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Abstract: A major forthcoming sanitary issue concerns the apparition and spreading of drug-resistant
microorganisms, potentially threatening millions of humans. In low-income countries, polluted urban
runoff and open sewage channels are major sources of microbes. These microbes join natural microbial
communities in aquatic ecosystems already impacted by various chemicals, including antibiotics.
These composite microbial communities must adapt to survive in such hostile conditions, sometimes
promoting the selection of antibiotic-resistant microbial strains by gene transfer. The low probability
of exchanges between planktonic microorganisms within the water column may be significantly
improved if their contact was facilitated by particular meeting places. This could be specifically the
case within biofilms that develop on the surface of the myriads of floating macroplastics increasingly
polluting urban tropical surface waters. Moreover, as uncultivable bacterial strains could be involved,
analyses of the microbial communities in their whole have to be performed. This means that new-omic
technologies must be routinely implemented in low- and middle-income countries to detect the
appearance of resistance genes in microbial ecosystems, especially when considering the new ‘plastic
context.’ We summarize the related current knowledge in this short review paper to anticipate new
strategies for monitoring and surveying microbial communities.
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1. An Urgent Need to Investigate Environmental, Human, and Animal Microbiota Interactions

The United Nations predicts that half of the population in Africa and Asia will be urban by
2030 and that the African population will double (to 2.4 billion) by 2050. This global increase
in population sustains a growing rate of five million residents per month in towns in low- and
middle-income countries. This increase is essentially due to newborns but also to migration from
rural areas. Urbanization presents opportunities and challenges for poverty reduction [1], but this
rapid urbanization coupled with inadequate urban planning will disturb the functional organization
of the cities [2]. The increase in populations in Africa induces “slumization” in towns with informal
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settlements and limited access to good-quality drinking water and sanitation facilities [3]. The arrival
of migrants from rural areas also sustains the transfer of animals and environmental strains of bacteria,
which mix with urban “microbiota.” In suburbs, surface water is often contaminated by animal and
human feces from septic tanks or sewage discharges [4–9] (Figure 1). In harbors, the surface water can
even be contaminated with ballast water from ships, transferring microorganisms from one part of the
world to another [10,11]. In towns, all these microbial communities will mix in a large environmental
cauldron favoring genetic exchanges. At the same time, these microbial communities will be exposed
to antibiotics or chemicals released into surface water with urban wastewater, favoring the selection of
new resistant strains. In towns, surface water can become highly contaminated. There are 828 million
people living in slums over the world, which includes 62% of the urban population of sub-Saharan
Africa and 43% of the urban population of South-Central Asia [12,13]. An estimated 141 million citizens
have no access to good-quality drinking water, and 794 million have no access to sanitation facilities.
Unfortunately, defects in the water supply in towns or suburbs (i.e., ineffective water treatment,
frequent shortages, or low pressure) favor the direct use of these surface waters by these inhabitants
for domestic uses, resulting in a high incidence of waterborne diseases. This threat mainly concerns
children, noticeably in sub-Saharan African countries (see Figure 12 in Landrigan et al., 2018 [14]).
Urban farming using surface water or fishing in polluted water (e.g., the Ébrié Lagoon in Abidjan,
Ivory Coast, or the lakes formed by runoff in Antananarivo, Madagascar) is also another way to absorb
contaminated water and thus to sustain “re-entry” of microorganisms in humans.

In this environmental cauldron, the release of antibiotics, intensively used for human, veterinary,
and agricultural purposes, resulted in their accumulation in all freshwater, seawater, and groundwater
environments worldwide [15,16]. The main concern for this release of antibiotics is related to the
development of antibiotic resistance genes (ARGs) and bacteria (ARB), which reduce the therapeutic
potential against pathogens, as exemplified in Africa [17–20]. This constitutes now a serious global threat
to human health, causing millions of deaths each year [21], particularly in low-income countries [22].

There is thus an urgent need to better investigate relations between environmental, human,
and animal microbiota mixing in surface water in the towns, to anticipate or detect the emergence
of pathogens and drug resistance. The methods to conduct this survey needs to be redefined,
and the places where exchanges between human and environmental microbiota occur need to be
established. Knowledge of the microbial ecology of urban surface water, including the occurrence
of waterborne pathogens, remains too limited [23,24]. In particular, the ubiquitous proliferation of
floating plastic waste may play a new but major role in this ecology. Their role needs to be investigated
owing to the crucial role biofilms that develop on their surface might play in facilitating microbial
interactions and enhancing genetic exchanges [25]. Simultaneously, the release of contaminant
loads (e.g., pesticides, heavy metals, pharmaceuticals, personal care products), which create new
constraints for environmental microorganisms, must be analyzed. They exert selective pressures on
microorganisms that may stimulate antibiotic resistance gene acquisition and spreading [26]. A revised
approach for antibiotic resistance surveys that mobilize high-throughput next-generation sequencing
methods [24] is thus necessary [27].

This paper illustrates the main pieces of the puzzle favoring the survival and dispersal of pathogens
in urban aquatic reservoirs to open the discussion on the hot spots where genetic exchange and microbial
proliferation can occur and the strategy that can be utilized for monitoring microbial communities.
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Figure 1. Plastics and garbage in an open sewer network; (A–D) Mahajanga, Madagascar, 2014, (A,B) 
open sewer network, (C) standpipe in a flooded area, (D) garbage pen in an area liable to flooding; 
(E,F) Ébrié Lagoon in Abidjan, floating plastics. 
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Figure 1. Plastics and garbage in an open sewer network; (A–D) Mahajanga, Madagascar, 2014,
(A,B) open sewer network, (C) standpipe in a flooded area, (D) garbage pen in an area liable to flooding;
(E,F) Ébrié Lagoon in Abidjan, floating plastics.

2. Uncontrolled Urbanization Creates Large Reservoirs of Environmental/Human Composite
Microorganism Communities in Surface Water Favoring Pathogen Evolution

Enteropathogens, such as enterotoxigenic Escherichia coli (ETEC), rotavirus, Vibrio cholerae,
Campylobacter, and cryptosporidium, are major agents of diarrhea. They are good models for analyzing
the propagation of pathogens in urban settings because their epidemiology is shaped by their ability to
survive and to be transported from one household to another. Sustained by environmental factors, a
single transient episode of contamination is often sufficient to start an epidemic, as seen during the 2011
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cholera outbreak in Haiti [28]. Therefore, what are the major determinants of pathogen propagation
in suburbs?

2.1. Environmental Factors Modulate Human Pathogen Dynamics

The growth, diversity, and dynamics of pathogenic populations are shaped by environmental
factors such as rainfall, temperature, nutrient loading, UV light, water flow, pH, and availability of
carbon sources [29]. A good model to assess these effects is V. cholerae, as its proliferation is modulated
by water temperature, pH, salinity, and plankton blooms [30]. These environmental parameters strongly
control both the abundance and diversity of aquatic communities, which, in turn, control pathogen
proliferation. High temperatures, sunlight, and nutrient inputs favor the growth of phytoplankton and
bacteria (e.g., cyanobacteria). They also control top-down relationships linking microbial communities
(such as Vibrio sp.) with their environmental reservoir like shellfish and zooplankton [29–32]. This was
well described in reservoirs in Burkina Faso where alkaline pH and phytoplankton biomass sustain the
proliferation of V. cholerae [33]. This was also described in wastewater ponds in Australia [34], where
waterborne pathogens are controlled by a range of chemical or physical factors, including salinity,
pH, turbulence-induced resuspension, and macronutrients. Viruses are also concerning as they can
aggregate and adsorb to particles, sustaining their persistence in surface waters.

According to the physical parameters of the media, pathogens can modulate their metabolism
to survive. Microorganisms can become uncultivable but persist for a long time, which impacts the
techniques and the timing available to analyze the samples. Indeed, during nutrient starvation, iron
limitation, or changes in salinity and pH, V. cholerae survives by losing its flagellum and becoming a
spore-like uncultivable bacterium [31]. Escherichia coli, or Campylobacter jejuni, can also enter the viable
but noncultivable (VBNC) state (also called dormancy) with low metabolism, allowing their survival
under poor environmental conditions and resuscitation when conditions become more favorable.
Resuscitation windows vary from a few days to several years (e.g., Vibrio vulnificus, 3 days; Vibrio
fluvialis, 6 years [35]). Similarly, bacteria from the Firmicutes family can form endospores that can
survive for several years in soil, plants, or sediments and are resistant to chlorination. They can persist
or be transported by environmental reservoirs [9], impacting the quality of drinking water extracted
from surface water resources long after contamination.

2.2. Selection of Drug-Resistant Microorganism Can Occur in Surface Water

Antibiotics are spread in the environment via wastewater from farms and hospitals [10,36–38].
The treatment of plants and aquaculture has recently become another major contributor of
antibiotics. They promote the selection of resistance genes and the development of antibiotic-resistant
bacteria [39,40]. The long-term irrigation of soils with untreated wastewater leads to an accumulation
of these drugs at high levels in the soil. Freshwater and marine ecosystems have become reservoirs
of resistance genes and antimicrobial-resistant bacteria, which are easily transferred to human
pathogens [41,42]. In this setup, the acquisition of multidrug resistance enhances the propagation and
emergence of pathogens [43]. Studies conducted in Dhaka (India) illustrate this point as well; two
multidrug-resistant bacteria were found that were associated with water runoff, i.e., a Pseudomonas
aeruginosa resistant to all antibiotics except ceftazidime and an E. coli sensitive only to ceftazidime and
cotrimoxazole [44]. In this area, E. coli was thus found as the causative agent in 63% of the diarrhea
cases in children. However, 73% of them were resistant to at least one of the 10 antibiotics tested, and
36% were multidrug-resistant. In the same line, the emergence of multidrug-resistant “El Tor” strains
in Nigeria was also related to the presence of antimicrobial drugs in the biotope [45].

Aside from pathogens, drug resistance has also been described in environmental bacteria.
The level of resistance varies with the place of collection of the microorganisms as the concentration of
drugs accumulated in the environment also varies [46,47]. In surface water, antibiotics can usually
inhibit 25% to 76% of wild-type environmental bacteria [48]. However, when studies are conducted
on river sediments, swine feces, lagoon water, liquid manure, or farmed soil, the resistance of
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environmental bacteria can reach 60%, 92%, 100%, and 30%, respectively [48]. For these uncultivable
environmental bacteria, antibiotic resistance genes (ARGs) can be searched using metagenomics, as
illustrated in tannery wastewater [49], in which various ARGs have been identified at high abundance.
Over 70 types of insertion sequences were detected in each sludge sample, among which 20% were
sulfonamide-resistant sul1 genes. Class 1 integrase genes were prevalent in the whole tannery
wastewater treatment plant. Tetracycline resistance genes (particularly tet33) were highly prevalent in
anaerobic sludge but not in aerobic sludge [49]. This important finding draws attention to the role of
various chemicals in the induction of drug resistance.

Aside from classic resistant pathways, some environmental bacteria can also degrade drugs
through specific pathways that are not primarily involved in resistance but that belong to “the
hidden resistome” [50]. This term covers all the pathways that can inhibit drug effects through a
“mineralization” process of the drug. More than 90% of seawater bacteria are resistant to more than
one antibiotic, and 20% are resistant to at least five [51]. Little is known about the potential effects of
exogenous antibiotics on the diversity and functioning of bacterial communities in aquatic ecosystems,
but ARG could be transferred to environmental bacteria. They have been suspected to shape the
microbial community composition in freshwater reservoirs [52], promoting the occurrence of resistant
strains (Actinobacteria and Firmicutes).

Moreover, lots of studies highlight the capacity of environmental bacteria to produce natural
antibacterial substances that can be produced by marine heterotrophic bacteria, which may inhibit or
kill other bacteria [53–57]. The antibacterial activity of two Ludwigia species (invasive aquatic weeds)
against a series of bacteria, including pathogens, has been demonstrated [58]. The production of
antibiotics as allelochemicals by phytoplankton and cyanobacteria has also been documented [59–63].
However, antibiotic-induced interactions among marine microorganisms have mostly been highlighted
within marine biofilms [64]. These natural antimicrobials are mostly considered signaling molecules
within species and not as veritable chemical weapons against other organisms [65]. Supporting this
view, antibiotics are often produced at subinhibitory concentrations, as the metabolic cost of this
production is relatively high. Overall, and due to this natural chemical war, many environmental
bacteria have a capacity for fast evolutionary development of tolerance against antimicrobials [65].

At last, heavy metals are ubiquitous contaminants spread by runoff and sewage water into aquatic
ecosystems, where they exert selective pressures on aquatic microbial communities. Heavy metals
persist within sediment, where they increase the half-life of antibiotics [66]. Even at low concentrations,
heavy metals can contribute to the emergence and spread of antimicrobial-resistant strains through
coselection of genetic elements encoding both heavy metal and antibiotic resistance genes [67–71].
This was recently confirmed by the selection of antibiotic-resistant enterococci by very low heavy-metal
concentrations [72].

Environmental bacteria are thus an unlimited source of resistance genes that might be transferred
to pathogenic organisms. This transfer of genes from environmental to pathogenic bacteria has already
been demonstrated. High densities of bacteriophages are released into water via defecation [73],
while for soil bacteriophages, lysogeny is the prevalent reproductive strategy supporting horizontal
gene transfer via transduction [74]. In Salmonella enterica, Staphylococcus aureus, E. coli O157:H7, or
Vibrio cholerae, phages promote the secretion of toxins, effectors or regulatory proteins, adhesins,
and serum resistance factors [75]. In this context, the domestic use of raw water might expose the
human microbiota to new enzymatic structures from environmental microorganisms through lateral
transmission. This transfer was already described in humans [76], sustained by integrons [77,78].

2.3. Urban Farming and Untreated Water Consumption Are Sources of Pathogen Contamination for Humans

Enteric pathogens are not native to freshwater. They are imported from various sources, including
animal and human feces [9]. Informal settlement areas around water surfaces generate high runoff

and significant fecal pollution with a range of 4 to 8 log orders of bacteria [5]. When surface water
is used for watering, urban farming and consumption of vegetables such as lettuce are thus major
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factors of human contamination [6,7,79]. The city of Kumasi in Ghana where reuse of wastewater
has become usual is a good study case as water was found contaminated by fecal bacteria, such
as Salmonella, viruses, and Cryptosporidium [80]. In this city, the prevalence of intestinal protozoan
infection in primary school children reached 43% (mainly Giardia lamblia, Entamoeba histolytica/E. dispar,
and Cryptosporidium parvum) [81]. This study also illustrated that the assessment of enteric pathogens
in feces of children living in an area can be used as a sentinel marker of contamination of water.
The mass distribution of anti-parasite drugs in schools should thus be preceded by stool collection
and examination. The prevalence of each pathogen could be investigated, as well as their burden
illustrated, by the speed of recontamination after treatment. Molecular techniques such as multiplex
Q-PCR could be implemented for automatic analysis.

3. Where to Survey the Emergence of Pathogens?

Surveys conducted in dispensaries with humans experiencing diarrhea are key strategies to detect
new pathogens. Indeed, new pathogens will usually cause symptoms due to a lack of immunity.
Systematic sampling of stools could be easily implemented in children from poor suburbs of the city,
as well as attending dispensaries with diarrhea. However, the size of sampling should be large enough
to allow detection of rare pathogens. This last point was demonstrated by studies designed to monitor
variations of pathogens related to public health interventions [82,83].

Studies could also be conducted in the environment, but sampling sites must be carefully
defined. Surface water should be a key area for analysis [84–88]. However, due to large variations
in the concentration of microorganisms, studies conducted in environmental water bodies are not
sufficiently sensitive for detecting the circulation of pathogens before an epidemic. The collection of
water in distribution networks is sometimes more efficient because it provides information on the
contamination of the water resource from its source to the tap, including the pipes, which are usually
good supports for biofilms. Network contaminations can be due to old pipes allowing the diffusion of
sewage water to pipes, providing drinkable water. This is frequent when the landscape is complex,
with, for example, important elevation changes, such as in Antananarivo in Madagascar [84]. This
strategy is frequently used by public water supply companies, as in Antananarivo (Bastaraud et al. in
press). Analyses conducted on steels can reveal abundant contamination with highly resistant strains
sometimes harboring specific pathways involving glutathione metabolism, the SoxRS-, OxyR-, or
RpoS-system [85].

As previously described, interactions between microorganisms in biofilms are also important for
genetic exchange, collaborative survival in water, propagation of pathogens, or protection against
adverse environmental conditions. The co-adhesion of Pseudomonas aeruginosa and E. coli O157:H7 was,
for example, demonstrated to modify growth rates when bacteria are subjected to various osmotic
pressures, temperatures, heavy metal concentrations, or salt stress [86,87]. Biofilms also promote the
acquisition of virulence [88,89], and identification of the places to sample is thus crucial. Environment
microorganisms and macroorganisms can also host pathogens and promote biofilms. For example,
Legionella spp. can survive in free-living amoebas (e.g., Naegleria spp. and Acanthamoeba spp.) and
benefit from their protection against desiccation, elevated temperature, and disinfectants [9]. The role
of aquatic vertebrates and arthropods remains poorly investigated, but they may trigger interactions
through biofilm formation on their shells. Aquatic vertebrates also promote the large-scale dispersion
of microbes, thus sustaining the survival and even proliferation of rare microorganisms [90]. Certain
bivalves, such as the invasive zebra mussel (Dreissena polymorpha), can host various bacterial and
protozoan pathogens. Indeed, Vibrio cholerae can attach to a range of aquatic organisms, including
shellfish, plants, algae, and zooplankton, in salty environments and persist for long periods [29],
triggering intermittent outbreaks in human communities.

Finally, garbage is also an important site for complex microbial community development. In
West Africa, the coastal lagoon network is particularly developed from Sierra Leone to Angola.
The main towns of these countries are settled along these lagoons with runoff, garbage, and sewage
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discharging directly into the lagoons. The large amounts of plastics that can be seen floating on the
surface of these lagoons demonstrate these impacts. Indeed, millions of tons of plastics are rejected
in aquatic ecosystems yearly [60], with more than 4.4 million originating from Africa in 2010 [91].
Whatever the origin of plastic debris, they have a lifespan of decades, if not centuries [92]. Plastics
float and disperse due to winds and currents, and can travel over very long distances. During these
travels, they will be degraded and fragmented, creating micro- and nanoparticles. The impacts of
the degradation of plastic debris on biodiversity are still poorly known [93–95], but plastics can be
easily colonized by microorganisms and biofilms [96,97]. They can play a major role in the transfer
of organisms from one place to another [98–103]. Phytoplankton and zooplankton can develop on
these supports and promote the production of bacteria and viruses, which are subsequently locally
diverted to the water column [67]. Water pieces locked in floating bottles or plastic containers are also
well adapted for colonization by microorganisms. Bacteria living on plastics, organic particles, and
surrounding seawaters have been described [68]. The spreading of fish pathogens has also recently
been described [104]. Plastic-specific bacteria constitute a distinct set of microorganisms that are very
different from the surrounding water [105–108], with the quantity of bacteria 500 times more elevated
than in the surrounding water [109]. Human pathogens such as Vibrio cholerae and E. coli can also
stick to such supports [110,111]. Kirstein et al. (2016) reported that 13% of the debris they studied
(by cultivation) contained Vibrio spp. We also confirmed this finding in the Abidjan lagoon (Vakou et
al. in preparation). Conversely, Debroas et al. [112] performed metagenomic analysis and recorded
only a 0.14% prevalence of Vibrio on the material they studied. They pointed out the opportunism
of these bacteria (‘hitchhikers’) that use debris as a simple support unlike the vast majority of other
taxa that showed a true affinity (biodegradation) for the polymers. In the marine environment (North
Sea), Oberbeckman et al. [108] obtained comparable results and indicated that different communities
comprising both prokaryotes and eukaryotes developed according to the nature of the plastic (polymer
composition), confirming the observations of Carpenter and Smith (1972) [113]. It was suggested that
organic aggregates may facilitate the survival of aquatic pathogens by providing both a ‘refuge’ [114]
and a ‘resource-rich microhabitat’ [115].

Overall, and regardless of their size, floating plastics behave as ideal bioreactors where bacteria
settle and proliferate. To extensively investigate the potentially pathogenic bacterial strains, present in
urban tropical surface water masses, plastics must be sampled, and their biofilms must be imperatively
studied in parallel with the classically monitored microbial communities of the water column and
sediments. Metagenomic will be the best approach to study complex microbiota on these supports.

4. How to Identify Complex Microbiota

4.1. Different Technical Approaches

To survey the emergence of pathogens in environmental water, the detection of bacteria, viruses,
and parasites is required. This detection refers to two major problems: How and when?

Classic bacteriological techniques can be used to detect contamination of surface water, i.e., (i) the
fecal bacteria index (FIB), which consists of measurements of Escherichia coli, intestinal enterococci,
and Clostridium perfringens densities [9]; (ii) microbial source tracking (MST), which can confirm
fecal contamination; and (iii) host-specific fecal DNA markers, which can be used to differentiate
human and nonhuman sources [116]. However, these methods do not help forecast the emergence
of new pathogens. In the same line, the emergence of antibiotic resistance can be first detected by
phenotypic methods using antibiotics in culture. Proteins involved in drug resistance can be detected
from isolated colonies by MALDI-TOF MS-MS. However, this cannot be applied to noncultivable
microorganisms, like most environmental bacteria. Detection of genetic structures coding for “drug
resistance” means that associated proteins are thus required, which can be achieved by metagenomic
and whole genome sequencing.
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By analyzing DNA (i.e., with next-generation sequencing (NGS) techniques), complex microbial
populations can be analyzed in the same round. This leads to microbial diversity, genetic adaptation,
or interactions data [117,118]. However, there are still many technical pitfalls for deploying these
innovative methods in low-income countries: (i) the preservation of environmental RNA or the
extraction of high-molecular-weight DNA is not straightforward [119], (ii) cDNA analysis (i.e., for viral
RNA), which necessitates biomass collection, total RNA extraction, storage, and cDNA synthesis [120],
(iii) the maintaining of a quantitative estimation to avoid losing the representativity of the sampling.

4.2. How to Use Metagenomics?

Most environmental microorganisms are uncultivable, and culture-based methods cannot be
used. Analysis of DNA is however always possible, allowing direct identification of microorganisms
in sludge or in wastewater [121]. These studies are permitted by the drastic decrease in the price
of next-generation sequencing (NGS), which is as low as 100 euros per bacterial whole genome.
Metagenomic analysis consists of DNA sequencing, (i) without targeting specific DNA sequences
(whole genome sequencing (WGS)), or (ii) targeting the 16S gene for bacteria and 18S gene for
eukaryotes. Specific genes can also be targeted as those involved in drug resistance.

NGS generates a large number of small sequences (usually 100–200 base pairs), which must
be compared to an international database. The quality and completeness of this database are thus
key elements. For 16S RNA identification, the good quality of the international databases leads to
reliable results. However, for environmental or new pathogen species, databases are still limited,
impairing the identification. Similarly, whole-genome sequencing can be used to explore genetic
diversity and to identify new enzymatic structures from the environment. However, this approach
requires fully annotated genomes or, at least, previous identification of the specific genetic signatures
of drug resistance “cassettes” [122]. Finally, the quantity and quality of the DNA available, as well as
the deepness of sequencing (i.e., the number of times a single base will be sequenced) will also limit the
sensitivity of this approach, especially for complex metagenomes mixed with DNA from contaminants
issued from water treatment plants. The deeper the analysis, the more expensive it is.

For environmental biotopes, a few hundred publications are already available using this approach,
especially in fresh water contexts [118]. In these samples, some species were described as cosmopolitan,
i.e., Actinobacteria [123], but many new species (especially viruses) were described [29,124]. This
diversity concerns microbial eukaryotes as well (nematodes, protists, fungi), found in marine sediments,
which can play pivotal roles in maintaining ecosystem function [125]. Archaea have also been described
in sediments [126,127]. Investigations in ponds [128] and oceans [129] have also highlighted an
unknown and rapid turnover of viruses and microorganisms. New viruses (nucleocytoplasmic large
DNA viruses) were discovered to play a crucial ecological role in the sea by accelerating the turnover
of their unicellular hosts or by causing diseases in animals. Their abundance was extremely high, with
up to 104–105 genomes mL−1 in the photic zone.

They also used 18S rDNA to investigate eukaryotic microbiota in freshwater [130] and seawater
samples [131]. Cytochrome oxidase 1 barcodes were used to identify macroinvertebrates in benthic
samples [132,133]. The shotgun sequencing approach was more recently used to investigate microbial
and viral diversity in sea water [134,135]. Whole genome sequencing (WGS) was also used to reveal
new structures involved in metabolic pathways or mutant proteins [136–140], or nucleocytoplasmic
large DNA viruses [141].

4.3. Technical Approaches and Pitfalls in Genomic Analysis

The first step of metagenomic approaches is to obtain good-quality DNA or cDNA, which needs
(i) biomass collection, (ii) DNA/RNA preservation, (iii) total RNA extraction, and cDNA synthesis [119].
Preservation of RNA from environmental biotopes or extraction of high-molecular-weight DNA are
not straightforward [142] and require quantitative approaches, to ensure the representativity of the
material [129]. The high-molecular-weight DNA will be used as a template for sequencing libraries of
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different sizes (200/300 bp to 3/5 kb) to facilitate genome assembly. When the DNA quantity is not
sufficient in the sample, new strategies of whole genome amplification can be used. However, the
quality of the data obtained in this way is usually very low. Up to 90% of the sequences generated can
be from the self-amplification of primers. At the same time, under-represented DNA cannot be fully
sequenced according to the deepness of the sequencing step, and the choice of the polymerase used for
amplification will impact the quality and representativity of data [143].

Using the WGS approach, reconstitution of whole genomes from rough data obtained from
a mix of organisms such as biofilm is challenging, as a lot of contigs will contain sequences
not matching the genome guides [144]. For this analysis step, several software needed to be
applied, i.e., sequence trimmers, duplicate remover, and assemblers (such as SOAPdenovo) [145,146].
Protein-coding genes (open read frames, ORFs) are predicted using a gene-finding algorithm such
as MetaGeneMark [147–155]. Functional annotation can be performed using a BLASTP search, first
against the reference genome and then against the database of nr protein sequences.

In addition to this whole genome approach, PCR/sequencing techniques targeting 16S [156] or 18S
tRNA can be used to simplify the analysis. Most publications used the V3-V4 region of the rRNA gene,
which contains very-well-conserved sequences bordering hypervariable regions. The high-throughput
sequencing of PCR products is performed, and the results are trimmed. Trimming of the reads also
requires several steps: (i) paired-end reads are filtered for quality control (using QIIME v1.7, for
example [157]), (ii) tags attached to the sequences are compared against the Gold reference database to
detect chimera sequences and to remove them [158], (iii) sequences with effective tags are assigned to
the same operational taxonomic units (OTU) at 97% similarity using software such as UPARSE [159],
and (iv) representative sequences are annotated against the small ribosomal subunit rRNA SILVA
database [160]. The relative abundance of a given taxon in a biofilm is calculated as the percentage of
the number of sequences assigned to this taxon divided by the total number of sequences assigned to
all the taxa in the community. For sequences absent from databases, the so-called de novo strategy
can be used. It consists of comparing the sequences from a dataset and then grouping the sequences
by similarity into clusters that elect a consensus sequence. The consensus sequence can, in turn, be
annotated by a database, defining an unknown species. Once the taxonomic assignment has been
completed, the metagenomic profiles of species present in each sample will be established.

Compared to WGS, this approach offers a higher selectivity and generates a small set of data,
which is easier to handle to explore species. However, the capacity of PCR to amplify the 16S gene
depends on the primers used. The diversity detected is thus more limited than with WGS and the
identification of new or divergent microorganisms is difficult due to the lack of accurate databases
and/or adapted primers. The coverage of sequencing (i.e., the number of times a specific base is
determined) will also impact the detection of variants or rare microorganisms. Preliminary studies
must be conducted to determine the coverage needed to reach a plateau in the genus or species diversity
detected. Some nontranscribable sequences, such as ITS, can also be used for barcoding, especially
for eukaryotes [161], but this approach underestimates the diversity of the species [162] to a few key
species rather than the whole genus [163].

Specific analysis of antibiotic resistance genes (ARG) can be performed in the same line as 16S using
NGS. The NCBI nonredundant database (NCBInr) is used to predict their phylogenetic origin. Putative
mobile genetic elements (MGEs) are then searched for and screened on the PFAM and TIGRFAMS
databases [148,149]. The abundance and diversity of ARG families in the metagenomic raw sequence
data sets are then analyzed by screening with the resistance-gene-specific profile hidden Markov
model (HMM) with packages such as the HMMER package [150] and/or with the same data-processing
workflow as for soil microbiota [151]. Predicted protein sequences can be compared to CARD [152],
ARDB [153], and ResFinder databases [154] using BLASTP to ARG.

Mobile genetic elements (e.g., ICEs or transposons) are also important to detect, which can be
performed using BLASTp through the ICEberg database [155]. Inspection of microsynteny (small scale of
synteny) can also be performed on regions surrounding resistance genes to detect mobile elements (e.g.,
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transposase-encoding genes) or their traces. In addition, prophages and clustered regularly interspaced
short palindromic repeats (CRISPR) can be identified using PHAST and CRISPRfinder, as previously
described [139]. To further assess potential ARG mobility, the assembled metagenomic contigs are
aligned to plasmid genome sequences (available in the NCBI RefSeq database). Antibiotic-resistant
ORFs are considered colocalized with an MGE if they shared a contig with an MGE ORF.

4.4. Questioning the Relevance of the Results of Metagenomic Analysis

After metagenomic analysis, questions about the relevance of the microorganism identified must
be considered, as well as the differentiation of dead or living organisms [164].

When technical problems are solved to assure that the data and the sequences obtained are
of good quality, the basic questions of ecology reappear. In a particular biotope, what will be the
relevance of a microorganism detected in a specific site and at a precise time? What will be the turnover
of the microorganisms and the risk of missing them? These questions should be addressed before
determining the sampling strategy. Indeed, microbial populations seem very spatially structured in
biotopes even when no physical barriers separate them. The sampling strategy can induce huge biases
in the results. Diverse parameters can drive phenotypic and genotypic frequency variations in microbial
communities and influence the extent and structure of microbial diversity [122,139]. The collection of
representative samples thus requires careful consideration of the environmental context and a clear
definition of the objectives of the sampling. The place of sampling in the biotope impacts the results,
for example, in wastewater pipes [165]. Biofilms in the top and bottom of pipes were found to contain
different compositions and abundances of sulfide-oxidizing and sulfate-reducing bacteria. In the same
line, microbiota were found to be different in dairy lagoon wastewaters even if they were in open
contact [166]. The time and season of sampling are also very important, especially in relation to climate
perturbations. Local clustering was shown in the open area [167] or in ponds in relation to rainfall and
storms [60] or after typhoons [168]. All environmental parameters drive phenotypic and genotypic
frequency variations in microbial communities and thus control the extent and structure of microbial
diversity [122,169].

Metagenomics is thus a powerful approach to explore biodiversity in environmental water.
However, questions on the relevance of data still exist, and the strategy of sampling will be the most
important factor leading to representativity of the results.

5. Conclusions

Rapid, inadequate, unplanned urbanization and high population densities are associated with
poor environmental and sanitary contexts. In low-income countries, urban runoffs or open sewage
channels are major sources of fecal contamination of the environment. Surface waters and urban
aquatic ecosystems are thus collecting and concentrating pathogen populations, which secondarily
mix with environmental microorganisms. For these pathogens, genetic drift, chemical pressure, and
lateral genetic transfer facilitate acquisition of virulence, long-term survival, and multidrug resistance
genes. This contributes to the emergence or re-emergence of waterborne pathogens. Virus emergence
from rural (and forest) areas like Ebola or Lassa are well documented by the mass-media, whereas
no attention is paid to bacteria evolving to be highly resistant in crowed suburbs of tropical cities.
The use of urban surface water for bathing, farming, fishing, or as an unimproved drinking-water
source means that pathogens and contaminants are discharged in water resources and mix with
environmental aquatic microbiota, before coming back to humans. In the same time, between
2000 and 2010, the consumption of antibiotic drugs increased by 35% [22] with a huge increase in
drug resistance and deaths. The emergency is to preserve the efficacy of existing drugs for future
generations [170]. Modern analytical processes, i.e., metagenomic approaches, have to be implemented
to comprehensively study this complex biotope as many of these microorganisms are not cultivable
and escape classical microbiology approaches. In the same line, the places to carry out sampling
to study bacteria drift cannot be simply water and sediments as classically done but must take into
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account new habitats associated with floating macroaggregates, especially plastics. The pervasiveness
of plastics is said to be the ultimate geological proxy for characterizing our new Anthropocene era.
The ubiquity of plastics reshapes aquatic habitats, deeply impacting microbial communities and
their interactions. Resistance gene transfer pathways might thus be noticeably enhanced, with huge
potential epidemiological consequences.
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