four aspects [21-27]: The first type of carbon emissions is caused by
input to agricultural production, that is, agricultural irrigation, farmland ploughing and the use of
fertilizers, pesticides, agricultural plastic sheeting and the consumption of diesel fuel from agricultural
machinery; the second type of carbon emissions is caused by CHy released during the growth of rice;
the third type of carbon emissions is caused by N,O released from the soil during crop cultivation;
the fourth type of carbon emissions is caused by CH, and N;O released from animal husbandry.
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Due to emissions of CHy and N,O, we need to convert CH, and N,O into carbon emissions.
According to the IPCC’s Fifth Assessment Report, the greenhouse effect induced by 1 ton of CH4 is
equivalent to that produced by 6.8182 tons of carbon and the greenhouse effect caused by 1 ton of N,O
is equivalent to that produced by 81.2727 tons of carbon). The formula for calculating the agricultural
carbon emissions is as follows [27]:

n
C= Z T; X 6; 1)
i=1

where C denotes the total agricultural carbon emissions, T; is the agricultural carbon emissions of
different source, 6; is the coefficient of different agricultural carbon source.

2.2. The Theil Index

The Theil index is a statistic used to measure economic inequality and other economic phenomena.
Now, it has also been used to measure the imbalance of regional development. The Theil index can
decompose the regional overall differences (T) into two parts: Inter-regional differences (Tbr) and
intra-regional differences between different provinces (Twr) to analyze their contribution to the total
differences and the main sources of overall differences [28].

Thus, this paper uses the Theil index to calculate the regional differences in carbon emissions from
China’s agricultural production. The Theil index is defined as follows [29-31]:

n m

n
T = Z X; 2 xl-]-lndi]- + 2 xi]-lndl- = Ty + Ty (2)
i—1

i=1 j=1 i

In this formula, # and m represent the number of regions and the number of provinces within the
region, respectively; x; represents the proportion of carbon emissions from agricultural production in
region i to total carbon emissions from agricultural production in China; x;; represents the proportion of
carbon emissions from agricultural production in province j within region i to total carbon emissions
from agricultural production in China; d; represents the ratio of the intensity of carbon emissions from
agricultural production in region i to total carbon emissions intensity from agricultural production in
China; d;; represents the ratio of the intensity of carbon emissions from agricultural production in province
j within region i to total carbon emissions from agricultural production in China. Meanwhile, in order
to calculate the contribution of different differences from the overall difference, we used the quotient
expression contribution of each difference index and the overall difference index to calculate [32].

2.3. The Global Spatial Auto-Correlation

Spatial autocorrelation is a spatial data analysis method that studies whether the observed values
at one location in space are correlated with the observed value at its adjacent positions, and can reveal
the regional structural forms of spatial variables. Spatial autocorrelation analysis can be divided into
global spatial autocorrelation and local spatial autocorrelation [33].

Global Spatial autocorrelation is a description of the spatial characteristics of attribute values in
the whole region [34,35]. The global spatial autocorrelation is shown as follows:

. nXilg Xiog Wij(xi —3)(96]‘_— ;_C) .
?:1 27:1 Wi Z?:l (x]- -X)

I stands for Global Moran'l index; n stands for the number of provinces; x; and x; represent carbon
emissions intensity of agricultural production in provinces i and j, respectively; x stands for the average
value of carbon emissions intensity from agricultural production of each province; W;; stands for space
weights of provinces i and j.
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2.4. Hot and Cold Spot Analysis

The Global spatial correlation analysis can reflect the over spatial characteristics, but cannot
analyze the local spatial characteristics and determine the specific location of the clustering. Getis-Ord
Gi* can measure the density of high value (hot spot) and low value (cold spot) for a specified study
area. The formula is as follows:

Gi(d) 27 Wiy 4
i - Zln X; : ( )
The corresponding standardized statistics for the index G’(d) are Z(G?):
G;(d) - E(G;
Z(G:) _ ! ( 1) (5)

VAR(G)) '

In this formula, n stands for the number of provinces, Wij stands for space weights of provinces
i and j, x; represent carbon emissions intensity of agricultural production in provinces i, E(G’lf) and

7 /VAR(G;‘) stands for the expectation and variance of the G;(d). Z(G’;) positive and significant
indication that surrounding area of province i is a high-value agglomeration area, that is, hot spot area;
otherwise, it is a cold spot area.

2.5. Data Source

The research area for this study is mainland China, except for Hong Kong, Macao, and Taiwan
province. This paper focuses on 1991-2018. All the data in this paper were collected from the China Rural
Statistical Yearbook (1992-2019) [36]. The variables used in this study include agricultural carbon emissions
and agricultural economy. Agricultural carbon emissions data have been calculated, and the agricultural
economy data are expressed by the added value of agriculture, forestry, animal husbandry, and fishery.

3. Regional Differences in China’s Carbon Emissions from Agricultural Production

According to formula, the Theil index of carbon emission intensity of agricultural production in
China can be calculated and decomposed, the regional overall differences (T) can be decomposed into
two parts: Inter-regional differences (Tbr) and intra-regional differences between different provinces
(Twr), the intra-regional differences (Twr) can be decomposed into intra-regional differences in eastern,
central, and western regions. The results are shown in Figures 1 and 2, Tables 1 and 2.

Table 1. Theil index of carbon emissions intensity of China’s agricultural production.

Year Thbr Twr T

1991 0.0767 0.1510 0.2278
1992 0.0804 0.1547 0.2352
1994 0.0926 0.1518 0.2444
1995 0.1025 0.1548 0.2573
1996 0.0989 0.1733 0.2721
1997 0.0829 0.1687 0.2516
1998 0.0745 0.1533 0.2278
1999 0.0702 0.1337 0.2039
2000 0.0762 0.1285 0.2047
2001 0.0801 0.1291 0.2092
2002 0.0822 0.1321 0.2142
2003 0.0885 0.1444 0.2328
2004 0.0843 0.1546 0.2388
2005 0.0830 0.1523 0.2354

2006 0.0892 0.1674 0.2566
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Table 1. Cont.

Year Thbr Twr T

2007 0.0846 0.1888 0.2733
2008 0.0825 0.1901 0.2726
2009 0.0865 0.1942 0.2808
2010 0.0803 0.2017 0.2820
2011 0.0826 0.2227 0.3053
2012 0.0771 0.2075 0.2846
2013 0.0765 0.2262 0.3027
2014 0.0744 0.2126 0.2870
2015 0.0718 0.2179 0.2897
2016 0.0647 0.1898 0.2544
2017 0.0544 0.1712 0.2256
2018 0.0524 0.1719 0.2243

Table 2. The intra-regional difference of carbon emissions intensity of China’s agricultural production.

Year Eastern Central Western
1991 0.0105 0.0080 0.1325
1992 0.0092 0.0060 0.1395
1993 0.0077 0.0052 0.1421
1994 0.0059 0.0078 0.1416
1995 0.0048 0.0042 0.1534
1996 0.0054 0.0061 0.1618
1997 0.0039 0.0037 0.1654
1998 0.0057 0.0045 0.1430
1999 0.0054 0.0052 0.1231
2000 0.0040 0.0035 0.1210
2001 0.0032 0.0030 0.1240
2002 0.0026 0.0033 0.1261
2003 0.0020 0.0030 0.1394
2004 0.0018 0.0033 0.1495
2005 0.0027 0.0039 0.1457
2006 0.0028 0.0029 0.1707
2007 0.0026 0.0021 0.1840
2008 0.0031 0.0031 0.1943
2009 0.0031 0.0032 0.1879
2010 0.0048 0.0037 0.1932
2011 0.0054 0.0037 0.2136
2012 0.0060 0.0039 0.2066
2013 0.0071 0.0045 0.2146
2014 0.0078 0.0042 0.2005
2015 0.0108 0.0038 0.2033
2016 0.0110 0.0032 0.1756
2017 0.0140 0.0053 0.1519
2018 0.0180 0.0056 0.1483

3.1. Overall Difference Analysis

Based on the calculated overall Theil index, this paper analyzes the regional and interregional
differences in carbon emission intensity of agricultural production in China. Figure 1 shows the
“up-down-up-down” trend across the Theil index, the overall Theil index has demonstrated a cyclical
trend in the whole study period, which showed an M-type change, but the overall trend was upward.
The overall Theil index increased from 0.2278 in 1991 to 0.2721 in 1996, decreased to 0.2039 in 1999,
rose again to 0.3053 in 2011, and finally dropped again to 0.2243 in 2018. This indicates that the
overall regional difference in the carbon emission intensity of agricultural production in China shows a
dynamic trend of “widening—narrowing-widening-narrowing”. The overall difference widens slightly,
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with the Theil index growing at an average annual rate of 0.14%. In addition, the Tbr shows an
M-type variation, but the trend demonstrates a weak decrease, with an average annual decline rate of
1.1%, which indicates that the inter-regional difference in carbon emission intensity from agricultural
production among the eastern, central, and western regions was narrowing.
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Figure 1. Theil index of carbon emission intensity of agriculture in China from 1991 to 2018.
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Figure 2. Chang trend of regional Theil index.
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3.2. Analysis of Intra-Regional Difference

In order to reveal the difference in carbon emission intensity of agricultural production in eastern,
central and Western China, the intra-regional differences in carbon emission intensity of agricultural
production in China are analyzed by using the Twr. As can be seen from Table 1 and Figure 1, there was a
similar trend between the Twr and the overall T during the study period, indicating that the differences in
the three regions underwent a dynamic change process of “widening-narrowing-widening-narrowing”.
However, the overall trend was slightly upward, with an average annual growth rate of 0.74%.

According to Table 2 and Figure 2, the Theil index for the western region is significantly higher
than that for the eastern and the central regions, and the Theil index for eastern region is slightly
higher than that for central region throughout the study process. The results show that the difference
of agricultural carbon intensity in the western provinces is larger than that in eastern and central
provinces, and the difference of agricultural production carbon intensity in the central provinces is the
smallest. In the western region, the differences of agricultural carbon intensity among the provinces
are similar to the differences of overall agricultural production carbon intensity, while the differences
in carbon emission intensity of agricultural production among provinces in the eastern region showed
a U-shaped trend. The difference of carbon emission coefficient of agricultural production among
provinces in central China showed a fluctuating but overall decreasing trend.

3.3. Cause Analysis of Regional Differences

By comparing the contribution proportion of the Theil index to China’s agricultural regional
carbon emission coefficient between 1991 and 2018, as shown in Table 3, the reasons for the regional
differences can be better understood.

Table 3. Contribution rate of Theil index of agricultural production carbon emission intensity in China
from 1991 to 2018.

Intra-Regional (%) Inter-Regional  Intra-Regional

Year Eastern  Central Western (%) (%)
1991 4.62 3.51 58.18 33.68 66.30
1992 3.92 2.54 59.34 34.20 65.80
1993 3.08 2.10 57.09 37.74 62.26
1994 241 3.20 57.95 37.88 62.11
1995 1.88 1.62 59.61 39.85 60.16
1996 1.97 2.23 59.47 36.33 63.67
1997 1.56 1.49 65.73 32.95 67.05
1998 2.50 2.00 62.78 32.72 67.28
1999 2.65 2.55 60.38 34.43 65.57
2000 1.96 1.71 59.09 37.23 62.77
2001 1.54 1.45 59.29 38.28 61.71
2002 1.23 1.55 58.88 38.35 61.65
2003 0.86 1.29 59.86 38.00 62.01
2004 0.74 1.36 62.61 35.28 64.72
2005 1.13 1.67 61.91 35.28 64.72
2006 1.08 1.11 66.54 34.77 65.24
2007 0.95 0.78 67.33 30.94 69.06
2008 1.14 1.13 71.28 30.27 69.74
2009 1.12 1.15 66.92 30.82 69.18
2010 1.69 1.32 68.50 28.48 71.52
2011 1.75 1.21 69.98 27.06 72.94
2012 2.12 1.38 72.58 27.08 72.91
2013 2.34 1.48 70.90 25.28 74.72
2014 2.73 1.48 69.86 25.93 74.07
2015 3.72 1.30 70.19 24.79 75.21
2016 4.32 1.26 69.01 25.41 74.59
2017 6.20 2.35 67.35 24.10 75.90

2018 8.03 2.51 66.10 23.37 76.63
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Through the analysis of Table 3, the results show that the regional differences of carbon emission
intensity of agricultural production in China are mainly dependent on the intra-regional differences
during the whole study period. The contribution of the intra-regional differences increased from 66.30%
in 1991 to 76.63% in 2018, with an average annual growth rate of 0.58% and an average contribution
rate of 67.84%. The contribution of inter-regional differences showed a fluctuating downward trend,
from 33.68% in 1991 to 23.37% in 2018, with an average annual decline rate of 1.21% and an average
contribution rate of 32.16%. This indicates that the overall difference in the carbon emission intensity
of agricultural production is increasingly dependent on the intra-regional difference, and the increase
in the contribution of the difference within the region is mainly due to the gradual expansion of the
difference in the carbon emission intensity of agricultural production in western China. The differential
contribution of the intensity of carbon emissions from agricultural production between provinces in
the western region increased from 58.18% in 1991 to 66.10% in 2017, with an average contribution rate
of 64.24% and an average annual growth rate of 0.54%.

4. Spatial Pattern Evolution

4.1. Spatial and Temporal Sequence Analysis of Agricultural Carbon Emission Intensity

The carbon emission intensity of agricultural production in China is divided into four levels.
ArcGIS is used to visualize the spatial pattern of the carbon emission intensity of China’s agricultural
production during the study process. Overall, the spatial distribution of the other regions of carbon
emission intensity changed greatly during the study period except for the high intensity provincial region,
and the higher intensity region showed a contraction trend, while the lower intensity region showed an
expansion trend, indicating that the overall agricultural carbon emission intensity showed a decreasing
trend in China. Figure 3 shows that Tibet and Qinghai province keep a relatively high emission intensity
level throughout the study period. Before 2005, carbon emission intensity of agricultural production
showed a step-like distribution characteristic, for the number was higher in the west and lower in the
east. After 2005, the carbon emission intensity of agricultural production of all provinces entered a low
period, which also indicates that carbon emission intensity of China’s agricultural production indicates
an overall downward trend, especially in the central and eastern regions.

According to Figure 4a, the average carbon emission intensity of China’s agricultural production
has been gradually decreasing over the past 28 years, and the differences among provinces have
been shrinking as well, there is a converging trend among the provinces. In order to have a further
understanding of the distribution of agricultural production carbon emission intensity, Figure 4b can
serve as a reference, for it shows the kernel density estimation for 1991, 1995, 2000, 2005, 2010, 2015,
and 2018. The overall trend of the distribution of the kernel density curve changes, with the peak
shifting to the left and turning into “double peak”, indicating that the differences between provinces is
narrowing while the distribution of carbon emission intensity shows polarization phenomenon; the tail
of the kernel density curve becomes shorter, indicating that the number of provinces with low carbon
emission intensity is increasing.

4.2. Global Pattern Evolution

The Global Moran’s I index of China’s carbon emission intensity of agricultural production and
the statistical Z-value from 1991 to 2018 (Table 4 and Figure 5) indicate that the Global Moran’s I index
is significantly positive between 0.103 and 0.179. The Global Moran’s I index passed the significance Z
statistical test, which indicates that China’s carbon emission intensity of agricultural production exhibits
a significant spatial aggregated trend. Meanwhile, Global Moran’s I showed an down-up-down-up
trend, which reveals the aggregation is continuously evolving over the time, which implies evolution
of aggregation among the regions with similar carbon emission intensity of agricultural production
in China’s as well. Figure 5 showed that there is a strong correlation between the overall difference
of carbon emission intensity in agricultural production and the global spatial autocorrelation index.
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During the whole period, the correlation coefficient of the two indicators is —0.92585, which fully
shows that the deepening of the overall difference degree of carbon emission intensity will lead to a
weakening of the geographic pattern of the agglomeration of carbon emission intensity, which will
thus reducing the global spatial autocorrelation degree of carbon emissions intensity.
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Figure 4. (a) Box-plot of carbon emission intensity of China’s agricultural production; (b) The Kernel
density estimation of carbon emission intensity of China’s agricultural production.
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Table 4. Global Moran’s I index of China’s carbon emission intensity of agricultural production from
1991 to 2018.

Year 1991 1992 1993 1994 1995 1996 1997
MI 0.157 *** 0.155 *** 0.156 *** 0.150 *** 0.150 *** 0.138 *** 0.150 ***
zZ 2.838 2.925 3.000 2.976 3.102 2.882 3.104

Year 1998 1999 2000 2001 2002 2003 2004
MI 0.159 *** 0.174 *** 0.179 *** 0.176 *** 0.175 *** 0.164 *** 0.148 ***
zZ 3.165 3.329 3.342 3.349 3.345 3.220 3.108

Year 2005 2006 2007 2008 2009 2010 2011
MI 0.155 *** 0.151 *** 0.138 *** 0.127 *** 0.128 *** 0.117 *** 0.117 ***
zZ 3.182 3.133 3.063 3.024 3.003 2.885 2.866

Year 2012 2013 2014 2015 2016 2017 2018
MI 0.108 *** 0.103 *** 0.110 *** 0.114 *** 0.131 *** 0.138 *** 0.153 ***
zZ 2.838 2.789 2.860 2.869 2.960 2.859 3.134

Notes: *** Denotes significance at the 0.01 level.
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Figure 5. Global Moran’s I index and overall Theil index trends.

4.3. Hot and Cold Spot Analysis

The hot spots—cold spots identified by ArcGIS local spatial correlation index Getis-Ord Gi*,
are spatially clustered with statistically significant high (low) values. The results are shown in Figure 6.
The agglomeration trend of high intensity and low intensity of agricultural carbon emission remains
stable, and the agricultural carbon emission intensity overall presents that the pattern of increasing
differentiation from east to west. From 1991 to 2018, the evolution of hot spot—cold spot of carbon
emissions intensity of agricultural production has the following features: The spatial distribution
of carbon emission intensity and the hot cold spot distribution of carbon emission intensity of
China’s agricultural production have spatial convergence. The core hot spots are mainly located in
Western China like Xinjiang, Tibet, and Qinghai, which are important domestic animal production
areas. The carbon emissions from animal husbandry in these three provinces account for more than
70% of the total agricultural carbon emissions in every province. However, the development of
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agricultural economy is relatively slow; the cold spots are mainly in the Yangtze River Delta, where the
agricultural development level is high and the carbon emission of agricultural production is relatively
low. No significant change can be observed in the pattern of the hot spot—cold spot agglomeration of
agricultural carbon intensity in China. Inner Mongolia, Heilongjiang, Ningxia, Shanxi, Shaanxi, Hebei,
Beijing, Tianjin, Chongqing, Yunnan, Guizhou, and Guangxi have all become transitional regions.
The core hot spots remain unchanged. Among the sub-hotspots and marginal hotspots, only Gansu
province has experienced the change of marginal hot-spot area—sub-hotspot area—marginal hot-spot
area—transition zone, while Sichuan has experienced the change of transition zone-marginal hot spot
zone-transition zone. Although the sub-cold spot area and marginal cold spot area changed in some
provinces, the overall pattern did not change significantly, and Henan, Shandong and Jilin provinces
changed from marginal cold spots to transitional areas.

Figure 6. Cold and hot spots of carbon emission intensity of China’s agricultural production.
5. Conclusions

Based on the calculation of the carbon emissions intensity of agricultural production from 1991 to
2018 in China, this paper analyzes and discusses the regional differences and spatial and temporal
pattern characteristics of the carbon emission intensity of agricultural production in China. The results
show that:

The overall Theil index changed from 0.2278 in 1991 to 0.2243 in 2018, which indicates that
the overall regional difference in the carbon emission intensity of agricultural production in China
shows a dynamic trend, but the overall difference widens slightly. In addition, the Tbr showed a
weak downward trend, which indicates that the inter-regional differences among the eastern, central,
and western regions was narrowing. The Twr showed an upward trend, which indicates that the
intra-regional differences were widening, as the differences in carbon emission intensity in the western
region shows a fluctuating upward trend, the difference of agricultural carbon intensity in the western
provinces is larger than that in eastern and central provinces, and the difference of agricultural
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production carbon intensity in the central provinces is the smallest. The overall differences were
mainly caused by intra-regional differences, with the average annual contribution of intra-regional
differences being 67.84%, of which the average annual contribution of western region differences was
64.24%.The carbon emission intensity of agricultural production in China showed a downward trend,
the distribution of carbon emission intensity shows polarization phenomenon; with provinces with high
carbon emission intensity remaining stable, while the number of provinces with low carbon emission
intensity is increasing. The Global Moran’s I index is significantly positive, which indicates that
China’s carbon emission intensity of agricultural production exhibits a significant spatial aggregated
trend. There is a strong correlation between the T and the Global Moran’s I index, with a correlation
coefficient of —0.92585, which fully indicates that the deepening of the overall difference degree in
carbon emission intensity will lead to the weakening of the geographical pattern of the agglomeration
of carbon emission intensity. The agglomeration trend of high and low intensity of agricultural carbon
emission remains stable, with hot spots concentrated in the west and the cold spots in the east, and the
overall carbon emission intensity of agricultural production presents that the pattern of increasing
differentiation from east to west.

Further research on the regional difference and spatial agglomeration of agricultural carbon
emissions intensity through the regional difference analysis model could provide ideas of the regional
emission reduction of agricultural carbon emission.
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